
EECS-343 Operating Systems
Lecture 12:

Concurrent Data Structures
Steve Tarzia
Spring 2019

Some slides based on those by Nima Honarmand

Announcements
•HW3 was posted and is due next Wednesday
• Project 3 is due on Monday

Last Lecture – Implementing Locks

•Hardware support for atomicity:
• Disable interrupts
• Test and set
• Compare and swap
• Fetch and add
• Load-linked & Store-conditional

• Various lock implementations
• Spinlock
• Ticket lock
• Yielding lock
• Queuing locks
• Park/unpark on Solaris
• Futex on Linux

• Sophisticated locks can be more fair and avoid starvation, but they can add
unnecessary context-switch overhead on multiprocessors.

• Two-phase locks try to combine the best of both approaches.
• OS scheduler and concurrent user code must coordinate for best performance.

Thread-safe data structures
•Multi-threaded programs can concurrently access shared memory.
•We say that a data structure is thread safe if it can be concurrently

accessed by multiple threads.
• These are also called concurrent data structures.
• Simple implementations are usually not thread safe.
• Usually we use one or more lock to protect critical sections in the data

structure read/update functions.
• The simplest way to achieve thread safety is to use one big lock.
• The big lock prevents any concurrent access to the data structure.
• However, this is not very scalable – it eliminates concurrency!

Concurrent counter
• Simplest approach: use one lock to

protect increment and decrement.
• Lock in get() is not strictly necessary.
• Reading an out-of-date value is still

consistent.
• Problem:
• There is a lot of locking overhead for

just a tiny bit of work (++ or --)
• 2.4 seconds to run 40,000,000

increments divided across 4 threads
• Runtime is just 0.4 seconds without

locks (~6x slowdown)
• Atomic CPU ops (eg., xchg) are slow.

How to reduce the locking overhead?
• Reduce the lock frequency.
•Give each thread a chunk of work to do between each synchronization
•Give each thread a local counter.
• Periodically flush local counters to the global counter.
• We’ll make large increments to the global counter, not just single increments.
• There is no contention on the local counter, does not require a lock.

• Sloppy counter is a slightly-out-of-date global counter

Performance experiment: count to 40 million
(source code is posted to Canvas: “sample code/counters.tar.gz”)
• Single-threaded: 0.09 seconds
• fast because there is no thread creation and no locking.

Multi-threaded (4 threads):
• Buggy multi-threaded (no locks): 0.4 seconds
• (only counted to ~11M)

• One big lock: 2.4 seconds
• Sloppy counter with local locks: 0.49 seconds
• Increment global counter every time local counter reaches 1000.

• Sloppy counter with just one global lock: 0.05 seconds
• Here we didn’t bother to lock the local counter since it’s not shared.

Basic Concurrent Linked List
• Just use one “big” lock
• Don’t forget to unlock when

returning early.
• Simplicity means it’s easy to verify

Concurrent Queue
• Separate head & tail locks
• Allows concurrent add & remove

• Up to 2 threads can access without waiting

Concurrent Hash Table
• Each bucket is implemented with a

Concurrent List
• We don’t have to define any locks!
• (Locks are in the lists)

• A thread can access a bucket
without blocking other threads’
access to other buckets.
• Hash tables are ideal for

concurrency.
• Hash (bucket id) can be calculated

without accessing a shared resource.
• Distributed hash tables are used for

huge NoSQL databases.

Language-level support for critical sections
• Java has synchronized keyword

for surrounding critical sections
• Automatically releases the lock

when exiting early:

• Python: “with self.lock:”
•Objective-C: “@synchronized”
• C++/C: 😔

Multithreaded app development advice
• Avoid using locks directly. Instead use provided thread-safe objects.
• Concurrency code is tricky, so don’t try to write your own.

• Read documentation to learn whether libraries’ data structures and
functions are thread-safe.
• For example, Java has many thread-safe data structures:
• HashMap→ ConcurrentHashMap
• Queue → BlockingQueue
• Blocks when trying to add to a full queue or retrieve from an empty queue

• Collections.synchronized[Set | SortedSet | List | Map | SortedMap]
• If possible, pass immutable (read-only) objects to threads.

Intermission

Requirements for sensible concurrency
•Mutual exclusion (the topic of the last two lectures)
• Prevents corruption of data manipulated in critical sections
• Atomic instructions → Locks → Concurrent data structures

•Ordering (B runs after A)
• We can use mutex variables to control ordering, but it’s inefficient:

• while(!myTurn) sleep(1);
• We would like cooperating threads to be able to signal each other.
• Park/unpark and futex can be used solve this problem, but
• Condition Variables are a simpler, higher-level solution.

Waiting for a thread to finish
pthread_t p1, p2;

// create child threads
pthread_create(&p1, NULL, mythread, "A");
pthread_create(&p2, NULL, mythread, "B");

...

// join waits for the child threads to finish
thr_join(p1, NULL);
thr_join(p2, NULL);

return 0; How to implement join?

Waiting for child with a status variable
• This works, but the waiting loop

either:
• Spins: wasting CPU time, or
• Sleeps: delaying the response, or
• Yields: leading to unnecessary

context switches.
• It’s not an ideal solution.

Condition Variable
… is a queue of waiting threads with two operations:
•Wait to queue the thread and wait for a signal.
• Signal to wake one waiting thread (or none if no one is waiting).
• (real POSIX implementation actually lets you specify the number to wake.)

pthread_cond_wait(pthread_cond_t *c, pthread_mutex_t *m);
pthread_cond_signal(pthread_cond_t *c);

• CV has an associated lock to protect itself and related shared state.
•Must hold lock m when calling wait
• Will release the lock before sleeping and acquire the lock before returning

•Wait and signal can be implemented with park/unpark or futex.

CV for child wait
•Must grab lock before calling wait
• Still need done variable because

child may finish before parent
gets to thr_join.
• Don’t want to wait indefinitely for

a signal that already passed.

• while loop on line 20 could be an
if, but while is more careful.

Buggy attempts to wait for a child
Pa

re
nt

 C

hi
ld

Pa
re

nt

 C
hi

ld

1) Without done variable, the
child could run first and signal
before the parent starts waiting
for the child.

2) Without a lock, the parent could
see done==0, then the child could
finish and signal, then the parent
would start waiting (after the signal).

Spurious (fake) wakeups
• Pthreads allows wakeup to return

not just when a signaled, but also
when a timer expires or for no
reason at all!
• Spurious wakeups were included in

the specification because they may
allow some implementations be
more efficient.
• There is no guarantee that the

condition you’ve been waiting for is
true when you are awoken
• So, we must also use a “predicate

loop.” (while, not if)

Bounded buffer (producer/consumer)
•We have multiple producers and multiple consumers that communicate

with a shared queue (FIFO buffer).
• Concurrent queue allows work to happen asynchronously.

• Buffer has finite size (does not dynamically expand).
• Two operations:
• Put, which should block (wait) if the buffer is full.
• Get, which should block (wait) if the buffer is empty.

• This is more complex than a (linked-list-based) concurrent queue
because of the finite size and waiting.
• Example: request queue in a multi-threaded web server.

Managing the buffer
• A simple implementation of a

circular buffer that stores data in a
fixed-size array.
• fill is the index of the tail
• use is the index of the head
• count = (fill – use) % MAX

This simple implementation assumes:
• Concurrency is managed elsewhere
• It will overwrite data if we try to put

more than MAX elements.

Managing the concurrency
• Always acquire mutex
• Must use same mutex in both functions

• Use two condition variables
• Producer waits for an empty if the

buffer is full
• Consumer signals empty after get

• Consumer waits for fill if the buffer
is empty
• Producer signals fill after put

•While loops re-check count condition
after breaking out of wait, to handle
spurious wakeups.

Covering conditions
• Recall that signal wakes one waiting thread (FIFO)
• But there are times when threads are not all equivalent
• The signal may not be serviceable by any of the threads
• For example, consider memory allocation/free requests
• An allocation can only be serviced by free of >= size

• pthread_cond_broadcast wakes all threads
• This approach may be inefficient, but it may be necessary to ensure

progress.

Rules of thumb
• Shared state determines if condition is true or not
• Check the state in a while loop before waiting on CV
• Use a mutex to protect:
• the shared state on which condition is based, and
• operations on the CV

• Remember to acquire the mutex before calling cond_signal() and
cond_broadcast()

• Use different CVs for different conditions
• Sometimes, cond_broadcast() helps if you can’t find an elegant

solution using cond_signal()

Pthreads condition variable API
• Initialization/cleanup
pthread_cond_init(cv, attr)
pthread_cond_destroy(cv)

• Specify attributes of CVs (eg., threads of this process only or all procs)
pthread_condattr_init(attr)
pthread_condattr_destroy(attr)

• Waiting and signalling
pthread_cond_wait(cv, mutex)
pthread_cond_timedwait(cv, mutex, time)
pthread_cond_signal(cv)
pthread_cond_broadcast(cv)

Recap – Concurrent Data Structures
• Simplest strategy is to use one big lock, but this limits concurrency
• It’s thread-safe, but not really concurrent

• Concurrent queue used two locks (head & tail)
• Concurrent hash table used one lock per bucket
• Condition Variables are used to order threads, using signal() & wait().
• Wait puts a thread to sleep, signal wakes a waiting thread.
• Pthreads allows spurious wakeups, so we still need to check a status variable.
• broadcast() wakes all waiting threads

• Producer/consumer queue was implemented using two condition
variables.

