
EECS-343 Operating Systems
Lecture 16:

Buffer Caching & Logging
Steve Tarzia
Spring 2019

Announcements
• Project 4 is due next Wednesday
•Homework 4 will be out soon.

Last Lecture – RAID & File Systems
• RAID allows multiple disks to act together for better

throughput, capacity, and/or fault tolerance.
• Parity is used in RAID5 to achieve all of the above.

•OSes have a application-level API (syscalls) for file I/O:
• open, read, write, seek, stat, fsync, rename, unlink, mkdir

• Filesystem is a data structure the OS uses to organize disk space.

• Each file/directory has an inode storing
metadata & pointers to data blocks.

Inodes (xv6)
• Each file/directory is represented

by an inode (struct dinode)
• A file inode stores:
• Reference count (# of hard links)
• Total file size
• Array of data blocks storing the

file’s data (direct blocks)
• Optional indirect block address,

for files larger than 6kB.
• xv6 files can be 70kB at most!
• Inodes are 64 bytes each

direct blocks

Directory inodes (xv6)
• A Directory is like a file containing an array of <name, inode> pairs:

struct dirent {
ushort inum;
char name[DIRSIZ]; // 14

};

• Inode type is set to T_DIR instead of T_FILE
• Every directory contains two special entries:
• “..” pointing to parent directory
• “.” pointing to self

Storing larger files
ext3: double & triple indirect blocks ext4: extents

Disk partitions
•Most computers have one physical disk,
• But they may require multiple filesystems.
• A disk partition is a contiguous chunk of the

disk that can be formatted to store a filesystem.
At left, we have:
• Three different Linux partitions: /boot, swap, /
• A Windows partition.
• Each of the partitions may be formatted differently.

• At bootup, initial boot code will present user
with a menu to choose Windows or Linux boot.

Disk A

(not drawn to scale)

Logical Volume Management (LVM)
• It’s sometimes convenient to combine

multiple disk partitions into a bigger
logical volume.
• The concept is similar to software

RAID, but it does not provide
performance or redundancy benefits.
• Allows user to increase the size of a

filesystem by later adding another disk.
• I think this feature is overused as a

default setting on modern Linux
distributions.

A trace through the filesystem – open & read

•Note that the book’s vsfs uses an inode bitmap to find free inodes.
• xv6 filesystem simply scans through inodes to find an unused one.

open("/foo/bar")

tim
e

Create & write a file Create:
1. First, read the parent

directory to ensure that
name is not already used.

2. Find & claim a free inode.
3. Add <“bar”, inode#> to

parent directory.
4. Fill-in file metadata.

Write:
1. Look for remaining space

in existing blocks first.
2. Find & claim a new data

block.
3. Write data to new block
4. Point to it in inode

1

3

4

2

1
2

3
4

?

I/O overload
• Filesystem is a complex data structure, requiring reads/writes to many

locations of the disk to perform even basic operations:
• Open: accessed five different blocks
• Read: required three I/Os, including a write (to update last accessed time).
• Create: required nine I/Os.

•How to make this fast??
• Add a buffer cache layer to the OS storage system.
• Try to cache disk blocks in RAM whenever possible.

• Layered design breaks the overall storage system’s
complexity into a few simple layers. Buffer cache

xv6 buffer cache

One of NBUF = 30 buffers

Disk 0
Sector 12

Disk 0
Sector 12

Disk 1
Sector 7

Disk 1
Sector 7

Kernel
RAM

(Fast!)

Slow!

Goal is to minimize transfers between layers

Disk 0
Sector 3

Disk 1
Sector 102

Disk 0
Sector 3

Disk 1
Sector 102

• Upper layers (filesystem) work with buffers, not directly with disk

Buffer Cache goals
1. Cache popular blocks so the disk can be accessed less frequently.
• Recall that disk has 10,000× greater delay than RAM.
• Reads are faster if the disk block is already in memory from a recent access.
• Writes can be aggregated.
• If a thread writes three times briefly to the same file, these can likely be reduced to one

write to disk if the writes are delayed.
• If a thread creates a new file and quickly deletes it, these writes can be skipped

altogether.
• Eventually, changes must be flushed to disk, but there is no rush.

2. Must be careful to prevent two threads from accessing different
unsynchronized copies of the disk block.
• Ie., make the cache coherent and avoid race conditions

Buffer cache interface (kernel/bio.c)

Higher storage layers do not access disk directly, instead they call:
• struct buf* bread(int device, int sector)
• Returns a cache buffer with the data at a given location on a given disk.
• If the sector is already in a buffer, great! We avoided a disk read.
• If another thread using that buffer already, then sleep until it’s available.
• Buffer is locked for thread’s exclusive use.

• void bwrite(struct buf* b)
• Write buffer’s new contents to disk.
• Must always call bread before bwrite.

• void brelse(struct buf* b)
• Release the lock on the buffer (and wake any waiting thread)
• Move buffer to the head of the queue (MRU)

Example of buffer cache layer in action (kernel/fs.c)

• write syscall → sys_write → filewrite → writei

Ø Bread to get buffer & lock

ØCopy data to the buffer
Ø Flush data
ØRelease lock

Buffer cache details

ØBusy/Locked? Valid? Dirty?

ØDoubly-linked circular list of buffers

ØList of buffers waiting to be written to disk.
(Implementing it here is kind of sloppy.)

bread → bget looks for a matching buffer starting at head
(disk and sector #s must match)

Most recently used buffer is moved to head by brelse

Disk 0
Sector 12

Disk 1
Sector 7

… and allocates new buffers starting at tail
(buffer must be marked “not busy”)

Disk 0
Sector 3

Disk 1
Sector 102

• xv6 panics if a suitable buffer cannot be found.
• No more than 30 (NBUF) concurrent disk accesses are possible!

Unified page cache (Linux)
• Recall that a unified page cache allocates physical memory to store both:
• process’ virtual pages, and
• device block buffers.

• Use a 4 kB page frame to store 1, 2, 4, or 8 buffered disk blocks
(depending on the filesystem’s chosen block size)

• A page fault or a disk I/O can both:
• evict a resident page or cached disk block.
• request a physical frame

Intermission

Crash tolerance
• Filesystems are persistent and store important data
•We cannot rely on the user to shut down the system gracefully
• Power outages happen
• Kernel may panic
• USB plug may be yanked out

• But, filesystem is a complex data structure with critical sections.
• The concern is not race conditions, but partial commit.
• Some filesystem transactions must be performed atomically – “all or none,”

otherwise the filesystem will not be self-consistent.
• It’s OK to interrupt a write, as long as it leaves the file looking like it

was partially written, rather than corrupting the file or filesystem.

Crash example (while writing to /foo/bar)

• A crash before the write to the file’s inode would leak a data block
• The data bitmap was updated to reserve a direct block, but we were not able to

finish by making the file’s inode refer to that block.
• This block is lost forever. 😢

• Depending on the FS implementation, more serious problems are possible:
• Inode might refer to a block that has not been written yet, adding garbage data.
• … or to a block that was freed in the bitmap, making two files share the block.

tim
e

Crash here!

xv6 logging layer makes filesystem transactional
•Group related writes into a transaction.
• Call end_op to atomically commit the transaction.
• Example usage in a syscall:

begin_op();
...
bp = bread(...);
bp->data[...] = ...;
log_write(bp);
...
end_op();

Logging

Write-ahead logging: write the transaction to disk twice:

1. Write the blocks to the log, a reserved part of the disk.
• This makes a durable record of the transaction you plan to commit.
• Continue putting all writes to the log, until commit is called.

2. On commit, write a commit message to the log, then start writing all
of the logged writes where they belong on disk.
• Clear the log after everything is written again.

First, stage
changes in log

Later, make changes
permanent

What happens after a crash?
The next time the machine is booted, we deal with it as follows:
1. Crash occurred before commit:
• There is data in the log, but no commit message.
• Just clear the log to roll back the transaction.

2. Crash occurred after commit, while writing data to main part of disk.
• We don’t know how much of the transaction was finished.
• However, the log tells us exactly what must be done!
• Replay the transaction (from the beginning), then clear the log.

3. If the log is empty, do nothing because there were no outstanding
transactions.

Code in more depth
begin_op();
...
bp = bread(...);
bp->data[...] = ...;
log_write(bp);
...
end_op();

• begin_op waits until the logging system
is not committing and there is enough
free space in the log.
• log_write reserves a place for the block

in the log, but does not write to disk yet.
• So far, everything is being done in memory, using the buffer cache.
• This allows multiple log_writes to the same block to be absorbed.

• end_op writes the transaction to disk in the log, then in the
destination sectors.

Note that transactions must be small enough to fit in the log.

Alternative crash recovery techniques
•Older filesystems (ext2, FAT32) have no log.
• Instead, a scavenger program (FSCK) runs on reboot to check for

filesystem inconsistencies.
• This can take hours on a large filesystem.
• FSCK is only run if the system detects an unclean reboot

• ext3 filesystem added a log (journal) to ext2.

•Note that logging can double disk write load.
•However, if you are careful you can limit logging to just the metadata

(inode writes) and write data once to disk.

Recap: Buffer Caching & Logging
• Trace of file operations shows that many accesses to disk are needed

for even a single open/read/write.
• To improve performance, cache a small number of active disk blocks
• Allows later reads to happen in memory
• Multiple writes can be absorbed and all are immediately visible in memory

• Each buffer is locked by a thread before use
•Write-ahead logging makes multiple disk writes appear atomic, even

if the machine is powered-down in the middle of the transaction.
• Very important for related changes to inodes & bitmap (metadata in general)
• Data is written twice: to log first, then to main disk.
• On reboot, interrupted transaction is either rolled back or replayed.

