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Last Lecture – Concurrent Data Structures
• Simplest strategy is to use one big lock, but this limits concurrency
• It’s thread-safe, but not really concurrent

• Concurrent queue used two locks (head & tail)
• Concurrent hash table used one lock per bucket
• Condition Variables are used to order threads, using signal() & wait().
• Wait puts a thread to sleep, signal wakes a waiting thread.
• Pthreads allows spurious wakeups, so we still need to check a status variable.
• broadcast() wakes all waiting threads

• Producer/consumer queue was implemented using two condition 
variables.



Semaphores
• A generalization of  condition variables and locks
• But they’re more difficult to understand and use
• More general is not always better

• Semaphore has an integer value
• often indicates the number of  resources available

Two functions (with many alternative names!):
• up/V/signal/post:
• Increase the value.  If  there is a waiting thread, wake one.

• down/P/wait:
• Decrease the value.  Wait if  the value is negative.

• Counting semaphore is very useful in cases when a finite number of  
threads are allowed to use a resource (eg., bounded buffer)



Semaphores vs Condition Variables
Semaphores

•Up/Post: increase value and 
wake one waiting thread
•Down/Wait: decrease value and 

wait if  it’s negative

Condition Variables

• Signal: wake one waiting thread

•Wait: wait

• Compared to CVs, Semaphores add an integer value that controls 
when waiting is necessary

• It counts the quantity of  a shared resource currently available
• Up makes a resource available, down reserves a resource
• Negative value -x means that x threads are waiting for the resource



Implementing a lock with a semaphore
• Choose an appropriate initial value for the semaphore
• To implement a Lock:
• Initialize to 1 (access to the critical section is the one shared resource)
• Lock → Down: (decreases the value and waits if  negative)
• Will decrease the value to 0 if  it lock is not already taken
• Will decrease the value to -1 and wait if  the lock is taken (value was 0)

• Unlock → Up: (increases the value and wakes one waiting thread)
• If  value was 0, then no thread was waiting, and no thread is woken
• If  value was -1, then one thread was waiting, and it is woken
• If  value was -x, then x threads are waiting, one is woken, value becomes x-1.

• If  value is already 1, Up should not be called. (Unlock before lock?!)



Reader-writer Lock
• Some resources don’t need strict mutual exclusion, especially if  they 

have many read-only accesses.  (eg., a linked list)
• Any number of  readers can be active simultaneously, but 
•Writes must be mutually exclusive, and cannot happen during read
• API:
• acquire_read_lock(), release_read_lock()
• acquire_write_lock(), release_write_lock()



Reader-writer Lock

•Writelock must be held 
during read to block 
writes.
•Number of  active readers 

is counted.
• First/last reader handles 

acquiring/releasing 
writelock.



Common synchronization bugs
• Atomicity violation
• Critical section is violated (due to missing lock).

•Order violation
• Something happens sooner (or later) than we expect.

•Deadlock
• Two threads wait indefinitely for each other.

• Livelock (not common in practice)
• Two threads repeatedly block each other from proceeding and retry.



Atomicity violation

• It’s relatively easy to find and protect critical sections, 
• But often we forget to add locks around other uses of  the shared data.

•Obvious critical section is here:
• Two threads should not enter this at once

• But, we also have to make sure that file
is not modified elsewhere.
• Even if  this one-line close is atomic we

have to make sure it doesn’t run during
the above critical section.

lock(lck);
if (file == NULL) {
file = open("~/myfile.txt");

}
write(file, "hello file");
unlock(lck);

…

close(file);  // whoops!!



Order violation

• Code often requires a certain ordering of  operations, especially:
• Objects must be initialized before they’re used
• Objects cannot be freed while they are still in use

Parent
file = open("file.dat");

thread_create(child_fcn);

// do some work

…

close(file);

Child Thread

child_fcn() {

write(file, "hello");

}

Close must happen after 
write, but code does not 
enforce this ordering.



Why is this difficult?
• It seems like we can just add lots of  locks and CVs to be safe, right?
• Wrong!  Too many locks can cause deadlock – indefinite waiting.

•How about just one big lock?
• (+) Cannot deadlock with one lock.
• (–) However, this would limit concurrency
• If  every task requires the same lock, then unrelated tasks cannot proceed in parallel.

• Concurrent code is always difficult to write L
• although somewhat easier with some higher-level languages



Intermission



Locking granularity
• Coarse grained lock:
• Use one (or a few) locks to protect all (or large chunks of) shared state
• Linux kernel < version 2.6.39 used one “Big Kernel Lock”
• Essentially only one thread (CPU core) could run kernel code
• It’s simple but there is much contention for this lock, & concurrency is limited

• Fine grained locks:
• Use many locks, each protecting small chunks of  related shared state
• Leads to more concurrency and better performance
• However, there is greater risk of  deadlock



Deadlock
• A concurrency bug arising when:
• Two threads are each waiting for the other to release a resource.
• While waiting, the threads cannot possibly release the resource already held.
• So the two threads wait forever.

• Can arise when multiple shared resources are used.
• For example, acquiring two or more locks.



Simple example: four-way stop

• Traffic rules state that you must yield to the car on your right if  you 
reach the intersection simultaneously.
• This rule usually works well.
• But there’s a problem if

four cars arrive simultaneously.
Circular 
waiting!



Another 4 way intersection, without stop signs

• There is a problem here if  drivers are unwilling to reverse



Dining philosophers
• A theoretical example of  deadlock
• There are N philosophers sitting in a circle and N chopsticks
• left and right of  each philosopher

• Philosophers repeatedly run this loop:
1. Think for some time
2. Grab chopstick to left
3. Grab chopstick to right
4. Eat
5. Replace chopsticks

• If  they all grab the left chopstick simultaneously (step 2),
they will deadlock and starve!
• A solution: one philosopher must grab right before left



A more practical deadlock example

• Thread 1
lock(L1);
lock(L2);
// do work
…
unlock(L2);
unlock(L1);

• Thread 2
lock(L2);
lock(L1);
// do work
…
unlock(L1);
unlock(L2);

• If  we are unlucky and both of  the first lines execute before the 
second lines, we will deadlock.

• T1 holds L2 while waiting for L1… T2 holds L1 while waiting for L2



Deadlocks involve circular dependencies



Deadlock requires four conditions
1. Mutual exclusion
• Threads cannot access a critical section simultaneously
• In other words, we’re using locks so there is the potential for waiting.

2. Hold-and-wait
• Threads do not release locks while waiting for additional locks

3. No preemption
• Locks are always held until released by the thread.  We cannot cancel a lock.

4. Circular wait
• Thread is waiting on a thread that is waiting on the original thread
• This can involve just two threads or a chain of  many threads.

Avoid any one of  these to avoid deadlock.



4. Avoiding Circular Wait
• This is the most practical way to avoid deadlock.
• The simplest solution is to always acquire locks in the same order.
• If  you hold lock L1 and are waiting for lock L2
• The holder of  L2 cannot be waiting on you,

because they would have already acquired L1 before acquiring L2.

•However, in practice it can be difficult to know when locks will be 
acquired because they can be buried in subroutines.



Ordered locking for dining philosophers

• The chopsticks are shared resources, like locks
• If  we require the lower-numbered 

chopstick to be grabbed first, this 
eliminates circular waiting.
• Philosophers A, B, C grab left then right.
• However philosopher D will grab

right then left.
• If  everyone tries to start at once, A & D race 

to grab chopstick 0 first, and the winner eats 
first.
•While one is waiting to grab its first chopstick 

a neighbor will be able to grab two chopsticks.
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2. Trylock to avoid hold and wait
•We can avoid deadlock if  we release the first lock after noticing that 

the second lock is unavailable.
• Trylock tries to acquire a lock, but returns a failure code instead of  

waiting if  the lock is taken:

• This code cannot deadlock,
even if  another thread does
the same with L2 first, then L1.
•However it can livelock – two threads can get stuck in this loop 

forever



Livelock vs Deadlock
• Livelock is a condition where

two threads repeatedly take action,
but still don’t make progress.
•Differs from deadlock because deadlock is always permanent.
• Livelock involves retries that may lead to progress,

but there is no guarantee of  progress.
• A malicious scheduler can always keep the livelock stuck

• Any randomness in the timing of  retries will fix livelock.
• In practice, livelock is a much less serious concern than deadlock.



Other deadlock avoidance strategies
•Wait-free synchronization
• Instead of  using locks, build data structures that directly use atomic primitives 

like compare-and-swap or load-linked & store-conditional.
• This is difficult!

•Don’t simultaneuously schedule threads that use the same sets of  locks.
• Like the “one big lock” strategy, this reduces concurrency and performance.

•Detect and kill:
• Periodically check which threads are holding locks and waiting for locks.
• If  there is a circular wait, then kill the process.

It’s not making progress anyway!
• Yes, the crash can be harmful, but it’s inevitable because we’re stuck.
• At least it frees up resources for other processes and makes the user aware of  

the deadlock bug.



Helgrind tool
•Helgrind (part of  the Valgrind tool) detects many common errors 

when using the POSIX pthreads library in C & C++, such as:
• Race conditions (missing locks)
• Lock ordering problems (leading to deadlock)
• Double-unlocking
• Freeing a locked lock
• … and much, much more
• http://valgrind.org/docs/manual/hg-manual.html

http://valgrind.org/docs/manual/hg-manual.html


Recap – Synchronization Bugs
• Semaphore (up/down) is an all-purpose synchronization primitive
• Reader-writer lock allows multiple readers, but one writer.
• Adding too many locks can lead to deadlock, which requires:
• Mutual exclusion (avoid locks to avoid deadlock)
• Hold and wait (use trylock to release first lock to before deadlocking)
• No preemption
• Circular wait (always acquire locks in the same order to avoid deadlock)

•Dining philosophers was an example of  deadlock
• Circular wait can be avoided by making one philosopher grab right-hand side 

instead of  left first.


