BEECS-343 Operating Systems
Lecture 13:
Synchronization Bugs

Steve Tarzia

Spring 2019

Northwestern

Last Lecture — Concurrent Data Structures

* Simplest strategy is to use one big lock, but this limits concurrency
* It’s thread-safe, but not really concurrent

* Concurrent queue used two locks (head & tail)

* Concurrent hash table used one lock per bucket

* Condition Variables are used to order threads, using szonal() & wait().
* Wait puts a thread to sleep, signalwakes a waiting thread.
* Pthreads allows spurious wakeups, so we still need to check a status variable.
* broadcast() wakes all waiting threads

* Producer/consumer queue was implemented using two condition
variables.

Semaphores

* A generalization of condition variables and locks
* But they’re more difficult to understand and use
* More general 1s not always better

* Semaphore has an integer value
e often indicates the number of resources available

Two ftunctions (wzth many alternative names!):
* up/V/signal/post:
* Increase the value. If there is a waiting thread, wake one.

e down/P/wait:
* Decrease the value. Wait if the value 1s negative.

* Counting semaphore 1s very useful in cases when a finite number of
threads are allowed to use a resource (eg., bounded buffer)

Semaphores vs Condition Variables

Semaphores Condition Variables

* Up/Post. increase value and * Signal wake one waiting thread
wake one waiting thread

* Down/Wait. decrease value and * Wair. wait
wait 1f it’s negative

* Compared to CVs, Semaphores add an integer value that controls
when waiting 1s necessary

* It counts the quantity of a shared resource currently available

* Up makes a resource available, down reserves a resource

* Negative value -x means that x threads are waiting for the resource

Implementing a lock with a semaphore

* Choose an appropriate initial value for the semaphore

* To implement a Lock:

* Initialize to 1 (access to the critical section is the one shared resource)

* LLock — Down: (decreases the value and waits 1f negative)
* Will decrease the value to 0 if it lock zs 7o already taken
* Will decrease the value to -1 and wait if the lock is taken (value was 0)
* Unlock — Up: (increases the value and wakes one waiting thread)
* If value was 0, then no thread was waiting, and no thread 1s woken
* If value was -1, then one thread was waiting, and it 1s woken

* If value was -x, then x threads are waiting, one is woken, value becomes x-1.

* If value is already 1, Up should not be called. (Unlock before lock?!)

Reader-writer Lock

* Some resources don’t need strict mutual exclusion, especially if they
have many read-only accesses. (eg., a linked list)

* Any number of readers can be active simultaneously, but

* Writes must be mutually exclusive, and cannot happen during read
* API:

e acquire_read lock(), release read lock()
e acquire _write lock(), release write lock()

Reader-writer Lock

* Writelock must be held
during read to block
writes.

e Number of active readers
1s counted.

 First/last reader handles
acquiring/releasing
writelock.

O 0 g0 G b WO N =

o S = ¥
G s WO N = O

16
17
18
19
20
21

23
24
25
26
27
28
29
30
31
32
33
34
35

typedef struct _rwlock_t ({

sem_t lock; // binary semaphore (basic lock)

sem_t writelock; // used to allow ONE writer or MANY readers

int readers; // count of readers reading in critical section
} rwlock_t;

void rwlock_init (rwlock_t *rw) {
rw—->readers = 0;
sem_init (&xrw->lock, 0, 1);
sem_init (&rw—->writelock, 0, 1);

}

void rwlock_acquire_readlock (rwlock_t xrw) {
sem_wait (&rw—>lock) ;
rw—->readers++;
if (rw->readers == 1)
sem_wait (&rw->writelock); // first reader acquires writelock
sem_post (&rw—>1lock) ;
}

void rwlock_release_readlock (rwlock_t *xrw) {
sem_wait (&xrw—>lock);
rw—->readers——;
if (rw->readers == 0)
sem_post (&rw->writelock); // last reader releases writelock
sem_post (&rw—>1lock) ;
}

void rwlock_acquire_writelock (rwlock_t xrw) ({
sem_wait (&rw—>writelock) ;

}

void rwlock_release_writelock (rwlock_t *rw) {
sem_post (&rw—>writelock) ;

}

Common synchronization bugs

* Atomicity violation
* Critical section is violated (due to missing lock).

e Order violation

* Something happens sooner (or later) than we expect.

 Deadlock

* Two threads wait indefinitely for each other.

* Livelock (not common in practice)
* Two threads repeatedly block each other from proceeding and retry.

Atomicity violation

* It’s relatively easy to find and protect critical sections,

* But often we forget to add locks around other uses of the shared data.

e Obvious critical section is here: lock (1ck) ;

. if (file == NULL) {
* Two threads should not enter this at once file = open("~/myfile.txt")

* But, we also have to make sure that fi/ v}m te(file, "hello file");
1s not modified elsewhere. unlock (1ck) ;

e Even if this one-line close is atomic we
have to make sure it doesn’t run during
the above critical section.

——>| close(file); // whoops!!

Order violation

* Code often requires a certain ordering of operations, especially:
* Objects must be initialized before they’re used

* Objects cannot be freed while they are still in use

Parent Child Thread
file = open("file.dat");
thread create(child fcn); child_fen() Ao

// do some work write (file, "hello");
ces / }

close(file);

() Close must happen after

write, but code does not
enforce this ordering,

Why 1s this ditficult?

* It seems like we can just add lots of locks and CVs to be safe, right?
* Wrong! Too many locks can cause deadlock — indefinite waiting,

* How about just one big lock?
* (+) Cannot deadlock with one lock.
* (—) However, this would /limit concurrency

* If every task requires the same lock, then unrelated tasks cannot proceed in parallel.

* Concurrent code is always difficult to write &

* although somewhat easier with some higher-level languages

Intermission

"Which came first, Mom, the Chicken McNugget or the Egg McMuffin?"

Locking granularity

* Coarse grained lock:
* Use one (or a few) locks to protect all (or large chunks of) shared state
* Linux kernel < version 2.6.39 used one “Big Kernel Lock”
* Essentially only one thread (CPU core) could run kernel code
* It’s simple but there 1s much contention for this lock, & concurrency is limited

* Fine grained locks:

* Use many locks, each protecting small chunks of related shared state
* Leads to more concurrency and better performance
* However, there 1s greater risk ot deadlock

Deadlock

* A concurrency bug arising when:
* Two threads are each waiting for the other to release a resource.
* While waiting, the threads cannot possibly release the resource already held.
* So the two threads wart forever.

* Can arise when multiple shared resources are used.

e For example. acquirine two or more locks.
b

Simple example: four-way stop

* Tratfic rules state that you must yield to the car on your right if you
reach the intersection simultaneously.

* This rule usually works well.

* But there’s a problem it
four cars arrive simultaneously.

Circular
waiting!

Another 4 way intersection, without stop signs

* There 1s a problem here if drivers are unwilling to reverse

Dining philosophers

* A theoretical example of deadlock

* There are N philosophers sitting in a circle and N chopsticks
* left and right of each philosopher

* Philosophers repeatedly run this loop:
1. Think for some time
2. Grab chopstick to left
3. Grab chopstick to right
4. Eat

5. Replace chopsticks

* If they all grab the left chopstick simultaneously (step 2),
they will deadlock and starve!

* A solution: one philosopher must grab right before left

A more practical deadlock example

* Thread 1 * Thread 2
lock (L1); lock (LZ2);
lock (L2); lock (L1);
// do work // do work
unlock (L2) ; unlock (L1) ;
unlock (L1) ; unlock (L2) ;

* If we are unlucky and both of the first lines execute before the

second lines, we will deadlock.
* T1 holds .2 while waiting for I.1... T2 holds .1 while waiting for I.2

Deadlocks involve careutar dependencies

Deadlock requires four conditions

1. Mutual exclusion
* Threads cannot access a critical section simultaneously
* In other words, we’re using locks so there is the potential for waiting,

2. Hold-and-wait

* Threads do not release locks while waiting for additional locks

3. No preemption
* Locks are always held until released by the thread. We cannot cance/ a lock.

4. Circular wait
* Thread is waiting on a thread that is waiting on the original thread
* This can involve just two threads or a chain of many threads.

Avold any one of these to avoid deadlock.

4. Avoiding Circular Wait

s

* This 1s the most practical way to avoid deadlock.

Il

* The simplest solution is to always acquire locks in the same order.

* If you hold lock L1 and are waiting for lock .2

* The holder of L2 cannot be waiting on you,
because they would have already acquired 1.1 before acquiring 1.2,

* However, in practice it can be difficult to know when locks will be
acquired because they can be buried in subroutines.

Ordered locking tor dining philosophers

* The chopsticks are shared resources, like locks

* It we require the lower-numbered
chopstick to be grabbed first, this

eliminates circular waiting.
* Philosophers A, B, C grab /ef then right.

* However philosopher D will grab
right then left.

* If everyone tries to start at once, A & D race
to grab chopstick O first, and the winner eats
first.

* While one is waiting to grab its first chopstick
a neighbor will be able to grab two chopsticks.

2. Trylock to avoid hold and wait

* We can avoid deadlock if we release the first lock after noticing that
the second lock is unavailable.

* Trylock tries to acquire a lock, but returns a failure code instead of
waiting 1f the lock 1s taken:

1 top:
2 lock (L1);
_ 3 1f (trylock(L2) == -1) {
* This code cannot deadlock, 4 unlock (L1) ;
even if another thread does 5 } goto top;
6

the same with L2 first, then L1.

* However it can /livelock — two threads can get stuck in this loop
forever

Livelock »s Deadlock 1 top:
2 lock (L1) ;
. . . 3 f (tryvlock (L2) == —-1) {
e [.ivelock 1s a condition where | . " un l?cik?il) ;
two threads repeatedly take action, 5 goto top;
6

}

but still don’t make progress.

* Differs from deadlock because deadlock 1s always permanent.

* Livelock involves retries that may lead to progress,
but there is no guarantee of progress.

* A malicious scheduler can always keep the livelock stuck
* Any randomness in the timing of retries will fix livelock.

* In practice, livelock is a much less serious concern than deadlock.

Other deadlock avoidance strategies

* Wait-free synchronization

* Instead of using locks, build data structures that directly use atomic primitives
like compare-and-swap or load-linked & store-conditional.

e 'This 1s difficult!

* Don’t simultaneuously schedule threads that use the same sets of locks.
* Like the “one big lock” strategy, this reduces concurrency and performance.

* Detect and kill:

* Periodically check which threads are holding locks and waiting for locks.

* It there is a circular wait, then kill the process.
It’s not making progress anyway!

* Yes, the crash can be harmful, but it’s inevitable because we’re stuck.
* At least it frees up resources for other processes and makes the user aware of

the deadlock bug,

Helgrind tool

* Helgrind (part of the Valgrind tool) detects many common errors
when using the POSIX pthreads library in C & C++, such as:
* Race conditions (missing locks)
* Lock ordering problems (leading to deadlock)
* Double-unlocking
* Freeing a locked lock
e ... and much, much more
* http://valgrind.org/docs/manual/hg-manual.html

http://valgrind.org/docs/manual/hg-manual.html

Recap — Synchronization Bugs

* Semaphore (up/down) is an all-purpose synchronization primitive

* Reader-writerlock allows multiple readers, but one writer.

* Adding too many locks can lead to deadlock, which requires:
* Mutual exclusion (avoid locks to avoid deadlock)

* Hold and wait (use trylock to release first lock to before deadlocking)
* No preemption

* Circular wait (always acquire locks in the same order to avoid deadlock)

* Dining philosophers was an example of deadlock

* Circular wait can be avoided by making one philosopher grab right-hand side
instead of left first.

