
EECS-343 Operating Systems
Lecture 18:

Log-structured File Systems
Steve Tarzia
Winter 2018

Diagrams taken from “Three Easy Pieces” book



Announcements
• Project 4 is due on Wednesday.
• HW4 due on Friday
• Final exam is this coming Monday, June 10th, 3-5pm

• Final will be cumulative
• There will be some code-reading questions
• More questions will be objective, and fewer will be “essays.”
• Open book, open notes
• No passing notes or books during the exam



Last Lecture – Storage Layer Interactions
• Showed layered design of  xv6 storage system
• Implementation of  each layer uses only the layer(s) directly below

• Must provide an API suitable for implementing the layer(s) directly above
• Deeper layer are hidden.

• defs.h makes a subset of  kernel functions in each file “public.”
• Linux has a virtual file system (VFS) layer that allows multiple 

filesystems to coexist in one machine.



Fast File System reduces seek times
• Recall that a read/write accesses four or more disk blocks

• In classic Unix/xv6 FS, long seeks are needed to move between inodes and 
data blocks:

• Fast File System and its descendants, like ext2 & ext3, divide the disk 
into block groups, each arranged like a miniature filesystem:

• If  possible, put a file’s inode and its data blocks (and parent and siblings) in 
the same block group. This is locality again – putting related things nearby.



Throughput problems in traditional filesystems
• Usually we think of  a disk abstractly as an array of  data sectors.
• But sequential reads/write are much faster than random accesses.

• xv6 FS is ignorant of  this.  It just implements a buffer cache layer to reduce 
repeated disk I/Os to the same locations.

• Caching does not help if  you need to write lots of  new data.
• If  writing one big file, we can get a large sequence of  contiguous data 

blocks.
• But, if  writing many small files, good performance is very difficult to 

achieve.
• FFS block groups reduce seek length. 
• Delaying and batching requests allows the disk firmware to reorder them. 
• But we are still doing a lot of  seeks. 😔



Log-structured Filesystems (LFS)

• A radically different filesystem design.
How would you design a filesystem for:

• A tape drive, with very, very slow seek times?
• ~one minute to rewind through the entire tape
• 500 inches/second. 1500-3000 foot tape reel.

• A pen and paper notebook?

• Try to do every write sequentially.  But how?
• Idea is to treat the filesystem like a log.

• A log is a sequence of  events, new ones at the end.
• When data changes, don’t bother going back to 

edit the original, just store new copy at the end.
• In the simplest case, assume infinite capacity.

Tape drive circa 1953:

http://www.columbia.edu/cu/computinghistory/701-tape.html

http://www.columbia.edu/cu/computinghistory/701-tape.html


LFS is optimized for write performance
• Traditional filesystems access many different parts of  disk during reads 

and writes, but buffer cache is meant to fix this problem.
• However, caching only helps with repeated access to the same disk block.

• It turns out in real-world workloads:
1. Reads of  the same location are often repeated, but…
2. Disk space is cheap, so programs often write lots of  data, even if  most is 

never used again.
• Caching helps with #1 but not with #2.



Just keep writing to the end, sequentially
• LFS still has inodes and data blocks, it just places them differently.
• Always write to the end.  For example, when writing a small file:

• Write data block:

• Then write the inode:



Write two files

• As always, we write the data blocks before inodes to minimize the 
impact of  an interruption/crash.

• Note: this picture assumes that we open the file and write a large chunk of  data 
all in one big operation.

• This can be achieved by delaying the writes to disk with a buffering/caching layer.



Writing in large segments reduces rotational delays
• Even though we are writing to sequentially 

increasing locations, there is still the 
possibility of  a long rotation delay if  the 
requests are not issued together.

• For example, writing sectors 27, 28, 29 can be 
very fast in the best case, but only if  we are 
ready to write 28 immediately after 27.

• A small delay between write(27) and write(28)
might make us to wait for a full disk rotation.

• So, LFS buffers writes and sends them in 
large batches (few MB) called segments.

• Goal is to balance rotation & seek delay with 
segment data transfer time.



Inode map tracks inodes within a segment
• Formerly, inode numbers could be used to find inode struct in an array.
• LFS makes it more difficult to find inodes.  They are placed in arbitrary 

locations on disk.  Now how do we find a particular inode?

• Each segment has an inode map giving address of  each of  its inodes.
• Recall that segments are large, and can contain hundreds of  inodes.
• But this is not a complete solution, because there are many segments 

and many inode maps, themselves in random locations on disk.



Two levels of  indirection to find inodes
• At the beginning of  the disk, store a checkpoint region, which just 

points to all the valid inode maps on disk:

• The i-map is distributed throughout the disk in all the valid segments.
• Finding an inode involves looking at the entire imap. This could be slow, but 

in practice we should be able to keep then entire ipap cached in memory.
• Checkpoint region keeps a persistent record of  the distributed imap.

• Infrequently (~30 seconds), seek to the beginning of  the disk to flush
the in-memory cache of  the checkpoint region.

List of  
imaps:

[A2, …]



A segment with a file and a directory
• Directories are also stored in the same way:

• Notice that the directory lists the <filename, inode#>, as usual.
• This inode # does not tell us where to find the file inode.

• Must check the in-memory inode map to find the associated disk block.
• At boot time, read the checkpoint region and the distributed inode map.



Never go back to modify existing data
Always write a new copy of  the entire block.  If  editing data:

If  appending data to a file, the inode is edited:

…

Old version New version



Pointing to the new version (after file edit)

• Old data still exists on the disk, but the in-memory i-map and its persistent 
copy in the checkpoint region do not refer to it.

• If  we disk space is infinite, that’s good enough.
• If  we save an old version of  the checkpoint region, it can be used to view 

and old snapshot of  the filesystem!
• A filesystem that preserves old snapshots is a versioning file system.

… …
map[k]:A1

…

Imap
(old)

…

41

41 map[k]:A42
…

Imap
(new)

CR
(points to all 
valid imaps)

…

Old segment New segment



Rewriting inode maps

• A segment holds many inodes, declared in one i-map.
• Checkpoint region points to i-maps that must be entirely valid

• So, when editing a file, not only must the file be rewritten (the data 
block(s) and inode), but the segment’s i-map must be rewritten.

…Imap
(old)

Imap
(new)

CR
(points to all 
valid imaps)

…

Old segment New segment

inodes & data blocks inodes & data blocks



Intermission
• Show previous slide



Pen and paper example
Appending to a file



Disks actually have finite size
• Cannot write sequentially forever
• Cannot keep old versions of  data around indefinitely
• Eventually need to garbage collect segments with free space

• Actually, we want to free full-sized segments.
• If  we encounter a segment that is partially filled, then free the full segment 

and rewrite a compacted version of  the segment at the end of  the log.
• After reaching the end of  the disk, restart the writing at the beginning 

of  the disk, but only write to the “holes” left by the garbage collector.
• Garbage collector periodically scans through the disk, perhaps during 

idle time.
• But how can GC decide whether which blocks are live or dead?



Backward pointers aid garbage collection
• The distributed i-map tells us directly whether an inode is live or dead.
• Data blocks are more difficult to classify

• Naïve approach is to examine every inode on the disk, looking for a reference 
to the block; but this is way too slow.

• We want some kind of  backward reference from data block to inode.

• Solution: add a segment summary block indicating the inode
number and block offset for each data block in the segment.

• Check whether inode listed in SSB still refers to the data block.



Final LFS notes
• The main idea of  a log-structured filesystem is also called copy on 

write and shadow paging (in DBs).
• This is different than “copy on write” of  process memory when forking.
• However that other kind of  CoW can also be implemented for file copies.

• ZFS, Btrfs, and new Apple FS are log-structures filesystems.
• Also used in Linux LiveCDs to make a read-only disk appear writeable 

(as long as you have enough space in RAM for the writes).
• How to make LFS reads fast?

• Writes are naturally sequential, but reads can involve lots of  seeks.
• As always, batch them together so they can be reordered to minimize seeks.



Data integrity
• With trillions of  bits stored on a disk, it’s very possible that one will be 

flipped due to a hardware malfunction, radiation, etc.  (“bit rot”)
• Checksum is a standard way to detect data corruption:

• It’s a mathematical function that produces a small summary of  the data
• Different checksum functions can be used: CRC, MD5, SHA1

• Result has fixed length, but input can be of  arbitrarily-large size
• It’s essentially a hash function: same input always gives same output.
• Cannot be perfect, due to pidgeonhole principle

• Sometime two different inputs will produce the same output, so not all errors are 
detectable.

• Store data or metadata checksums in a filesystem to detect corruptions.
• ZFS and Btrfs do this.



Networked File Systems
• These are used:

• When users must access their documents from multiple machines.
• In huge systems, specialized server hardware is dedicated to storage 

and different hardware is used for computing tasks.
• Networked filesystem can be served by one machine,
• Or, for “big data” problems, multiple machines can be clustered to 

form a distributed/parallel filesystem.
• Machines in the Wilkinson Lab and T-Lab mount home directories 

through NFS, a Unix protocol for networked file systems.
• Windows has something similar, called SMB/CIFS.

• Quest supercomputer at NU has a 3.5PB GPFS parallel filesystem.



Why move storage further away?
• Surely, networking adds some latency and complexity.
But:
• Modern networks are fast.
• It’s faster to access a neighbor’s RAM than to access your own disk!
• Fault tolerance requires an array of  disks (eg., RAID5) which may not 

fit in your client machine.
• Can manage backups centrally, rather than relying on client users/HW.
• Pooling storage leads to less wasted space.
• Can deduplicate shared data.
• Allows access of  same data from multiple devices.        Etc., etc., …



Recap - Log-structured File System
• Tries to make all writes sequential, at the end of  the disk (at first).
• Never edit data blocks or inodes, just write new copies and stop 

referring to the old versions.  Inodes are scattered throughout the disk.
• Checkpoint region points to distributed inode map, to find inodes.

• CR is the only thing that is always written in a well-known location.
• Using an old version of  the checkpoint region lets us see the filesystem as it 

looked in the past.  LFS can be extended easily to become a versioned file system.
• Garbage collector occasionally scans FS to compact segments with 

old, unused versions of  blocks.
• Restart from start of  disk after reaching the end, filling in holes.


