
EECS-343 Operating Systems
Lecture 17:

Storage Layer Interactions
Steve Tarzia
Spring 2019

Announcements
• Project due Wednesday.
•HW due next Friday.
• Exam Monday June 10th at 3pm.

Last Lecture: Buffer Caching & Logging
• Trace of file operations shows that many accesses to disk are needed

for even a single open/read/write.
• To improve performance, cache a small number of active disk blocks
• Allows later reads to happen in memory
• Multiple writes can be absorbed and all are immediately visible in memory

• Each buffer is locked by a thread before use
•Write-ahead logging makes multiple disk writes appear atomic, even

if the machine is powered-down in the middle of the transaction.
• Very important for related changes to inodes & bitmap (metadata in general)
• Data is written twice: to log first, then to main disk.
• On reboot, interrupted transaction is either rolled back or replayed.

xv6 storage: a layered implementation

Øsys_file.c
Øfile.c
Øfile.c
Øfs.c
Ølog.c
Øbio.c
Øide.c

Unfortunately, the
implementations of these
layers are interdependent.
They are not true layers

Book’s view:

More accurate view of storage stack in xv6
⬍ int file_descriptor, char* filename

⬍ struct file

⬍ struct inode

⬍ struct buf

⬍ struct buf

⬍ in/out device registers

1)

2)

3)

4)

5)

• Each layer is implemented using only the layer(s) below’s API.
• Each layer’s public API is defined in defs.h (other functions are private).

• Layer’s API must be designed to meet needs of the client layer(s) directly above.

6)
⬍ struct buf

Objects passed
between the layers.

Im
pe

rf
ec

tly
 la

ye
re

d
ke

rn
el

 c
od

e

1) File descriptor level (syscalls, sys_file.c)
int read(int, void*, int);
int write(int, void*, int);
int open(char*, int);
int close(int);
int dup(int);
int link(char*, char*);
int unlink(char*);
int fstat(int fd, struct stat*);

int mkdir(char*);
int chdir(char*);

• This is the system call API
presented to user code in
user.h.
•Works with
• integer file descriptors
• byte arrays
• file path strings

File descriptors
A file descriptor is a file open by a process – an inode, r/w permissions, and a cursor:

struct file {
enum { FD_NONE, FD_PIPE, FD_INODE } type;
int ref; // reference count
char readable;
char writable;
struct pipe *pipe;
Inode *ip; // in-RAM copy of inode
uint off; // file offset/cursor

};

Each process’ proc struct has:
• struct file *ofile[NOFILE]; // Up to 16 open file descriptors
• struct inode *cwd; // Current directory

2) Virtual file system layer (file.c)
Just a bunch of helper functions for working with struct file*:

File* filealloc(void);
void fileclose(File*);
File* filedup(File*);
int fileread(File*, char* data, int size);
int filestat(File*, Stat*);
int filewrite(File*, char* data, int size);

Syscall implementations needs more than just these functions.
•We still don’t have a way to open/create a file using a path string.
• So this is an incomplete layer.

struct inode (in-memory version)
struct inode {
uint dev; // Device number
uint inum; // Inode number
int ref; // Reference count
int flags; // I_BUSY, I_VALID

short type;
short major;
short minor; copy of disk inode
short nlink;
uint size;
uint addrs[NDIRECT+1];

};

Global icache stores 50 active inodes in kernel memory (cleanup when ref==0)

3) Inode layer (fs.c) is where it gets interesting
// get inode corresponding to filename

Inode* namei(char* path);

Inode* nameiparent(char* path, char*); // get parent inode
// read/write to a specific location in a file

int readi(Inode*, char* data, uint offset, uint size);

int writei(Inode*, char* data, uint offset, uint size);

// copy file stats (size, timestamp, etc.) from inode
void stati(Inode*, struct stat*);

// write a new directory entry (name, inum) to inode
int dirlink(Inode*, char*, uint);

// Look for a directory entry in a directory
Inode* dirlookup(Inode*, char* name, uint*);

3) Inode layer (fs.c) continued
Inode* ialloc(uint, short); // get new inode
Inode* idup(Inode*); // “copy” inode, but actually just increment ref count
void ilock(Inode*); // also read data lazily
void iunlock(Inode*);

void iput(Inode*); // decrement ref count, cleanup
void iupdate(Inode*); // tell buffer layer that inode was modified

• Functions that return an inode call iget(int dev, int inum) internally,
which increments the cached inode’s reference count.
• Cached inodes are shared. Call ilock and iunlock when accessing.
iupdate if modified. iput when done.

struct buf

ØBusy/Locked? Valid? Dirty?

ØDoubly-linked circular list of buffers

ØList of buffers waiting to be written to disk.
(Implementing it here is kind of sloppy.)

4) Logging (log.c)
Logging is optional, and only used in filesystem critical sections.

void begin_op();
• Waits until the logging system is not committing and there is enough free

space in the log.
void log_write(struct buf*);
• Reserves a place for the block in the log, but does not write to disk yet.
• Allows multiple writes to be absorbed (combined into one).

void end_op();
• Writes the transaction to disk in the log, then in the destination sectors.

5) Buffer cache layer (bio.c)
Buf* bread(int device, int sector)
• Returns a cache buffer with the data at a given location on a given disk.
• Buffer is locked for thread’s exclusive use.

void bwrite(Buf* b)
• Write buffer’s new contents to disk.
• xv6 uses a “write through” cache – we always write immediately.

• Must always call bread before bwrite.

void brelse(Buf* b)
• Release the lock on the buffer

6) Device driver layer (ide.c)
void iderw(struct buf*);
• Read from disk to buffer if valid bit=0
• Write buffer to disk if dirty bit=1
• Sleep (on buffer pointer) before returning, so it’s a blocking call from the

calling thread’s perspective, even though it uses interrupts.

void ideintr(void);
• Handles disk interrupts to complete a r/w request.
• Read to buffer (if necessary) and wake sleeping thread.

Intermission

Example: open(char*,…) in sysfile.c
Assuming that the file exists,
sys_open will call:
• begin_op: start a transaction
• namei: file path → inode
• ilock: lock inode
• filealloc: make an empty file

struct
• fdalloc: list the file among

process’ open files & get fd #
• iunlock
• Store inode # in file struct.
• end_op: end a transaction

sys_open
fdalloc

filealloc

namei, ilock, iunlock

sys_open implementation interacts with
three layers below, but none further down.

Hidden layers

begin_op, end_op

Example: create(char*,…) in sysfile.c

If we tell sys_open to create a new file,
create will call:
• nameiparent: file path → parent inode
• ilock: lock parent inode
• dirlookup: check whether file exists
• ialloc: get inode for new file
• ilock it
• Set device number and nlink=1

• dirlink: add new file to parent
directory inode
• iupdate new & parent inodes
• iunlock: new & parent inodes

sys_open

create

nameiparent,
dirlookup, dirlink
ialloc, ilock, iunlock

Hidden layers

Example: filewrite(File*,char *,int n) in file.c

sys_write calls begin_op, finds the
appropriate struct file and calls
filewrite, which calls:
• ilock
• writei: the inode number and

offset both come from struct file.
• iunlock

sys_write
(client function)

ilock, writei, iunlock

Hidden layers

filewrite

Example: writei(Inode*,char *, int offset, int n) in fs.c

Now we’re working in a lower layer:
• bmap : examine the inode to determine

which block number corresponds to the
write offset.
• bread: to get the appropriate buffer
• bwrite: marks the buffer as written
• log_write: adds it to the transaction
• brelse: release the buffer lock

Notice that bread and brelse
simultaneously handle locking & buffer
memory management.

bread, bwrite,
brelse

writei
bmap

Hidden layer

Client layers

log_write

Example: bread(int device, int sector) in bio.c

Now we’re down at the buffer layer.

• bget(…,int sector): gets a
cached copy or a fresh, empty buffer.
• In either case, lock the buffer.

If we missed in the cache, call:
• iderw: to read the sector from disk.

iderw

bread bget

Client layers

Example: iderw(struct buf*) in ide.c

This is the lowest level (device driver).

• Uses in/out assembly instructions
and port numbers corresponding to
device registers.
• Implements an interrupt handler

function, ideintr, which wakes the
caller.

iderw ideintr

in/out IRQ

Client layer

(disk)

Adding logging to xv6

• At some point, Prof. Kaashoek at MIT
decided to add write-ahead-logging to xv6.
• This was actually easy to do (~300 LoC)

https://github.com/mit-pdos/xv6-public/commit/13a96bae

• Just added a layer between fs.c & bio.c
• Implementation of fs.c would have to

change, but we can minimize this by keeping
the interface mostly the same:
• Try to provide an API similar to:
bread, bwrite, brelse.

Old xv6 storage stack

https://github.com/mit-pdos/xv6-public/commit/13a96bae

xv6 logging implementation is a partial layer
First version of logging API was:
• begin_trans to start a transaction
• log_write for writes within a transaction
• commit_trans to end a transaction

• A read function was not included, so client layers must
call bread in lower layer.
• Change bwrite→ log_write in fs.c
• Call begin_trans whenever entering a file-related syscall.
• Call commit_trans when entering any other syscall

• Later, the log was allowed to store multiple
transactions & functions were renamed to
begin_op, end_op
https://github.com/mit-pdos/xv6-public/commit/71453f72f2

bread

https://github.com/mit-pdos/xv6-public/commit/71453f72f2

Supporting multiple filesystems

• xv6 supports just one filesystem
• Syscall implementations work directly with

inodes (a filesystem detail).
• But some filesystems don’t even use inodes!
• Logging implementation is also specific to FS

• Linux has a virtual file system (VFS) layer
to support multiple FSs.

• xv6’s lack of strict layering leads to less
code, but it’s less extensible.

Specific
Filesystem

Where would you insert a software RAID layer?

• Somewhere below layers 3, 4, or 5. Below bio.c would be cleanest.
• Hardware RAID would be below this kernel software stack, perhaps with a

new device driver (replacing ide.c)

⬍ int file_descriptor, char* filename

⬍ struct file

⬍ struct inode

⬍ struct buf

⬍ struct buf

⬍ in/out device registers

1)

2)

3)

4)

5)

6)
⬍ struct buf

Recap – Storage Layer Interactions
• Showed layered design of xv6 storage system
• Implementation of each layer uses only the layer(s) directly below
• Must provide an API suitable for implementing the layer(s) directly above
• Deeper layer are hidden.

• defs.h makes a subset of kernel functions in each file “public.”
• Linux has a virtual file system (VFS) layer that allows multiple

filesystems to coexist in one machine.

