BEECS-343 Operating Systems
Lecture 17:
Storage lLayer Interactions

Steve Tarzia

Spring 2019

Northwestern



Announcements

* Project due Wednesday.
* HW due next Friday.

* Exam Monday June 10% at 3pm.



Last Lecture: Butffer Caching & Logging

* Trace of file operations shows that many accesses to disk are needed
for even a single open/read/write.

* To improve performance, cache a small number of active disk blocks
* Allows later reads to happen in memory

* Multiple writes can be absorbed and all are immediately visible in memory

* Each butffer 1s locked by a thread before use

* Write-ahead logging makes multiple disk writes appear atomic, even
if the machine is powered-down in the middle of the transaction.
* Very important for related changes to inodes & bitmap (metadata in general)
* Data is written twice: to log first, then to main disk.
* On reboot, interrupted transaction is either rolled back or replayed.



xv6 storage: a layered implementation

Book’s view:

File descriptor

Pathname

Directory

Inode

Logging

Buffer cache

Disk

»sys file.c |
»file.c
»file.c
»fs.c

Unfortunately, the

implementations of these
> layers are interdependent.

They are not true layers

»log.c D
>bio.c
>»ide.c



More accurate view ot storage stack in xv6

\ tint file_descriptor, char* filename B

qg 33‘?\\@ C

Z)Ql

e.C

2 ¥ struct inode ,
) (s.c S Objects passed

$ struct file

Imperfectly layered kernel code

4) $ struct buf between the layers.
loj il
\D $ struct buf
5) |10.C
. $ struct buf
O |de.c

§ in/out device registers ~

* Fach layer 1s implemented using only the layer(s) below’s API.
* FHach layer’s public API is defined in defs.h (other functions are private).
* Layer’s API must be designed to meet needs of the ckent layer(s) directly above.



1) File descriptor level (syscalls, sys_file.c)

int
int
int
int
int
int
int
int
int

int

read (int, wvoid*, 1int);
write(int, wvoid*, 1int);
open (char*, 1nt);

close (1int) ;

dup (1nt) ;

link (char*, char*);

unlink (char>*) ;

fstat(int fd, struct stat*);

mkdir (char*) ;

chdir (char*);

* This is the system call API
presented to user code in
uset.h.

* Works with

* integer file descriptors
* byte arrays
* file path strings



File descriptors

A file descriptor is a file open by a process — an inode, r/w permissions, and a cursor:

struct file {
enum { FD NONE, FD PIPE, FD INODE } type;
int ref; // reference count
char readable;
char writable;
struct plpe *pipe;
Inode *ip; // in-RAM copy of inode
uint off; // file offset/cursor

Y

Each process’ proc struct has:

. struct file *ofile[NOFILE]; // Up to 16 open file descriptors
e struct inode *cwd; // Current directory



2) Virtual file system layer (file.c)

Just a bunch of helper functions for working with struct file*:
File* filealloc (void);
vold fileclose(File¥*);
File* filedup (File*);

int fileread (File*, char* data, 1nt size);
int filestat (File*, Stat*);
int filewrite (File*, char* data, i1int size);

Syscall implementations needs more than just these functions.

* We still don’t have a way to open/create a file using a path string.

* So this 1s an incomplete layer.



struct inode (in-memory version)

struct inode {

uint dev; // Device number
uint inum; // Inode number
int ref; // Reference count

int flags; // I BUSY, I VALID
short type; A
short ma‘jor;
short minor; >~ copy Of disk 1inode
short nlink;
ulnt size;
ulnt addrs[NDIRECT+1]; )
b

Global scache stores 50 active inodes in kernel memory (cleanup when ref==0)



3) Inode layer (fs.c) is where it gets interesting

// get inode corresponding to filename
Inode* nameil (char* path);
Inode* nameiparent (char* path, char*); // getparentinode
// read/write to a specific location in a file
int readi (Inode*, char* data, ulint offset, uint size);
int writei (Inode*, char* data, uilint offset, ulint size);
// copy file stats (size, timestamp, etc.) from inode
vold stati (Inode*, struct stat*);
// write a new directory entry (name, inum) to inode
int dirlink (Inode*, char*, uint);
// Look for a directory entry in a directory

Inode* dirlookup (Inode*, char* name, uint¥*);



3) Inode layer (fs.c) continued

Inode* ialloc (uint, short); // getnew inode

Inode* idup (Inode*); // “copy” inode, but actually just increment ref count
void ilock (Inode*); // also read data lazily

vold iunlock (Inode~*) ;

void iput (Inode*); // decrement ref count, cleanup

void iupdate (Inode*); // tell buffer layer that inode was modified

* Functions that return an inode call iget (int dev, int inum) internally,
which increments the cached inode’s reference count.

* Cached inodes are shared. Call ilock and 1unlock when accessing.
iupdate if modified. iput when done.



struct buf

// I0 Buffer
struct buf {
int flags; === rrrrermersermenn s > Busy/Locked? Valid? Dirty?
uint dev;
uint sector;
struct buf xprev; // LRU cache list -3 Doubly-linked circular list of buffers

struct buf kNeXt ) rreerranrranrarrarraanae
struct buf xgnext; // disk queue ........... > List of buffers waiting to be written to disk.
uchar data[512]; (Implementing it here is kind of sloppy.)

b

#define B_BUSY 0x1 // buffer is locked by some process
#define B_VALID 0x2 // buffer has been read from disk
#define B_DIRTY 0x4 // buffer needs to be written to disk



4) Logeoing (log.c)

Logging 1s optional, and only used in filesystem critical sections.

volid begin op();
* Waits until the logging system is not committing and there is enough free
space 1n the log;

volid log write (struct buf*);
* Reserves a place for the block in the log, but does not write to disk yet.
* Allows multiple writes to be absorbed (combined into one).

vold end op();
* Writes the transaction to disk in the log, then in the destination sectors.



5) Butter cache layer (bio.c)

Buf* bread (int device, 1nt sector)
* Returns a cache buffer with the data at a given location on a given disk.

e Buffer is locked for thread’s exclusive use.

vold bwrite (Buf* Db)

e Write buffer’s new contents to disk.

* xv0 uses a “write through” cache — we always write immediately.

* Must always call bread before bwrite.

vold brelse (Ruf* b)
e Release the lock on the buffer



6) Device driver layer (1de.c)

vold iderw(struct buf*);
 Read from disk to buffer if valid bit=0

* Write buffer to disk if dirty bit=1

* Sleep (on buffer pointer) before returning, so it’s a blocking call from the
calling thread’s perspective, even though it uses interrupts.

vold ideintr (void) ;
* Handles disk interrupts to complete a r/w request.

* Read to buffer (if necessary) and wake sleeping thread.



Intermission

“The glutens back. And its pissed.”



Example: open (char*,..) insysfilec

Assuming that the file exists,

: - Sys_open
sys open will call: s\jsC;]QL fdalloc’
°* begin op: start a transaction o]
- Y 11eallocC
* namei: file path — inode ‘ e
e ilock: lock inode Cs.c namei, ilgck, iunlock
* filealloc: make an empty file by | begin_op, end_op
struct . ~
* fdalloc: list the file among By — > Hidden layers
process’ open files & get fd # “Rer J

e junlock . o "
. . SYS_oOopeEn im ecmentation imnteracts wit
e Store 1node # in file struct. YS—OP b

. three layers below, but none further down.
* end op: end a transaction



Example: create (char™, ..

It we tell sys open to create a new file,
create will call:

* nameiparent: file path — parent inode
* 1lock: lock parent inode
* dirlookup: check whether file exists

* ialloc: get inode for new file
e ilock it
e Set device number and nlink=1

* dirlink: add new file to parent
directory inode

* iupdate new & parent inodes
* iunlock: new & parent inodes

) in sysfile.c

{gbsg\\q,.c,

} sys_open

create

nameiparent,
dirlookup, dirlink

1alloc, ilock, 1unlock

> Hidden layers




Example: filewrite (File*,char *,1int n) mfilec

sys write callsbegin op, finds the

Sys_write
appropriate struct file and calls (client function)
filewrite, which calls:

filewrite
*ilock |

D . LA
*writei: the inode number and Hoeh, writel, fuioc
offset both come from struct file. h
*iunlock
>~ Hidden layers




Example: writeil (Inode*,char *, 1nt offset, int n) z'ﬂﬁ.t

Now we’re working in a lower layer:

* bmap : examine the inode to determine
which block number corresponds to the
write offset.

* bread: to get the appropriate buffer

* bwrite: marks the buffer as written

* log write: adds it to the transaction
* brelse: release the buffer lock

Notice that bread and brelse
simultaneously handle locking & buffer
memory management.

>~ Client layers

writel
4
bmap /
log_write

bread, bwrite,
bio.c.

brelse




Example: bread (int device, int sector) m bioc

Now we’re down at the butfer layer.

*bget (.., int sector): getsa
cached copy or a fresh, empty buffer.

* In either case, lock the buffer.

If we missed in the cache, call:

e iderw: to read the sector from disk.

s Client layers

-

bread — bget

|

iderw



Example: iderw (struct buf*) m ide.c

This 1s the lowest level (device driver).

* Uses in/out assembly instructions
and port numbers corresponding to
device registers.

* Implements an interrupt handler
function, ideintzr, which wakes the

caller } Client layer

iderw ideintr

| I

in/out > IRQ




Adding logging to xv6

Old xv6 storage stack

- N
535-@\@.(_
hle.c
fFs.c
bio.c.
e

* At some point, Prof. Kaashoek at MIT
decided to add write-ahead-logging to xvo0.

* This was actually easy to do (~300 LoC)

https://github.com/mit-pdos/xv6-public/commit/13a96bae

* Just added a layer between fs.c & bio.c

* Implementation of fs.c would have to
change, but we can minimize this by keeping
the interface mostly the same:

* Try to provide an API similar to:
bread, bwrite, brelse.


https://github.com/mit-pdos/xv6-public/commit/13a96bae

xv0 logging implementation 1s a partial layer

g\jsC'\\o, .C

) Gle.c

Cs.c

} —

le.L ,
\Dio.L

bread

r 0e.c_

First version of logging API was:

* begin trans to start a transaction

* log write for writes within a transaction
* commit trans toend a transaction

* A read function was not included, so client layers must
call bread in lower layer.

* Change bwrite — log_write in ts.c
* Call begin_trans whenever entering a file-related syscall.
 Call commut_trans when entering any other syscall

* Later, the log was allowed to store multiple
transactions & functions were renamed to
begin OE , end op
https://gfthub.com/mifFpdos/xv6-public/commit/71453{72{2



https://github.com/mit-pdos/xv6-public/commit/71453f72f2

Supporting multiple filesystems

Specific
Filesystem

>~

* xv0 supports just one filesystem

* Syscall implementations work c
inodes (a filesystem detail).

* But some filesystems don’t even

irectly with

use 1nodes!

* Logging implementation 1s also specific to FS

* Linux has a virtual file system (VEYS) layer

to support multiple FSs.

* xv0’s lack of strict layering lead
code, but it’s less extensible.

s to less



Where would you sert a software RAID layer?

\ tint file_descriptor, char* filename

} bg, 35‘:\‘0, C
. $ struct file
Gle.c
3) % § struct inode

O

43 ¥ struct buf
'Dj.(_
$ struct buf
5 bio.c

. ¥ struct buf

0 |0e.c

§ in/out device registers

* Somewhere below layers 3, 4, or 5. Below bio.c would be cleanest.

* Hardware RAID would be below this kernel software stack, perhaps with a
new device driver (replacing ide.c)



The Linux Storage Stack Diagram

o0 K]
C c C '.(;; .
59 5 o 2 version 4.10, 2017-03-10
I R = E outlines the Linux storage stack as of Kernel version 4.10
= o bt ] [ £
2z 2 |& £ |3 |5
?c}nmoan@/mous pages)
B [ Applications (processes) )
LIO = “malloc
—_ — ~ —_ N
vfs_writev, vfs_ready, ... S S r o b
o s 8 < £
Y fY Y BY Ty §
( N\ [ N O N
, VS | |
" Block-based FS ‘Network FS '~ Pseudo FS Special
Direct I/0 - (NFS) (odo) proc)  (sysfs) purpose F5 Page
(O_DIRECT) (smbfs) () e @) @O @ED ™ coche
| P @ (devtmpfs)
Y J
(oo ot S st S
- ol J
Y > userspace (e.g. sshfs)
—> network
J ( N\
stackable (optional)
/T\ > -

BIOs (block 1/0s) Devices on top of “normal” BIOs (block 1/0s)

block devices  (drbd) -

userspace -

\ J

BIOs ¢ iBIOs

— ™MTIrN



Y

userspace

BIOs

Y

hooked in device drivers
(they hook in like stacked

stackable ‘ (optional)
r o -
BIOs (block 1/0s) Devices on top of “normol” BIOs (block I/0s)
block devices
\
BIOs lBIOs
4 Block Layer b
I/0 scheduler blkmq
A Maps BIOs to requests \ multi queue
cfq queues devices do)
Hardware Hardware
dispatch dispatch
queue queues
N J
Request Request

based drivers

/N\

based drivers

BIO
based drivers

\

Vg A N

Request-based
device mapper targets

I\

Y

sysfs

—

SCSI mid layer
( scsi-mg )

7T\
7




\

/]
Vg SN
/]
/T

Request-based
device mapper targets

[ o[  scsimidlayer Y
(transposr)t?ftributes) -

SCSI upper level drivers

Transport classes -- .

- NEC L
Cses_transpor..) l

——-network
memory

SCSI low level drivers )

(megaraid sas) (gla2wor)  ( pmE00OT) (virto_scsP) W @
(@D D @) (vmw_pvscsi)

\' I—) network A

; y
LPhysical devices

\

==

The Linux Storage Stack Diagram
http://www.thomas-krenn.com/en/wiki/Linux_Storage_Stack_Diagram
Created by Werner Fischer and Georg Schonberger

License: CC-BY-SA 3.0, see http://creativecommons.org/licenses/by-sa/3.0/



Recap — Storage Layer Interactions

* Showed layered design of xv6 storage system

* Implementation of each layer uses only the layer(s) directly below

* Must provide an API suitable for implementing the layer(s) directly above
* Deeper layer are hidden.

* defs.h makes a subset of kernel functions in each file “public.”

* Linux has a virtual file system (VES) layer that allows multiple
filesystems to coexist in one machine.



