BEECS-343 Operating Systems
Lecture 19:
Final Review

Steve Tarzia

Spring 2019

Northwestern

Announcements

* HW4 1s due on Friday and cannot be turned in late.

* Answers will be posted on Saturday.

* Final exam is on Monday, 3-5pm.
* Bring a calculator.

* Nortis bookstore sells calculators for $4.

Roles of an OS

* A user interface for humans to run programs

* A resource manager allowing multiple programs to share one
set of hardware.

* A programming interface (APl) tfor programs to access the
hardware and other services.

Processes & System Calls

* Process 1s a program 1n execution

* [imited direct excecution 1s a strategy whereby a process usually operates as
it 1t has full use of the CPU & memory.

* CPUs have user and kernel 7odes to prevent user processes from
running privileged instructions, thus Amiting execution.

* Interrupts are events that cause the kernel to run

* Systern Calls (or traps) are software interrupts called by a user program
to ask the OS to do something on its behalf.

* Lumer Interrupt ensures that the kernel eventually gets a chance to run

Processes & System Calls

* Process 1s a program in execution

* Limited direct execution 1s a strategy whereby a process usually
operates as if it has full use of the CPU & memory.

* CPUs have user and kernel modes to prevent user processes from
running privileged instructions, thus Amiting execution.

* Interrupts are events that cause the kernel to run

* System Calls (or traps) are software interrupts called by a user
program to ask the OS to do something on its behalf.

* Timer Interrupt ensures that the kernel eventually runs.

Process Creation & Memory lLayout

* Variations in CPU architecture influence OS design

* Linux supports 31 different CPU architectures
e Low-level wechanisms are different on each arch.
* High-level po/icies are the same for all.

* Fork syscall: run one, exits twice!
* Nondetermimnism 1s when a program’s output 1s unpredictable

* OS process scheduler can create race conditions in programs that rely on
an interaction of multiple processes.

* These are tricky to debug, because they are sensitive to timing ([Hezsenbngs).

* Kernel panic occurs when OS causes an exception and can’t recover

Process Memory & Virtual Memory

* Showed program’s view of computer in more detail

* Explained how execution s7zck makes subroutines easy

* Heap 1s used by malloc to dynamically allocate memory

* Virtnal Memory allows each process to have its own view of memory
* Memory 1s divided into pages

* OS creates a Page 7able tor each process

* Tells CPU how to translate virtual to physical addresses

* Page tables are the mechanzsm controlled by the OS to distribute physical
memory among competing processes

* OS can just change the CPU’s %CR3 register to change page tables.

Scheduling

* Defined two conflicting metrics: turnaround time and response time

* Cannot optimize both — must tradeotf, or balance, the two
* Optimized by shortest job first and round robin, respectively

* Context switching overhead 1s due to the CPU caches

* CPU keeps most recently used data in nearby caches, so it’s more efficient to
let an ongoing process continue.

* 1/O-blocked processes make progress without using the CPU
* We should prioritize I/O-bound processes

* Multi-Level Feedback Queues are often used in real OS schedulers
* Prioritizes “polite” processes that use little CPU time when scheduled
* CPU-bound processes squander their time quotas and lose priority

Process’ view of memory

\ligkoal Mewiory CRW Registers
™ - // 6‘“‘L *]
P % eh)‘E A ecal
¥&f“°:& 2/ ex 3\ ¢ Code and global data are filled by exer
D syscall to load a program.
7 esiL -] } A?:;rs
. oo .
Fstm« #%\"—“";————‘ * A new frame 1s pushed on the stack
c e tac e . .
et P Nebe 1“5 whenever a function is called. (And
Pocess | esp [71 shmdk gointer d
N popped on return.)
Heap Data § eve | T instradion .
(matod) N " * Heap data 1s managed by malloc
Global Deka N
o § \N\‘\Qr\ \s memory fllea?
C od.o § W Loon-tin
§\\ B Run _time
o l:i-"j’o reserved {%/4 B Never

Virtual Memory

* Memory 1s divided into equal-sized pages.
* Page tables translate virtual page numbers to physical page numbers.
* Showed the details of page table entries (PTEs):

* High bits translate from virtual page number to physical page number.
* Low bits in the PTE are used to indicate present/rw/kernel page.

* During a context switch, kernel changes the % CR3 register to switch
from the page table (VM mapping) of one process to anothetr.

* VM is handled by both the OS and CPU:

* OS sets up the page tables and handles exceptions (page faults).

* CPU automatically translates every memory access in the program from
virtual addresses to physical addresses by checking (walking) the page table.

VM & Paging optimizations

* Latency cost, because each memory access must be translated.

* Translation lookaside buffer (TLB) caches recent virtual to physical page
number translations.

* Softwate-controlled paging removes page tables from the CPU spec and lets
OS handle translations in software, in response to TLB miss exceptions.
* Space cost, due to storing a page table for each process.
* Linear (one-level) page tables are large.

* Smaller pages lead to less wasted space during allocation,
but more space 1s consumed by page tables.

* Multi-level page tables are the only way to truly conserve space.
* Mixed-size pages reduce TLB misses.

* Copy-on-write fork, demand zeroing, lazy loading, and library sharing
all reduce physical memory demands.

Swapping

* Disk 1s slow, but large, and can be used to store RAM’s overtlow

* Disks have high throughput (transfer bitrate) but high /arency (delay)
* Magnetic disks have even higher latency than SSDs, due to moving parts.

* Paging and swapping work together, using the same CPU mechanisms

* If a page 1s marked “not present” it may be either invalid or swapped to disk.
* Or it might indicate /uzy allocation, lazy loading, ot copy-on-write, as we saw last time.
* High bits of page table entry can store disk location ot swapped page.

* Page replacement policy decides which page(s) to evict to free memory
* Swapping can be done on demand or in the background
* Having some free physical frames will prevent delays for allocations.
* Accessed bit and Dirty bitin PTEs inform the page replacement policy

* Thrashing is when swapping prevents the system from doing any work.
* Unified page cache handles both traditional paging and file caching:.

* Makes filesystem access seem just as fast as memory access.

Types of page faults

* Minor/soft: Page is loaded in memory, but PTE is not configured:

* OS just wants to be informed when the page is accessed, so it pretends to evict the
page (just mark 1t not present). Useful if CPU has no accessed/dirty bit.

* Memory can be shared from another process (eg., copy on write)
Response: update the PTE.

* Major/hard: A disk access will be needed:

* Anonymous page (process data) may have been swapped out.
* Lazy-loading program executable.
Response: load the page from disk

* Invalid: User program misbehaved:
* Dereference null or invalid pointer.
* Write to page that 1s read-only.

* Execute code on a page that is not executable (for security).
Response: terminate the process.

Free Lists
* Handled by libc’s malloc and free

* Malloc uses sbrk or mmap syscalls
* Freed memory is put on a free list to be reused for later allocations.

* A single header can be cleverly used and re-used for two purposes:
e As a linked list node when the block is free/available
* To store the size of the allocated block to help service free calls.

* Free space management policy determines:
* which free blocks to choose for an allocation, and

* When to coalesce (join) adjacent free blocks

* Free block choice policies include:

* First, next, best, and worst fit.

Threads

* Processes can have multiple threads sharing the virtual address space
* Critical sections are block of code that must be run aromically

* It unprotected, critical sections lead to race conditions that make
code indeterminant — we get different results depending on timing.

* Locks are the simplest mutual exclusion primitive, with two main
functions:

* Acquire/lock — get exclusive access to a shared resource.
* Release/unlock — release the shared resource.

* Concurrency occurs naturally in multi-CPU systems

* Concurrency is created by the process scheduler in single-CPU systems

Implementing ILocks

* Hardware support for atomicity: * Various lock implementations

* Disable interrupts * Spinlock

* Test and set * Ticket lock

* Compare and swap * Yielding lock

* Fetch and add * Queuing locks

* Load-linked & Store-conditional * Park/unpark on Solaris

e Futex on Linux

* Sophisticated locks can be more fairand avoid starvation, but they can add
unnecessary context-switch overhead on multiprocessors.

* Two-phase locks try to combine the best of both approaches.

* OS scheduler and concurrent user code must coordinate for best performance.

Concurrent Data Structures

* Simplest strategy is to use one big lock, but this limits concurrency

* It’s thread-safe, but not really concurrent
* Concurrent queue used two locks (head & tail)
* Concurrent hash table used one lock per bucket

* Condition Variables are used to order threads, using szonal() & wait().
* Wait puts a thread to sleep, signalwakes a waiting thread.
* Pthreads allows spurious wakeups, so we still need to check a status variable.

* broadcast() wakes all waiting threads

* Producer/consumer queue was implemented using two condition
variables.

Synchronization Bugs

* Semaphore (up/down) is an all-purpose synchronization primitive
* Reader-writerlock allows multiple readers, but one writer.

* Adding too many locks can lead to deadlock, which requires:

* Mutual exclusion (avoid locks to avoid deadlock)

* Hold and wait (use trylock to release first lock to before deadlocking)

* No preemption

* Circular wait (always acquire locks in the same order to avoid deadlock)

* Dining philosophers was an example of deadlock

* Circular wait can be avoided by making one philosopher grab right-hand side
instead of left first.

I[/O and Disks

* OS interacts with devices by reading/writing device registers
* Each register has an /O portaddress for in/out instructions, or
* memory-mapped 1/0 uses special physical memory addresses (with mov)

POSIX API [open, read, write, close, etc.]

e Storage 1s complex. so -
b

File System

kel‘nel fU.IlCthIlahty IS lelde < .Generic Block Interface‘block read/write| -‘D
lnto at leaSt three layerS: Specific Block Interface [protocol-specific read/write]

X
_ Device Driver [SCSI, ATA, etc.]

* Random access to a magnetic disk is 1000x slower than sequential

e Read head must seek and disk must rotate to reach a new sector

RAID & File Systems

* RAID allows multiple disks to act together for better
throughput, capacity, and/or fault tolerance.

* Parityis used in RAID5 to achieve all of the above.
* OSes have a application-level API (syscalls) for file I/O:

* open, read, write, seek, stat, fsync, rename, unlink, mkdir

* Filesystem 1s a data structure the OS uses to organize disk space.

dinode

boot|super log ihodes bit map |data: ‘data (~ type data
| | : : : : major
0 1 2 minor
nlink I
size

address 1 /

* Hach file/directory has an inode storing < [= P

address 12 —

metadata & pointers to data blocks. - L oo

indirect block/
address 177

Butter Caching & Logging

* Trace of file operations shows that many accesses to disk are needed
for even a single open/read/write.

* To improve performance, cache a small number of active disk blocks
* Allows later reads to happen in memory

* Multiple writes can be absorbed and all are immediately visible in memory

* Each butffer is locked by a thread before use

* Write-ahead logging makes multiple disk writes appear atomic, even
if the machine is powered-down in the middle of the transaction.
* Very important for related changes to inodes & bitmap (metadata in general)
* Data is written twice: to log first, then to main disk.
* On reboot, interrupted transaction is either rolled back or replayed.

Storage Layer Interactions

* Showed layered design of xv6 storage system

* Implementation of each layer uses only the layer(s)
directly below

* Must provide an API suitable for implementing the
layer(s) directly above

* Deeper layer are hidden.

e defs.h makes a subset of kernel functions in each

file “public.”

* LLinux has a virtual file system (VES) layer that allows
multiple filesystems to coexist in one machine.

ggsC‘\le C

Cle.c

loj.c_

\Dio.c

1.

Log-structured File System

* Tries to make all writes sequential, at the end of the disk (at first).

* Never edit data blocks or inodes, just write new copies and stop
referring to the old versions. Inodes are scattered throughout the disk.

* Checkpoint region points to distributed inode map, to find inodes.
* CR 1s the only thing that 1s always written in a well-known location.

* Using an old version of the checkpoint region lets us see the filesystem as it
looked 1n the past. LFS can be extended easily to become a versioned file system.

* Garbage collector occasionally scans IS to compact segments with
old, unused versions of blocks.

* Restart from start of disk after reaching the end, filling in holes.

~

wa

R
>

Themes:

* Hardware provides teatures beyond basic C functionality to support OS
* Virtnalization:
* Providing processes with a simplified view of the underlying system

* Caching & buffering improves performance, assuming:
* Temporal and/or spatial locality
* Safely sharing resources:

* Data structures to quickly find unused resources and prevent accidental reuse
* Policies to allocate resources among competing clients.

* Concurrency 1s hard- race conditions lead to bugs that are difficult to test.

* [Lazmness: when possible, delay handling requests if it may be possible to
take a shortcut later or to amortize the cost of multiple requests.

Hardware features for OS use

* Privileged/kernel and user mode.
* Privileged instructions.

* Interrupts:
* Kernel specifies that CPU should jump to certain code to handle interrupts

* Software interrupts (traps) can be initiated by user code for syscalls
* Programmable timer and timer interrupts.

* Page table can be configured by OS for CPU to use virtual memory

* PTEs can be marked “not present” or “read only” to implement:
* Swapping, lazy loading, lazy allocation, copy on write

* TLLB makes VM efficient, and 1s sometimes managed directly by the OS.
* Atomic primitives to implement locks and lock-free synchronization
* In/out instructions and memory mapping to perform I/O

Virtualization/abstraction

* Limited direct execution temporarily gives processes full use of CPU
(imited to non-privileged instructions)

* This makes is very easy to write programs and compilers.

* Syscall interface hides hardware details and variations from processes
* Eg., open(“/home/steve/file.txt”, READ | WRITE)

* Same program binary can be run on machines with different hardware,
as long as the OS interface is the same.

* Application Binary Interface (ABI) defines low-level OS-process-lib interactions.

* ABI defines the Syscall numbers and the parameters for each syscall.

* If OS provides same API (syscall/library function prototypes in header files),
program source code need not change, but may be require recompilation.

Caching makes data access faster

* Computers storage hierarchy has vastly different capacities (10'°X) and
latencies (107X). Must choose small-and-fast or big-and-slow.

* Software and hardware should both be designed to take advantage of:

* Temporal locality: access the same data frequently
* Hardware caching (invisible to the OS) makes repeated access fast.
* Software should be written and compiled to reuse memory locations.
* Spatial locality: access nearby data frequently
* Hardware caching pulls chunks of data into caches, so nearby values are on hand
* Software should be written and compiled to move sequentially through data.

* Rotating disks are especially sensitive to random vs sequential access.

Computers have a hierarchy ot storage

delay capacity
Ug 0.3ns CPU Registers 1 kB (kilobyte)
A 5ns CPU Caches (I.2) 16 MB
g 50ns | Random Access Memory (RAM) | 16 GB
g 100us Flash Storage (SSD) 1TB
- 5ms Magnetic Disk 8 TB

* Disk 1s about zen billion times larger than registers,
but has about fen million times larger delay (latency).

* Goal is to work as much as possible in the top levels.
* Large, rarely-needed data is stored at the bottom level

* “Memory” is not just RAM, but everything below the
registers

Cache and buffer examples

* Virtual memory — physical memory

* Physical memory — L1.1/1.2/1.3 cache

* Physical memory — CPU registers (managed by compiler)

* Magnetic disk sectors — “disk buffer” (on disk, hidden from OS)

* Magnetic disk sectors — solid state memory (in a hybrid or fusion disk)
* Disk sectors — butfer cache in RAM

* On-disk inodes — 1node cache in RAM

Resource sharing

* CPU

* Various scheduling policies (MLFQ, etc.)
* Mechanism 1s the interrupt.

* Physical memory
* Eviction policy for swapping (LRU, etc.)
* Mechanism 1s paging.

* Persistent storage

* Generally don’t place quotas, but limit access to files according to owner.

lL.aziness 1s a virtue

Main idea is that programs often ask the OS to do unnecessary work.

* Fork: copy page table to child and mark everything read-only.
* Make true coples of memory pages only in response to page faults.
* Mmap & sbrk:

* don’t have to write zeros to new memory or reserve space in physical memory
until process actually uses it.

* Buffer cache: on bwrite we have two options:
* Whrite throngh: write to disk immediately (in xv06)
* White back: wait to write until butfer is evicted from cache (the lazy approach).

* LES: write a full segment of updates at ones (buffering helps)

Pertformance lessons

* My program is slow... why?

* Maybe I need a theoretically faster algorithm or data structure, ...
or maybe there is a system-level 1ssue:

* Programs may be using more memory than is physically available and thus are

doing a lot of swapping (¢hrashing).

* Another process may be using lots of memory or CPU time (these are shared
resources). Important program may have insufficient przority in scheduler.
* Process may be reading or writing a lot from disk.

* There may be lots of CPU activity on one thread. Somehow dividing the

work among many threads would speed things up (but then we need to worry
about concurrency bugs).

* Much can be learned from simple tools like “top” and Task Manager.

Debugging lessons

* Often, SW engineers spend more time reading than writing code.
* So, made your code readable for the next developet!

* If your code doesn’t work, it’s often helptul to:
* Know exactly what changes you have made (git diff)
* Maybe throw out your changes and start again (ro// back)

* Unpredictable bugs are often due to race conditions.

* Must protect critical sections and enforce ordering where necessary.

Reliability and Security lessons

* Disks are very prone to failure, but RAID significantly reduces the
likelihood of losing data (or experiencing downtine).

* Users are prone to do dumb things like “sudo rm -Rf /7

A versioned, log-structured filesystem lets you travel back in time to see
what the filesystem used to look like.

* Untrustworthy apps may try to violate your privacy and sabotage your
system. Proper isolation of processes and filesystem permissions can
reduce the possible damage.

Meltdown and Spectre hacks

* OS relies of cooperation of software and hardware engineers.

* Bad things can happen when SW and HW engineers don’t work
together and understand each others’ work.

* Huge vulnerabilities were discovered in 2017:
* Meltdown — leaks protected memory through out-of-order execution.
* Spectre — leaks protected memory through speculative excecution.

* https://voutu.be/RbHbFkh6ecE

https://meltdownattack.com/
https://youtu.be/RbHbFkh6eeE

Meltdown

Problem: Attacker can influence speculative control tlow

Bug: Speculative execution not subject to page permission checks.

Permissions are checked before exposing results, but cache can be affected and
thus memory access timing leaks information.

Result: User code can read kernel data (secret), or another process’ data.

Three steps:
1. Setup: tlush the cache
2. Transmit: force speculation that depends on secret

3. Recerve: measure cache timings

Meltdown overview

Initial setup:
char* kernel addr = OxFFFF0000; // The target is a high VM address in kernel space.
char probe[256 * 4096]; // The speed of access to this userspace array will leak data!

Guess the value of that kernel byte:
char guess = 0x00; // maybe 0x0 is stored in location OxFFFF00007?
clflush (probe[guess * 4096]); // flush cache for the page corresponding to our guess.

Use kernel data cleverly in an instruction that will be rolled-back:

*0; // Generate an exception, for example dereference a null pointer.

probe[*kernel addr * 4096]; // secret kernel data will control which of our array pages is accessed.
// This should not even be executed, and if executed it should generate a page fault,

// but it will be speculatively executed and discarded (but cache warming is leaked!).

Measure the side effects on the cache:

s = rdtsc(); // start timing
probe[guess * 4096];

e = rdtscp(); // end timing

if (e - s < CACHE MISS THRESHOLD)

printf ("guess was right!\n"); ..else: Repeat with another guess!

From https://meltdownattack.com/meltdown.pdf

1 raise_exception();
2 // the line below is never reached
3 access(probe_array[data * 4096]) ;

Listing 1: A toy example to illustrate side-effects of out-
of-order execution.

500
400
300 N
200 ‘ :
0 50 100 150 200 250

Page

Access time
[cycles]

Figure 4: Even if a memory location is only accessed
during out-of-order execution, it remains cached. Iterat-
ing over the 256 pages of probe_array shows one cache
hit, exactly on the page that was accessed during the out-
of-order execution.

<instr.>
<instr.> @
: 3
EXCEPTION o 5
HANDLER <instr.> =
<instr.> [[Exception]
<instr.> <instr.> @ &
[Terminate] <instr.> S 5 2
<instr.> %5°°

Figure 3: If an executed instruction causes an exception,
diverting the control flow to an exception handler, the
subsequent instruction must not be executed. Due to out-
of-order execution, the subsequent instructions may al-
ready have been partially executed, but not retired. How-
ever, architectural effects of the execution are discarded.

https://meltdownattack.com/meltdown.pdf

Spectre

* Problem: Attacker can influence speculative control tlow
(same as Meltdown)

* Attack: Extract secrets within a process address space (e.g. a web
browser). Can also be used to attack the kernel.

* Could use attacker provided code (JI'T) or could co-opt existing
program code

* Same basic three steps! Different setup and tester.

* Uses branch prediction cache instead of memory cache to leak
ettects of the rolled-back instructions.

Followup classes

If you enjoyed this class, then you should consider:

* 446 Kernel and other low-level software development

* 354 Network Penetration and Security

* 397 Digital Forensics

* 340 Intro to Computer Networking

* 339 Databases

* 203 Intro to Computer Engineering (fulfills basic engineering req.)
* 396 Scalable Software Architectures

* COMP_ENG 361 Computer Architecture 1

* COMP_ENG 358 Intro to Parallel Computing

(Questions?

Career advice!

* Software systems are affecting society drastically. Take responsibility!
* You’ll be well paid, but don’t spend it all. Avoid golden handcuffs!

* This will give you the freedom to quit if you need to, and maybe start your
own company.
* Software engineering is difficult and a lifelong learning experience.

* Your degree is just the start of a very long path.
* It doesn’t matter too much where you start, as long as you’re learning.

