
EECS-343 Operating Systems
Lecture 14:

I/O and Disks
Steve Tarzia
Spring 2019

Announcements
• Project 4 will be posted soon.

Last Lecture – Synchronization Bugs
• Semaphore (up/down) is an all-purpose synchronization primitive
•Reader-writer lock allows multiple readers, but one writer.
•Adding too many locks can lead to deadlock, which requires:
• Mutual exclusion (avoid locks to avoid deadlock)
• Hold and wait (use trylock to release first lock to before deadlocking)
• No preemption
• Circular wait (always acquire locks in the same order to avoid deadlock)

•Dining philosophers was an example of deadlock
• Circular wait can be avoided by making one philosopher grab right-hand side

instead of left first.

I/O is a major responsibility of the kernel
• I/O = Input/Output
• Peripheral hardware is a shared

resource, and not directly
accessible by user programs.
• Includes:
• Disks
• Graphics
• Network
• Keyboard/mouse
• Audio
• Webcam
• Printer

A look at a motherboard (Supermicro X8DT3, ~2011)

• 2 CPU sockets and 12 RAM
slots in upper right.
• This is what we’ve dealt

with so far.
• The rest of the board is

dedicated to I/O
controllers and devices.
• This part varies dramatically

from machine to machine,
and the OS must somehow
handle different HW.

• Northbridge & Southbridge
(serving many functions)

• Graphics (VGA)
• 2 Network controllers

(with 4 ports)
• PCI-Express slots for

expansion cards
• Eg., a high-powered

graphics card.
• Ports for:
• SATA disks
• USB
• RS232 serial port

• This physical view shows
where to plug in peripheral HW

OS’s view of this machine
•Northbridge handles high-speed

I/O devices on PCI-Express bus
• Two network controllers and (optional)

LSI-brand RAID (disk) controller is
soldered onto board
• Additional high-speed devices can be

installed in PCI-E slots.
• Southbridge handles slower/legacy

devices. In this case:
• A crappy VGA card (BMC WPCM450)
• USB controller
• SATA disk controllers
• Keyboard, mouse, rs232 serial ports

North-
bridge

South-
bridge

How does OS interact with I/O devices?
•A hardware device can be a complex mini-computer within the

computer, but we just consider the interface it exposes:

•Generally, the OS sees just a few registers to read/write, and
•An instruction manual (spec) explaining how to use those registers.

A simple polling I/O device interaction

While (STATUS == BUSY)
; // wait until device is not busy

Write data to DATA register
Write command to COMMAND register
// This starts the device and executes the command
While (STATUS == BUSY)

; // wait until device is done with the request

I/O modes
• Programmed I/O (PIO) is when the CPU transfers the data.
• Works well for quick I/O
• No need for a context switch/interrupt

•Direct Memory Access (DMA) is an alternative that frees the CPU
from this “busy work”
• DMA controller is programmed by the OS to handle the data transfer loop,
• Or the device is given direct access to read/write RAM (a.k.a. bus mastering)
• DMA is very common, even in old PC hardware (1980s)

• In both cases I/O can be asynchronous:
• When device is ready, generate an interrupt to let CPU/OS handle it.

How does OS interact with device registers?
x86 provides two options:
• in/out instructions read/write data to I/O ports
• Ports are like addresses for I/O registers
• These are privileged instructions

•Memory-mapped I/O
• Hardware (northbridge) maps some physical memory addresses to I/O
• Kernel uses simple mov instructions to read/write to devices.
• Must be careful to disable CPU caching of these memory addresses

Functionally, there is not much difference between the two.

I/O
ports

These are
just typical
values, not

standardized.
https://wiki.osdev.org/Can_
I_have_a_list_of_IO_Ports

https://wiki.osdev.org/Can_I_have_a_list_of_IO_Ports

xv6 memory layout Detailed view of Physical

Hardware
abstraction
• OS creates a layered

view of storage:
• Abstractions are used

even within the kernel.

• Layered approach allows lower parts to be easily changed.
• Eg., filesystem implementation is independent of the type of disk

• Code for managing I/O devices is in kernel device drivers
• 70% of Linux code is device drivers, because there are so many different devices,

each is different! (15.3M lines of source code!)
• Device drivers are the most common source of kernel bugs
• A given driver may be used by just a small fraction of systems, so it’s not highly

exercised or scrutinized.

IDE disk drivers in Linux

• 92 different drivers, just for IDE disk controllers
• Each driver supports a family of related controllers

• 39k lines of code in total. ~426 lines each, on average
• There is another 222k lines for SCSI disk controllers! (119 drivers)

Abstraction of a disk
•Each of the 92 different disk controller drivers on Linux provides the

same simple abstraction to upper layers: a block device.
• The kernel adds a block buffering/caching layer (covered later)
•User code (if running with root permissions) and kernel filesystem code

can access each disk as a virtual device file:
• /dev/sda the first disk
• /dev/sdb the second disk
• /dev/sdc and so on …

• Files and disks are both just arrays of bytes (although files are byte
addressable and disks are block addressable -- 512 byte chunks).

Abstraction of a sound card
•Unix systems abstract many devices as virtual files.
•OSS – the Open Sound System was an early Linux sound interface that

uses the virtual file /dev/dsp.

• To play some white noise through the speaker:
cat /dev/random > /dev/dsp
• To read samples from the microphone to file a.a:
cat /dev/dsp > a.a

• Thus, programs can be written to use audio without any concern for
the particular sound card’s details, if the kernel has an OSS driver.

Kernel’s interfaces for IO
Kernels provide several different interfaces for user processes to do IO:
• System calls
• eg., network connections (sockets) have dedicated system calls on POSIX.

•Libraries (that use system calls)
• SDL (Standard DirectMedia Library)
• glibc (printf, file open/write/read, etc.)

•Virtual file system
• eg., disks, sound cards, serial ports
• Would use syscalls or glibc to access the virtual files.

https://en.wikipedia.org/wiki/Linux_kernel_interfaces

https://en.wikipedia.org/wiki/Linux_kernel_interfaces

Device driver example
IDE disk controller (for hard disk or CD-rom drive)

Example IDE registers for Programmed I/O

• 9 one-byte registers for interacting
with device

• Use x86 in/out instructions
• Sometimes individual bits in

registers are used.
• 0x3F6 can enable interrupts
• 0x1F0 is a data buffer
• 0x1F7 is where you write command.
• Grab a lock before accessing device!

Using an IDE disk’s I/O ports

0x1f7 = command/status
0x3f6 = control register
0x1f3-0x1f6 = disk address
0x1f0 = data

enable

Simplified xv6 IDE driver (continued)

Interrupt handler

Queue new requests

Break time

How magnetic disks work
•All hard disk drives (magnetic or SSD) present a simple abstraction to

the OS: an array of 512-byte sectors.
• Read or write a 512-byte sector
• Number of sectors determines the disk capacity.

• Solid state disks (SSDs) are common on laptops/smartphones
• Allow quick random access, like RAM.
• But these have smaller capacity

•Magnetic disks, however, have more complex physical properties…

Magnetic disk geometry

• Sectors are arranged on circular tracks
•A read/write head is attached to an arm
• Head senses/magnetizes the disk’s surface
• Data can only be read/written under the head
• Arm angle can change to reach different tracks

(called seeking).
•A motor rotates the disk at constant speed

(4200-15k RPM)
• Rotational delay is incurred as we wait for a

given sector to rotate under the head.

Reading sector 11 requires rotation and seek

Average delays for random access

•On average half a rotation will be required
• 10k RPM → full rotation requires 6ms
• Average rotational latency ~3ms

•On average one third of a full seek is
required to reach a random track

• It would be one half if we always started at the
edge, but we are often near the middle, which is
close to many tracks.

• Avg seek time ~= 6ms
• These are big delays for a computer!
• Seek time and rotational latencies have not

improved much in the past 20 years.

Sequential disk performance

• Reads of sequential sectors are fast
because little rotation and seek are
required.
• Seek time can be minimized by choosing

a track skew equal to the single-track
seek time.
•Disk’s maximum sustained throughput is

often very high:
• ~150 MB/sec = 3.4 microseconds/sector
• This is ~1000 times faster than random

access delays due to seek/rotation.

Scheduling disk requests is important
• The ordering of disk requests drastically affects performance.
• There is actually some benefit to delaying requests slightly in order to

batch multiple requests and amortize the seek/rotation delays.
• Ideal performance ~= 150 MB/sec
• Worst case performance ~= 0.15 MB/sec

•OS does not really know the underlying geometry of the disk: doesn’t
know current head location nor the precise position of sectors.
• Past OSes were very careful about disk request scheduling
• Current practice is to just send many requests to the disk and let the disk

schedule them. Disks nowadays are smarter and have large buffers.
•However, OS can at least assume that nearby sector numbers are

nearby on the disk, and thus faster to access sequentially.

Real disks

•Disks actually have several
double-sided platters, but
there is a single arm that
holds all the read/write
heads.
• Multiple disk surfaces

provide parallelism

• The logic board has a RAM
buffer to cache ~128MB of
data temporarily.

https://animagraffs.com/hard-disk-drive/

https://animagraffs.com/hard-disk-drive/

Recap– I/O and Disks
•OS interacts with devices by reading/writing device registers
• Each register has an I/O port address for in/out instructions, or
• memory-mapped I/O uses special physical memory addresses (with mov)

• Storage is complex, so
kernel functionality is divided
into at least three layers:

• Random access to a magnetic disk is 1000x slower than sequential
• Read head must seek and disk must rotate to reach a new sector

