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Announcements
•HW4 is due on Friday and cannot be turned in late.
• Answers will be posted on Saturday.

• Final exam is on Monday, 3-5pm.
• Bring a calculator.
• Norris bookstore sells calculators for $4.



Roles of  an OS
•A user interface for humans to run programs
•A resource manager allowing multiple programs to share one 

set of  hardware.
•A programming interface (API) for programs to access the 

hardware and other services.



Processes & System Calls
• Process is a program in execution
• Limited direct execution is a strategy whereby a process usually operates as 

if  it has full use of  the CPU & memory.
• CPUs have user and kernel modes to prevent user processes from 

running privileged instructions, thus limiting execution.
• Interrupts are events that cause the kernel to run
• System Calls (or traps) are software interrupts called by a user program 

to ask the OS to do something on its behalf.
• Timer Interrupt ensures that the kernel eventually gets a chance to run



Processes & System Calls
• Process is a program in execution
• Limited direct execution is a strategy whereby a process usually 

operates as if  it has full use of  the CPU & memory.
• CPUs have user and kernel modes to prevent user processes from 

running privileged instructions, thus limiting execution.
• Interrupts are events that cause the kernel to run
• System Calls (or traps) are software interrupts called by a user 

program to ask the OS to do something on its behalf.
• Timer Interrupt ensures that the kernel eventually runs.



Process Creation & Memory Layout
• Variations in CPU architecture influence OS design
• Linux supports 31 different CPU architectures
• Low-level mechanisms are different on each arch.
• High-level policies are the same for all.

• Fork syscall: run one, exits twice!
•Nondeterminism is when a program’s output is unpredictable
•OS process scheduler can create race conditions in programs that rely on 

an interaction of  multiple processes.
• These are tricky to debug, because they are sensitive to timing (Heisenbugs).

• Kernel panic occurs when OS causes an exception and can’t recover



Process Memory & Virtual Memory
• Showed program’s view of  computer in more detail
• Explained how execution stack makes subroutines easy
•Heap is used by malloc to dynamically allocate memory
•Virtual Memory allows each process to have its own view of  memory
• Memory is divided into pages

•OS creates a Page table for each process
• Tells CPU how to translate virtual to physical addresses
• Page tables are the mechanism controlled by the OS to distribute physical 

memory among competing processes
• OS can just change the CPU’s %CR3 register to change page tables.



Scheduling
•Defined two conflicting metrics: turnaround time and response time
• Cannot optimize both – must tradeoff, or balance, the two

•Optimized by shortest job first and round robin, respectively
• Context switching overhead is due to the CPU caches
• CPU keeps most recently used data in nearby caches, so it’s more efficient to 

let an ongoing process continue.
• I/O-blocked processes make progress without using the CPU
• We should prioritize I/O-bound processes

•Multi-Level Feedback Queues are often used in real OS schedulers
• Prioritizes “polite” processes that use little CPU time when scheduled
• CPU-bound processes squander their time quotas and lose priority



Process’ view of  memory

• Code and global data are filled by exec
syscall to load a program.
• A new frame is pushed on the stack 

whenever a function is called. (And 
popped on return.)
•Heap data is managed by malloc



Virtual Memory
•Memory is divided into equal-sized pages.
• Page tables translate virtual page numbers to physical page numbers.
• Showed the details of  page table entries (PTEs):
• High bits translate from virtual page number to physical page number.
• Low bits in the PTE are used to indicate present/rw/kernel page.

•During a context switch, kernel changes the %CR3 register to switch 
from the page table (VM mapping) of  one process to another.
• VM is handled by both the OS and CPU:
• OS sets up the page tables and handles exceptions (page faults).
• CPU automatically translates every memory access in the program from 

virtual addresses to physical addresses by checking (walking) the page table.



VM & Paging optimizations
• Latency cost, because each memory access must be translated.
• Translation lookaside buffer (TLB) caches recent virtual to physical page 

number translations.
• Software-controlled paging removes page tables from the CPU spec and lets 

OS handle translations in software, in response to TLB miss exceptions.
• Space cost, due to storing a page table for each process.
• Linear (one-level) page tables are large.
• Smaller pages lead to less wasted space during allocation,

but more space is consumed by page tables.
• Multi-level page tables are the only way to truly conserve space.
• Mixed-size pages reduce TLB misses.

• Copy-on-write fork, demand zeroing, lazy loading, and library sharing 
all reduce physical memory demands.



Swapping
• Disk is slow, but large, and can be used to store RAM’s overflow
• Disks have high throughput (transfer bitrate) but high latency (delay)
• Magnetic disks have even higher latency than SSDs, due to moving parts.

• Paging and swapping work together, using the same CPU mechanisms
• If  a page is marked “not present” it may be either invalid or swapped to disk.

• Or it might indicate lazy allocation, lazy loading, or copy-on-write, as we saw last time.
• High bits of  page table entry can store disk location of  swapped page.

• Page replacement policy decides which page(s) to evict to free memory
• Swapping can be done on demand or in the background
• Having some free physical frames will prevent delays for allocations.
• Accessed bit and Dirty bit in PTEs inform the page replacement policy

• Thrashing is when swapping prevents the system from doing any work.
• Unified page cache handles both traditional paging and file caching.
• Makes filesystem access seem just as fast as memory access.



Types of  page faults
• Minor/soft: Page is loaded in memory, but PTE is not configured:
• OS just wants to be informed when the page is accessed, so it pretends to evict the 

page (just mark it not present).  Useful if  CPU has no accessed/dirty bit.
• Memory can be shared from another process (eg., copy on write)
Response: update the PTE.

• Major/hard: A disk access will be needed:
• Anonymous page (process data) may have been swapped out.
• Lazy-loading program executable.
Response: load the page from disk

• Invalid: User program misbehaved:
• Dereference null or invalid pointer.
• Write to page that is read-only.
• Execute code on a page that is not executable (for security).
Response: terminate the process.



Free Lists
•Handled by libc’s malloc and free
• Malloc uses sbrk or mmap syscalls

• Freed memory is put on a free list to be reused for later allocations.
• A single header can be cleverly used and re-used for two purposes:
• As a linked list node when the block is free/available
• To store the size of  the allocated block to help service free calls.

• Free space management policy determines:
• which free blocks to choose for an allocation, and
• When to coalesce (join) adjacent free blocks

• Free block choice policies include:
• First, next, best, and worst fit.



Threads
• Processes can have multiple threads sharing the virtual address space
• Critical sections are block of  code that must be run atomically
• If  unprotected, critical sections lead to race conditions that make 

code indeterminant – we get different results depending on timing.
• Locks are the simplest mutual exclusion primitive, with two main 

functions:
• Acquire/lock – get exclusive access to a shared resource.
• Release/unlock – release the shared resource.

• Concurrency occurs naturally in multi-CPU systems
• Concurrency is created by the process scheduler in single-CPU systems



Implementing Locks

•Hardware support for atomicity:
• Disable interrupts
• Test and set
• Compare and swap
• Fetch and add
• Load-linked & Store-conditional

• Various lock implementations
• Spinlock
• Ticket lock
• Yielding lock
• Queuing locks
• Park/unpark on Solaris
• Futex on Linux

• Sophisticated locks can be more fair and avoid starvation, but they can add 
unnecessary context-switch overhead on multiprocessors.

• Two-phase locks try to combine the best of  both approaches.
• OS scheduler and concurrent user code must coordinate for best performance.



Concurrent Data Structures
• Simplest strategy is to use one big lock, but this limits concurrency
• It’s thread-safe, but not really concurrent

• Concurrent queue used two locks (head & tail)
• Concurrent hash table used one lock per bucket
• Condition Variables are used to order threads, using signal() & wait().
• Wait puts a thread to sleep, signal wakes a waiting thread.
• Pthreads allows spurious wakeups, so we still need to check a status variable.
• broadcast() wakes all waiting threads

• Producer/consumer queue was implemented using two condition 
variables.



Synchronization Bugs
• Semaphore (up/down) is an all-purpose synchronization primitive
• Reader-writer lock allows multiple readers, but one writer.
• Adding too many locks can lead to deadlock, which requires:
• Mutual exclusion (avoid locks to avoid deadlock)
• Hold and wait (use trylock to release first lock to before deadlocking)
• No preemption
• Circular wait (always acquire locks in the same order to avoid deadlock)

•Dining philosophers was an example of  deadlock
• Circular wait can be avoided by making one philosopher grab right-hand side 

instead of  left first.



I/O and Disks
•OS interacts with devices by reading/writing device registers
• Each register has an I/O port address for in/out instructions, or
• memory-mapped I/O uses special physical memory addresses (with mov)

• Storage is complex, so
kernel functionality is divided
into at least three layers:

• Random access to a magnetic disk is 1000x slower than sequential
• Read head must seek and disk must rotate to reach a new sector



RAID & File Systems
• RAID allows multiple disks to act together for better

throughput, capacity, and/or fault tolerance.
• Parity is used in RAID5 to achieve all of  the above.

•OSes have a application-level API (syscalls) for file I/O:
• open, read, write, seek, stat, fsync, rename, unlink, mkdir

• Filesystem is a data structure the OS uses to organize disk space.

• Each file/directory has an inode storing
metadata & pointers to data blocks.



Buffer Caching & Logging
• Trace of  file operations shows that many accesses to disk are needed 

for even a single open/read/write.
• To improve performance, cache a small number of  active disk blocks
• Allows later reads to happen in memory
• Multiple writes can be absorbed and all are immediately visible in memory

• Each buffer is locked by a thread before use
•Write-ahead logging makes multiple disk writes appear atomic, even 

if  the machine is powered-down in the middle of  the transaction.
• Very important for related changes to inodes & bitmap (metadata in general)
• Data is written twice: to log first, then to main disk.
• On reboot, interrupted transaction is either rolled back or replayed.



Storage Layer Interactions
• Showed layered design of  xv6 storage system
• Implementation of  each layer uses only the layer(s) 

directly below
• Must provide an API suitable for implementing the 

layer(s) directly above
• Deeper layer are hidden.

• defs.h makes a subset of  kernel functions in each 
file “public.”
• Linux has a virtual file system (VFS) layer that allows 

multiple filesystems to coexist in one machine.



Log-structured File System
• Tries to make all writes sequential, at the end of  the disk (at first).
•Never edit data blocks or inodes, just write new copies and stop 

referring to the old versions.  Inodes are scattered throughout the disk.
• Checkpoint region points to distributed inode map, to find inodes.
• CR is the only thing that is always written in a well-known location.
• Using an old version of  the checkpoint region lets us see the filesystem as it 

looked in the past.  LFS can be extended easily to become a versioned file system.
•Garbage collector occasionally scans FS to compact segments with 

old, unused versions of  blocks.
• Restart from start of  disk after reaching the end, filling in holes.





Themes: 
•Hardware provides features beyond basic C functionality to support OS
•Virtualization:
• Providing processes with a simplified view of  the underlying system

• Caching & buffering improves performance, assuming:
• Temporal and/or spatial locality

• Safely sharing resources:
• Data structures to quickly find unused resources and prevent accidental reuse
• Policies to allocate resources among competing clients.

• Concurrency is hard: race conditions lead to bugs that are difficult to test.
• Laziness: when possible, delay handling requests if  it may be possible to 

take a shortcut later or to amortize the cost of  multiple requests.



Hardware features for OS use
• Privileged/kernel and user mode.
• Privileged instructions.

• Interrupts:
• Kernel specifies that CPU should jump to certain code to handle interrupts
• Software interrupts (traps) can be initiated by user code for syscalls
• Programmable timer and timer interrupts.

• Page table can be configured by OS for CPU to use virtual memory
• PTEs can be marked “not present” or “read only” to implement:
• Swapping, lazy loading, lazy allocation, copy on write

• TLB makes VM efficient, and is sometimes managed directly by the OS.
• Atomic primitives to implement locks and lock-free synchronization
• In/out instructions and memory mapping to perform I/O



Virtualization/abstraction
• Limited direct execution temporarily gives processes full use of  CPU  

(limited to non-privileged instructions)
• This makes is very easy to write programs and compilers.

• Syscall interface hides hardware details and variations from processes
• Eg., open(“/home/steve/file.txt”, READ|WRITE)

• Same program binary can be run on machines with different hardware, 
as long as the OS interface is the same.
• Application Binary Interface (ABI) defines low-level OS-process-lib interactions.
• ABI defines the Syscall numbers and the parameters for each syscall.

• If  OS provides same API (syscall/library function prototypes in header files), 
program source code need not change, but may be require recompilation.



Caching makes data access faster
• Computers storage hierarchy has vastly different capacities (1010×) and 

latencies (107×).  Must choose small-and-fast or big-and-slow.
• Software and hardware should both be designed to take advantage of:
• Temporal locality: access the same data frequently
• Hardware caching (invisible to the OS) makes repeated access fast.
• Software should be written and compiled to reuse memory locations.

• Spatial locality: access nearby data frequently
• Hardware caching pulls chunks of  data into caches, so nearby values are on hand
• Software should be written and compiled to move sequentially through data.
• Rotating disks are especially sensitive to random vs sequential access.



Computers have a hierarchy of  storage 

• Disk is about ten billion times larger than registers, 
but has about ten million times larger delay (latency).
• Goal is to work as much as possible in the top levels.
• Large, rarely-needed data is stored at the bottom level
• “Memory” is not just RAM, but everything below the 

registers

delay capacity
0.3ns CPU Registers 1 kB (kilobyte)

5ns CPU Caches (L2) 16 MB
50ns Random Access Memory (RAM) 16 GB

100µs Flash Storage (SSD) 1 TB
5ms Magnetic Disk 8 TB

Larger, but slow
er



Cache and buffer examples
• Virtual memory → physical memory
• Physical memory → L1/L2/L3 cache
• Physical memory → CPU registers (managed by compiler)
•Magnetic disk sectors → “disk buffer” (on disk, hidden from OS)
•Magnetic disk sectors → solid state memory (in a hybrid or fusion disk)
•Disk sectors → buffer cache in RAM
•On-disk inodes→ inode cache in RAM



Resource sharing
• CPU
• Various scheduling policies (MLFQ, etc.)
• Mechanism is the interrupt.

• Physical memory
• Eviction policy for swapping (LRU, etc.)
• Mechanism is paging.

• Persistent storage
• Generally don’t place quotas, but limit access to files according to owner.



Laziness is a virtue
Main idea is that programs often ask the OS to do unnecessary work.
• Fork: copy page table to child and mark everything read-only.
• Make true copies of  memory pages only in response to page faults.

•Mmap & sbrk:
• don’t have to write zeros to new memory or reserve space in physical memory 

until process actually uses it.
• Buffer cache: on bwrite we have two options:
• Write through: write to disk immediately (in xv6)
• Write back: wait to write until buffer is evicted from cache (the lazy approach).

• LFS: write a full segment of  updates at ones (buffering helps)



Performance lessons
•My program is slow… why?
•Maybe I need a theoretically faster algorithm or data structure, …

or maybe there is a system-level issue:
• Programs may be using more memory than is physically available and thus are 

doing a lot of  swapping (thrashing).
• Another process may be using lots of  memory or CPU time (these are shared 

resources).  Important program may have insufficient priority in scheduler.
• Process may be reading or writing a lot from disk.
• There may be lots of  CPU activity on one thread.  Somehow dividing the 

work among many threads would speed things up (but then we need to worry 
about concurrency bugs).

•Much can be learned from simple tools like “top” and Task Manager.



Debugging lessons
•Often, SW engineers spend more time reading than writing code.
• So, made your code readable for the next developer!

• If  your code doesn’t work, it’s often helpful to:
• Know exactly what changes you have made (git diff)
• Maybe throw out your changes and start again (roll back)

• Unpredictable bugs are often due to race conditions.
• Must protect critical sections and enforce ordering where necessary.



Reliability and Security lessons
•Disks are very prone to failure, but RAID significantly reduces the 

likelihood of  losing data (or experiencing downtime).
• Users are prone to do dumb things like “sudo rm –Rf /”

A versioned, log-structured filesystem lets you travel back in time to see 
what the filesystem used to look like.
• Untrustworthy apps may try to violate your privacy and sabotage your 

system.  Proper isolation of  processes and filesystem permissions can 
reduce the possible damage.



Meltdown and Spectre hacks 
•OS relies of  cooperation of  software and hardware engineers.
• Bad things can happen when SW and HW engineers don’t work 

together and understand each others’ work.

•Huge vulnerabilities were discovered in 2017:
•Meltdown – leaks protected memory through out-of-order execution.
• Spectre – leaks protected memory through speculative execution.

• https://youtu.be/RbHbFkh6eeE

https://meltdownattack.com/
https://youtu.be/RbHbFkh6eeE


Meltdown
Problem: Attacker can influence speculative control flow
Bug: Speculative execution not subject to page permission checks.

Permissions are checked before exposing results, but cache can be affected and 
thus memory access timing leaks information.

Result: User code can read kernel data (secret), or another process’ data.

Three steps:
1. Setup: flush the cache
2. Transmit: force speculation that depends on secret
3. Receive: measure cache timings



Meltdown overview
Initial setup:
char* kernel_addr = 0xFFFF0000; // The target is a high VM address in kernel space.
char probe[256 * 4096]; // The speed of access to this userspace array will leak data!

Guess the value of  that kernel byte:
char guess = 0x00; // maybe 0x0 is stored in location 0xFFFF0000?
clflush(probe[guess * 4096]); // flush cache for the page corresponding to our guess.

Use kernel data cleverly in an instruction that will be rolled-back:
*0; // Generate an exception, for example dereference a null pointer.

probe[*kernel_addr * 4096]; // secret kernel data will control which of our array pages is accessed.
// This should not even be executed, and if executed it should generate a page fault,

// but it will be speculatively executed and discarded (but cache warming is leaked!).

Measure the side effects on the cache:
s = rdtsc(); // start timing
probe[guess * 4096];
e = rdtscp(); // end timing
if (e - s < CACHE_MISS_THRESHOLD)
printf("guess was right!\n");                   …else: Repeat with another guess!



From https://meltdownattack.com/meltdown.pdf

https://meltdownattack.com/meltdown.pdf


Spectre
• Problem: Attacker can influence speculative control flow

(same as Meltdown)
• Attack: Extract secrets within a process address space (e.g. a web 

browser). Can also be used to attack the kernel.
• Could use attacker provided code (JIT) or could co-opt existing 

program code
• Same basic three steps! Different setup and tester.

• Uses branch prediction cache instead of  memory cache to leak 
effects of  the rolled-back instructions.



Followup classes
If  you enjoyed this class, then you should consider:
• 446 Kernel and other low-level software development
• 354 Network Penetration and Security
• 397 Digital Forensics
• 340 Intro to Computer Networking
• 339 Databases
• 203 Intro to Computer Engineering (fulfills basic engineering req.)
• 396 Scalable Software Architectures
• COMP_ENG 361 Computer Architecture I
• COMP_ENG 358 Intro to Parallel Computing



Questions?



Career advice!
• Software systems are affecting society drastically.  Take responsibility!
• You’ll be well paid, but don’t spend it all.  Avoid golden handcuffs!
• This will give you the freedom to quit if  you need to, and maybe start your 

own company.
• Software engineering is difficult and a lifelong learning experience.
• Your degree is just the start of  a very long path.
• It doesn’t matter too much where you start, as long as you’re learning.


