BEECS-343 Operating Systems

Lecture 14:
I1/0 and Disks

Steve Tarzia

Spring 2019

Northwestern

Announcements

* Project 4 will be posted soon.

Last Lecture — Synchronization Bugs

* Semaphore (up/down) is an all-purpose synchronization primitive
* Reader-writerlock allows multiple readers, but one writer.
* Adding too many locks can lead to deadlock, which requires:

* Mutual exclusion (avoid locks to avoid deadlock)

* Hold and wait (use rylock to release first lock to before deadlocking)

* No preemption

* Circular wait (always acquire locks in the same order to avoid deadlock)
* Dining philosophers was an example of deadlock

* Circular wait can be avoided by making one philosopher grab right-hand side
instead of left first.

[/O is a major responsibility of the kernel

* [/O = Input/Output
* Peripheral hardware is a shared cPU

- Memory
resource, and not directly
accessible by user programs. e
* Includes: (propritany)
* Disks) General /O Bus
* Graphics (e.g., PCI)
* Network Sraoh
r ICS
* Keyboard/mouse
* Audio
< » Peripheral /O Bu
* Webcam (e.g. SCSI, SATA, USE)

o 08086

A look at a motherboard (Supermicro X8DT3, ~2011)

g
u

‘I. “
. - e
. -

e i * 2 CPU sockets and 12 RAM
o ’ pa—— slots in upper right.

e This 1s what we’ve dealt
with so far.

* The rest of the board is
dedicated to 1/O

controllers and devices.
* This part varies dramatically

e
R ‘-

.............

CQGCQI' T "‘ -

. _
1 o=
~cannana’
- - g w) * - | -m
T » - - - — »

- H»‘;1‘ l

ILJ';

T--‘."‘*‘, | = -~ from machine to machine,
e, ” IO 5" ! and the OS must somehow

handle different HW.

osoeoszgscolfy™ [% * Northbridge & Southbridge
: (serving many functions)

° ° * Graphics (VGA)

= ¢ 2 Network controllers

r L 1 . (with 4 ports)

* PCI-Express slots for
expansion cards
* Eg., a high-powered
graphics card.

3 PGS for:

el
L3l el ;f
K

o
o
?’.".T’]‘.’]ﬂ’.‘.’.
|
LJlejiejieliolle

* SATA disks
* USB
* RS232 serial port

* This physical view shows
where to plug in peripheral HW

OS’s view of this machine

* Northbridge handles high-speed
[/O devices on PCI-Express bus

* 'Two network controllers and (optional)

[SI-brand RAID (disk) controller 1s

soldered onto board

* Additional high-speed devices can be
installed in PCI-E slots.

* Southbridge handles slower/legacy

devices. In this case:
* A crappy VGA card (BMC WPCM450)

* USB controller
e SATA disk controllers

* Keyboard, mouse, rs232 serial ports

How does OS interact with 1/O devices?

* A hardware device can be a complex mini-computer within the
computer, but we just consider the interface it exposes:

Registers | Status Command Data Interface

Micro-controller (CPU)
Memory (DRAM or SRAM or both) Internals
Other Hardware-specific Chips

* Generally, the OS sees just a few registers to read/write, and

* An instruction manual (spec) explaining how to use those registers.

A simple polling 1/ O device interaction

Registers | Status Command Data Interface

--

Micro-controller (CPU)
Memory (DRAM or SRAM or both) Internals
Other Hardware-specific Chips

While (STATUS == BUSY)
; // wait until device is not busy

Write data to DATA register
Write command to COMMAND register
// This starts the device and executes the command

While (STATUS == BUSY)
; // wait until device is done with the request

I/O modes

* Programmed 1/0 (P10) is when the CPU transfers the data.

* Works well for quick I/O
* No need for a context switch/interrupt

* Direct Memory Access (DMA) 1s an alternative that trees the CPU
from this “busy work”

* DMA controller is programmed by the OS to handle the data transter loop,
* Or the device is given direct access to read/write RAM (a.k.a. bus mastering)

* DMA is very common, even in old PC hardware (1980s)

* In both cases I/O can be asynchronous:
* When device is ready, generate an interrupt to let CPU/OS handle it.

How does OS interact with device registers?

x806 provides two options:

* in/out instructions read/write data to 1/O ports
* Ports are like addresses for [/O registers

* These are privileged instructions
* Memory-mapped 1/0
* Hardware (northbridge) maps some physical memory addresses to I/O
* Kernel uses simple mov instructions to read/write to devices.
* Must be caretul to disable CPU caching of these memory addresses

Functionally, there is not much difference between the two.

I/0
pOTts

These are

just typical

values, not
standardized.

hups Al asderge/Can
[N RS S OWESIT

Port range

Summary

0x0000-0x001F

The first legacy DMA controller, often used for transfers to floppies.

0x0020-0x0021

The first Programmable Interrupt Controller

0x0022-0x0023

Access to the Model-Specific Registers of Cyrix processors.

0x0040-0x0047

The PIT (Programmable Interval Timer)

The "8042" PS/2 Controller or its predecessors, dealing with keyboards and mice.

0x0070-0x0071

The CMOS and RTC registers

0x0080-0x008F

The DMA (Page registers)

0x0092

The location of the fast A20 gate register

0x00A0-0x00A1

The second PIC

0x00C0-0x00DF

The second DMA controller, often used for soundblasters

Ox00E9S

Home of the Port E9 Hack. Used on some emulators to directly send text to the hosts' console.

0x0170-0x0177

The secondary ATA harddisk controller.

0x01F0-0x01F7

The primary ATA harddisk controller.

0x0278-0x027A

Parallel port

0x02F8-0x02FF

Second serial port

0x03B0-0x03DF

The range used for the IBM VGA, its direct predecessors, as well as any modern video card in legacy mode.

0x03F0-0x03F7

Floppy disk controller

0x03F8-0x03FF

First serial port

https://wiki.osdev.org/Can_I_have_a_list_of_IO_Ports

xvO memor

Virtual

4 Gig

+ 0x100000

User data

y layout

Memory (640KB is
enough for anyone -
old DOS area)

Detailed view of Physical

4GB

3GB

1MB

640 KB

Hardware

abstraction - '
* OS creates a layered
view of storage:

* Abstractions are used Specific Block Interface [protocol-specific read/write

even within the kernel. SCSI ATA et

* Layered approach allows lower parts to be easily changed.
* BEg, filesystem implementation 1s independent of the type of disk

* Code for managing I/O devices is in kernel device drivers

* 70% of Linux code is device drivers, because there are so many different devices,
each is different! (15.3M lines of source code!)

* Device drivers are the most common source of kernel bugs

* A given driver may be used by just a small fraction of systems, so it’s not highly
exercised or scrutinized.

IDE disk drivers in Linux

steve-macbook-retina:linux steve$ 1s drivers/ide/

Kconfig dtc2278.c ide-disk_ioctl.c ide-lib.c it8213.c
Makefile falconide.c ide-disk_proc.c ide-park.c it821x.c
aecb2xx.c gayle.c ide-dma-sff.c ide-pci-generic.c jmicron.c
alild4xx.c hpt366.c ide-dma.c ide-pio-blacklist.c macide.c
alimlS5x3.c ht6560b.c ide-eh.c ide-pm.cC ns87415.c
amd74xx.cC icside.c ide-floppy.c ide-pnp.c opti62l.c
atiixp.c ide-4drives.c ide-floppy.h ide-probe.c palm_bk3710.c
aulxxx-ide.c ide-acpi.c ide-floppy_ioctl.c 1ide-proc.c pdc202xx_new.cC
buddha.c ide-atapi.c ide-floppy_proc.c ide-scan-pci.c pdc202xx_old.c
cmd640. ide-cd.c ide-gd.c ide-sysfs.c piix.c

cmd64x. ide-cd.h ide-gd.h ide-tape.c pmac.c

cs5520. ide-cd_ioctl.c ide-generic.c ide-taskfile.c g40@ide.
cs5530. ide-cd_verbose.c ide-io-std.c ide-timings.c qd65xx.
cs5535. ide-cs.c ide-i0.cC ide-xfer-mode.c qd65xx.
¢cs5536.c ide-devsets.c ide-ioctls.c ide.c rapide.
cy82¢c693.c ide-disk.c ide-iops.c ide_platform.c rz1000.
delkin_cb.c ide-disk.h ide-legacy.c it8172.c sc1200.

* 92 different drivers, just for IDE disk controllers
* Each driver supports a family of related controllers

* 39k lines of code in total. ~426 lines each, on average
* There 1s another 222k lines for SCSI disk controllers! (119 drivers)

serverworks.c
setup-pci.c
sgiiocd.c
siimage.c
sis5513.c
s182¢105.c
s1c90ebb.cC
tc86¢c001.c
triflex.c
trm290.c
tx4938ide.c
tx4939ide.c
umc8672.c
via82cxxx.c

Abstraction of a disk

* Fach of the 92 different disk controller drivers on Linux provides the
same simple abstraction to upper layers: a block device.

* The kernel adds a block buffering/caching layer (covered later)

* User code (if running with roof permissions) and kernel filesystem code
can access each disk as a virtual device file:

* /dev/sda the first disk
e /dev/sdb the second disk

e /dev/sdc andsoon ...

* Files and disks are both just arrays of bytes (although files are byte
addressable and disks are block addressable -- 512 byte chunks).

Abstraction of a sound card

* Unix systems abstract many devices as virtual files.

* OSS — the Open Sound System was an early Linux sound interface that
uses the virtual file /dev/dsp.

* To play some white notse through the speaker:
cat /dev/random > /dev/dsp

* To read samples from the microphone to file a.a:
cat /dev/dsp > a.a

* Thus, programs can be written to use audio without an(% concern for
the particular sound card’s details, 1f the kernel has an OSS driver.

Kernel’s interfaces for 10

Kernels provide several different interfaces for user processes to do 10O:

* System calls
* eg., network connections (sockets) have dedicated system calls on POSIX.
* Libraries (that use system calls)

* SDL (Standard DirectMedia Library)
* olibc (printf, file open/write/read, etc.)

* Virtual file system
* eg,, disks, sound cards, serial ports

* Would use syscalls or glibc to access the virtual files.

Computer game i

—_-ﬁ

Abstraction APIs {} {} {}

Vulkan SDL audio .
OpenGL OpenAL Sl o

Linux API

Linux kernel System Call Interface (SCl)

/O subsystem: Linux kernel Virtual File System

} the «treat everything as if it was a file»-concept
Process Memory DRM: ALSA: evdev: Sockets extd, xfs, btrfs, ...
management management '3:1':990 emulOkl evdev Netfilter .
subsystem subsystem hda-intel Generic block layer
nouveau snd-ctxfi Network profocoss
- - Linux kernel packet scheduler Linux kernel 1/O scheduler
W \ y \ J (Character device drivers) (Network device drivers) (Block device drivers)

https://en.wikipedia.org/wiki/Linux_kernel_interfaces

L OpenGL commands or o e nG L
ry| exture | Sound shaders written in GLSL

data data data

(vertex, tesselation control, tessellation evaluation,
geometry, fragment and compute shaders)

Game engine

system calls

subroutine

calls
library (SDL, Subroutines
| GLFW, etc.) !
GNU

C Library e Subroutines

System Call Interface (SClI)

‘\ Display || Graphics GPU
~a:.-.9 lcontroller RAM

Hardware

Device driver example

IDE disk controller (for hard disk or CD-rom drive)

Example IDE registers for Programmed [/O

-----------------------------------\
rControl Register: I
i Address 0x3F6 = 0x80 (0000 1REQ): R=reset, E=0 means "enable interrupt"l

: Command Block Registers: [
I Address 0x1F0 = Data Port [
Address 0x1F1 = Error . . .
[Address 0x1F2 = Sector Count 9 Oﬂe‘byte regSterS fOI_‘ lnteraCtlﬂg
[Address 0x1F3 = LBA low byte . .
| Address 0x1F4 = LBA mid byte with device
I Address 0x1F5 = LBA hi byte .))
| hiross belEy = Comanarscacen o DO Use x86 in/out instructions

e e = 0 Sy etimes individual bits in
registers are used.

Status Register (Address 0x1F7):
7 6 S B 3 2 1 0
BUSY READY FAULT SEEK DRQ CORR IDDEX ERROR

Error Register (Address 0x1F1l): (check when Status ERROR==]) OX3F6 can Cﬂable 1nt€r1‘upts
7 6 5 4 3 2 1 0

BBK UNC MC IDNF MCR ABRT TONF AMNF OXlFO iS a4 data bUffCI‘

BBK = Bad Block 0x1F7 1s where you write command.
UNC = Uncorrectable data error . .

MC = Media Changed Grab a lock before accessing devicel!
IDNF = ID mark Not Found

MCR = Media Change Requested

ABRT = Command aborted

TONF = Track 0 Not Found

AMNF = Address Mark Not Found

Using an IDE disk’s I/O ports

static int ide_wait_ready() {

while (((int r = inb(0x1£f7)) & IDE_BSY) || !(r & IDE_DRDY))
? // loop until drive isn’t busy
}
static void ide_start_request (struct buf =b) { Ox1f7 = command/status
ide_wait_ready(); , 0x3f6 = control register
outb (0x3f6, 0); // enable | interrupt)
outb (0x1£f2, 1); // how many sectors? 0x1£3-0x1£6 = disk address
outb (0x1£f3, b->sector & 0xff); // LBA goes here ... 0x1f0 = data
outb (0x1f4, (b->sector >> 8) & O0xff); // ... and here
outb (0x1f5, (b->sector >> 16) & 0xff); // ... and here!

outb (0x1£f6, 0xel | ((b—->dev&l)<<4) | ((b—->sector>>24)&0x0f));
if (b—>flags & B_DIRTY) {
outb (0x1£f7, IDE_CMD_WRITE); // this is a WRITE
outsl (0x1£f0, b->data, 512/4); // transfer data too!
} else {
outb (0x1£f7, IDE_CMD_READ) ; // this is a READ (no data)
}
}

Simplitied xv6 IDE driver (continued)

void ide_rw(struct buf »b) {
acquire (&ide_lock);

for (struct buf »+pp = &ide_queue; +*pp; pp=& (*pp)->gnext)
// walk queue

i

*pp = b; // add request to end
if (ide_gqueue == b) // if q is empty
ide_start_request (b); // send req to disk
while ((b->flags & (B_VALID|B_DIRTY)) != B_VALID)
sleep (b, &ide_lock); // wait for completion

release (&ide_lock);
}

void ide_intr() {

struct buf +b;

acquire (&ide_lock);

if (!(b->flags & B_DIRTY) && ide_wait_ready(l) >= 0)
insl (0x1£f0, b->data, 512/4); // if READ: get data

b->flags |= B_VALID;

b->flags &= "B_DIRTY;

wakeup (b) ; // wake waiting process

if ((ide_queue = b->gnext) != 0) // start next request
ide_start_request (ide_queue); // (if one exists)

release (&ide_lock);

Interrupt handler

Break time

@@@@Q

GREGORY

“The two things that really drew me to vinyl were
the expense and the inconvenience.”

“It's curiosity.”

How magnetic disks work

* All hard disk drives (magnetic or SSD) present a simple abstraction to
the OS: an array of 512-byte sectors.

* Read or write a 512-byte sector
* Number of sectors determines the disk capacity.

* Solid state disks (SSDs) are common on laptops/smartphones
* Allow quick random access, like RAM.

* But these have smaller capacity

* Magnetic disks, however, have more complex physical properties. ..

Magnetic disk geometry

Hgtates this way

* Sectors are arranged on circular tracks

e A read/write headis attached to an arm
* Head senses/magnetizes the disk’s surface

* Data can only be read/written under the head

* Arm angle can change to reach different tracks
(called seeking).

* A motor rotates the disk at constant speed
(4200-15k RPM)

* Rotational delay 1s incurred as we wait for a
given sector to rotate under the head.

Reading sector 11 requires rotation and seek

Rgtates this way Rgtates this way

Average delays for random access

* On average half a rotation will be required

* 10k RPM — full rotation requires 6ms
* Average rotational latency ~3ms

* On average one third of a tull seek is
required to reach a random track

* It would be one half if we always started at the
edge, but we are often near the middle, which is
close to many tracks.

* Avg seek time ~= 6ms
* These are big delays for a computer!

e Seek time and rotational latencies have not
improved much in the past 20 years.

Rotates this way
-

Sequential disk performance

* Reads of sequential sectors are fast
because little rotation and seek are
required.

* Seek time can be minimized by choosing
a track skew equal to the single-track
seek time.

* Disk’s maximum sustained throughput is
often very high:
e ~150 MB/sec = 3.4 microseconds/sector

* This is ~1000 times faster than random
access delays due to seek/rotation.,

O

Rgtates this way

Track skew: 2 blocks

Scheduling disk requests 1s important

* The ordering of disk requests drastically atfects performance.

* There is actually some benetit to delaying requests slightly in order to
batch multiple requests and amortize the seek/rotation delays.

* Ideal performance ~= 150 MB/sec
* Worst case performance ~= (.15 MB/sec
* OS does not really know the undetlying geometry of the disk: doesn’t
know current head location nor the precise position ot sectors.
* Past OSes were very careful about disk request scheduling

* Current practice 1s to just send many requests to the disk and let the disk
schedule them. Disks nowadays are smarter and have large buffers.

* However, OS can at least assume that nearby sector numbers are
nearby on the disk, and thus faster to access sequentially.

Real disks

* Disks actually have several i o
double-sided platters, but
there is a single arm that

holds all the read/write

heads.

* Multiple disk surfaces
provide parallelism

* The logic board has a RAM
buffer to cache ~128MB of

data temporarily.

https://animagraffs.com/hard-disk-drive/

Recap— 1/O and Disks

* OS interacts with devices by reading/writing device registers

* Each register has an /O port address for in/out instructions, or
* memory-mapped 1/0 uses special physical memory addresses (with mov)

* Storage 1s complex, so —
) POSIX API [open, read, write, close, etc.]

kernel functionality 1s divided File System
into at least three layers: SRS

read/write

Specific Block Interface [protocol-specific read/write]
Device Driver [SCSI, ATA, etc.)

* Random access to a magnetic disk is 1000x slower than sequential
e Read head must seek and disk must rotate to reach a new sector

