BEECS-343 Operating Systems
lLecture 12:
Concurrent Data Structures

Steve Tarzia

Spring 2019

Northwe Ste rn Some slides based on those by Nima Honarmand

Announcements

* HW3 was posted and is due next Wednesday
* Project 3 is due on Monday

Last Lecture — Implementing LLocks

* Hardware support for atomicity: * Various lock implementations

* Disable interrupts * Spinlock

* Test and set * Ticket lock

* Compare and swap * Yielding lock

* Fetch and add * Queuing locks

* Load-linked & Store-conditional * Park/unpark on Solaris

e Futex on Linux

* Sophisticated locks can be more fairand avoid starvation, but they can add
unnecessary context-switch overhead on multiprocessors.

* Two-phase locks try to combine the best of both approaches.

* OS scheduler and concurrent user code must coordinate for best performance.

Thread-safe data structures

* Multi-threaded programs can concurrently access shared memory.

* We say that a data structure is thread safe it it can be concurrently
accessed by multiple threads.

e These are also called concurrent data structures.
* Simple implementations are usually not thread safe.

* Usually we use one or more lock to protect critical sections in the data
structure read/update functions.

* The simplest way to achieve thread safety is to use one big lock
* The big lock prevents any concurrent access to the data structure.
* However, this is not very scalable — it eliminates concurrency!

Concurrent counter

* Sumplest approach: use one lock to
protect increment and decrement.

* LLock 1n get() is not strictly necessary.

* Reading an out-of-date value 1s still
consistent.

* Problem:

* There is a lot of locking overhead for
just a tiny bit of work (++ or —-)

e 2.4 seconds to run 40,000,000
increments divided across 4 threads

* Runtime is just 0.4 seconds without
locks (~6x slowdown)

* Atomic CPU ops (eg., xchg) are slow.

O 0 N O UG » WO N =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

typedef struct __ _counter_t {
int value;
pthread_lock_t lock;

} counter_t;

void init (counter_t =xc) {

c—>value = 0;

Pthread_mutex_init (&c—>lock, NULL) ;
}

void increment (counter_t =*xc) {
) Pthread_mutex_lock (&c—>1lock) ;
c—>value++;
I Pthread_mutex_unlock (&c->lock) ;

}

void decrement (counter_t *c) {
r“1Pthread_mutex_lock(&c—>lock);
c—>value——;
ﬂ,Pthread_mutex_unlock(&c—>lock);

}

int get (counter_t =xc) {
r“1Pthread_mutex_lock(&c—>lock);
int rc = c—->value;
ﬂ;Pthread_mutex_unlock(&c—>lock);
return rc;

How to reduce the locking overhead?

* Reduce the lock frequency.

* Give each thread a chunk of work to do between each synchronization

* Give each thread a local counter.
* Periodically tlush local counters to the global counter.

* We’ll make large increments to the global counter, not just single increments.
* There is no contention on the local counter, does not require a lock.

* Sloppy counteris a slightly-out-of-date global counter

Pertormance experiment: count to 40 million

(source code is posted to Canvas: “sample code/counters.tar.gz”)

* Single-threaded: 0.09 seconds

* fast because there 1s no thread creation and no locking,

Multi-threaded (4 threads):

* Bugoy multi-threaded (no locks): 0.4 seconds
* (only counted to ~11M)

* One big lock: 2.4 seconds

* Sloppy counter with local locks: 0.49 seconds
* Increment global counter every time local counter reaches 1000.

* Sloppy counter with just one global lock: 0.05 seconds
* Here we didn’t bother to lock the local counter since it’s not shared.

Basic Concurrent Linked L.ist

18 int List_Insert(list_t xL, int key) {
19 (}pthread_mutex_lock(&L—>lock);
¢l ’ ,

* Just use one blg 1()(:1{ 20 node_t *new = malloc(sizeof (node_t));
21 if (new == NULL) {

22 perror ("malloc");

23 ﬂ|pthread_mutex_unlock(&L—>1ock);

24

25

* Don’t forget to unlock when
returning early.

return -1; // fail

}

.
* Simplicity means it’s easy to verify 2 new->key = key;
27 new->next = L->head;
28 " L->head = new;

1 // basic node structure 29 wpthread mutex_unlock (&L->lock);
2 typedef struct _ node_t { 30 return 0; // success
3 int key; :;)
4 -
s nozzr‘t’f’t —node_t *next; 3 int List_Lookup(list_t L, int key) {
¢ —! 34 rrWpthread_mutex_lock(&L—>lock);

i . : 35 node_t *c = L->head;
7 // basic list structure (one used per list) 26 while (Zuﬁif { !
8 typedef struct __list_t { 37 if (curr->key == key) {
9 node_t *head; 38 1 pthread_mutex_unlock (&§L->lock) ;
10 pthread mutex_t lock; 39 return 0; // success
11} list_t; 40 }
12 41 curr = curr->next;
13 void List_Init (list_t =*L) { 4)
14 L->head = NULL; 43 ﬂIpthread_mutex_unlock(&L—>1ock);
15 pthread_mutex_init (&§L->lock, NULL); 44 return -1; // failure
16} 45}

Concurrent Queue

* Separate head & tail locks
* Allows concurrent add & remove

O 00 N9 G b WO N =

o S e
O 00 g9 N O b W N = O

* Up to 2 threads can access without waiting

typedef struct _ _node_t {

int value;
struct __node_t *next;
} node_t;

typedef struct __queue_t {

node_t *head;
node_t *tail;
pthread_mutex_t headLock;
pthread_mutex_t taillLock;

} queue_t;

void Queue_Init (queue_t =*q) {

node_t *tmp = malloc(sizeof (node_t));
tmp->next = NULL;

g->head = g->tail = tmp;
pthread_mutex_init (&g—->headLock, NULL) ;
pthread_mutex_init (&g->taillock, NULL) ;

21
22

24

26
27
28
29

31
32
33

35
36
37
38
39
40
41

43

45
46

void Queue_Enqueue (queue_t *q, int value) ({
node_t *tmp = malloc(sizeof(node_t));
assert (tmp != NULL);
tmp->value = value;
tmp->next = NULL;

() pthread_mutex_lock (&g—>tailLock) ;
g->tail->next = tmp;
- g—>tail = tmp;
ﬂ1pthread__mutex_unlock(&q—>tailLock);
}

int Queue_Dequeue (queue_t *q, int *value) {
(]pthread_mutex_lock(&q—>headLock);
node_t *tmp = g->head;
node_t *newHead = tmp->next;
if (newHead == NULL) {
ﬂ|pthread_mutex_unlock(&q—>headLock);
return -1; // queue was empty
}
*value = newHead->value;
~ g—>head = newHead;
ﬂIpthread__mutex_unlock(&q—>headLock);
free (tmp) ;
return 0;

Concurrent Hash Table

* Fach bucket is implemented with a
Concurrent List
* We don’t have to define any locks!
* (Locks are in the lists)

e A thread can access a bucket
without blocking other threads’
access to other buckets.

e Hash tables are ideal for
concurrency.

* Hash (bucket id) can be calculated
without accessing a shared resource.

 Distributed hash tables are used for
huge NoSQL databases.

O 00 N O UG b WO N =

N N N = e e e d d pd pd pd
N = © 0 0 N\ O UG B WO N = O

#define BUCKETS (101)

typedef struct _ _hash_t {
list_t 1lists[BUCKETS];
} hash_t;

void Hash_Init (hash_t =*H) {
int i;
for (i = 0; i < BUCKETS; i++) {
List_Init (&H->1lists[i]);
}
}

int Hash_Insert (hash_t *H, int key) {
int bucket = key % BUCKETS;
return List_Insert (&H->1lists[bucket],

}

int Hash_Lookup(hash_t *H, int key) {
int bucket = key % BUCKETS;
return List_Lookup (&H->1lists[bucket],

key) ;

key) ;

Language-level support for critical sections

* Java has synchronized keyword

public class Counter {

for surrounding critical sections int mfotal = 0;
* Automatically releases the lock publiclsynchrontzed)vold addone() ¢
when exiting early: VO L.

}

public void addOneVersion2() throws Exception {
int val;
|sznchronized(this)‘{
val = mTotal;
val++;
if (val = Integer.MAX_VALUE) {

throw new Exception("value is too large");
}

mTotal = val;

. Python: “with self.lock:’”

° Objective—C: “@synchronized”
«C++/C: &

}

System.out.println("new value is " + val);

}
}

Multithreaded app development advice

* Avold using locks directly. Instead use provided thread-safe objects.
* Concurrency code 1s tricky, so don’t try to write your own.

e Read documentation to learn whether libraries’ data structures and
functions are thread-safe.

* For example, Java has many thread-safe data structures:
* HashMap — ConcurrentHashMap
* Queue — BlockingQueue

* Blocks when trying to add to a full queue or retrieve from an empty queue

* Collections.synchronized|[Set | SortedSet | List | Map | SortedMap |
* If possible, pass immutable (read-only) objects to threads.

1Ss10Nn

Interm

Requirements for sensible concurrency

* Mutual exclusion (the topic ot the last two lectures)
* Prevents corruption of data manipulated in critical sections
e Atomic instructions — Locks — Concurrent data structures

* Ordering (B runs after A)

* We can use mutex variables to control ordering, but it’s inefficient:
* while (!myTurn) sleep(1l);

* We would like cooperating threads to be able to signal each other.
* Park/unpark and futex can be used solve this problem, but
* Condition Variables are a simpler, higher-level solution.

Waiting for a thread to tinish

pthread t pl, p2;

// create child threads
pthread create(&pl, NULL, mythread, "A");
pthread create(&p2Z2, NULL, mythread, "B");

// joln wailts for the child threads to finish
thr join(pl, NULL);
thr join(p2, NULL);

return O; $\\\\\\\\I{owwminqﬂanﬁntkﬁnP

Waiting for child with a status variable

* This works, but the waiting loop
either:
* Spins: wasting CPU time, or

volatile int done = 0;

void xchild(void =*arg) {
printf ("child\n");
done = 1;

return NULL;

* Sleeps: delaying the response, or |

O 0 N N G b WO N =

* Yields: leading to unnecessary
context switches.

int main(int argc, char xargv([]) {
printf ("parent: begin\n");
pthread_t c;
Pthread_create (&c, NULL, child, NULL);
while (done == 0)
; // spin
printf ("parent: end\n");
return 0;

I e
N = O

e [t’s not an 1deal solution.

O S G S et
NN O O b W
—

Condition Variable

... 1s a queue of waiting threads with two operations:
* Wait to queue the thread and wait for a signal.

* Signal to wake one waiting thread (or none if no one is waiting).
* (real POSIX implementation actually lets you specify the number to wake.)

pthread cond wait (pthread cond t *c, pthread mutex t *m);
pthread cond signal (pthread cond t *c) ;

* CV has an associated lock to protect itself and related shared state.
* Must hold lock » when calling wazt

* Will release the lock before sleeping and acquire the lock before returning
* Wait and signal can be implemented with park/unpark or futex.

CV for child wait

* Must grab lock betore calling wa:t

e Still need done variable because
child may finish before parent
gets to thr_join.

* Don’t want to wait indefinitely for
a signal that already passed.

* while loop on line 20 could be an
/f, but while is more careful.

W NN G e WON =

W W N NN N N N e e el ed el ek ek el el e
Nugomqmgpﬁﬁuoom\:a\mpmwuoo

int done = 0;
pthread_mutex_t
pthread_cond_t c

m PTHREAD_MUTEX_INITIALIZER;

PTHREAD_COND_INITIALIZER;

void thr_exit () {

}

Pthread_mutex
done = 1;
Pthread_cond_signal(&c);
Pthread_mutex_unlock (&m) ;

lock (&m) ;

void *child(void xarg) {

}

printf ("child\n");
thr_exit ();
return NULL;

void thr_join() {

}

Pthread_mutex_lock (&m) ;

while (done == 0)
Pthread_cond_wait (&c, &m);

Pthread_mutex_unlock (&m) ;

int main(int argc, char xargv[]) {

printf ("parent: begin\n");
pthread_t p;

Pthread_create (&p, NULL, child, NULL);

thr_join();
printf ("parent: end\n");
return 0;

Buggy attempts to wait for a child

- 1 void thr_exit () {

iE 2 Pthread_mutex_lock (&m) ;

O 3 Pthread_cond_signal (&c) ;
4 Pthread_mutex_unlock (&m) ;
5 }
6

2 7 void thr_join () {

% 8 Pthread_mutex_lock (&m) ;

a¥ 9 Pthread_cond_wait (&c, &m);

—
(e

Pthread_mutex_unlock (&m) ;

[
[

}

1) Without done variable, the

child could run first and signal
before the parent starts waiting

for the child.

i 1 void thr_exit () {

= 2 done = 1;

~ 3 Pthread_cond_signal (&c) ;
1 }
5

c 6 void thr_join() {

=7 if (done == 0)

~ 8 Pthread_cond_wait (&c) ;
9 }

2) Without a lock, the parent could
see done==0, then the child could
finish and signal, then the parent

would start waiting (after the signal).

int done = 0;
pthread_mutex_t m
pthread_cond_t c

PTHREAD_MUTEX_INITIALIZER;
PTHREAD_COND_INITIALIZER;

Spurious (fake) wakeups

void thr_exit () {
Pthread_mutex
done = 1;
Pthread_cond_signal (&c);
Pthread_mutex_unlock (&m) ;

* Pthreads allows wakeup to return
not just when a signaled, but also
when a timer expires or for no
reason at all!

lock (&m) ;

W NN U=

—
S ©

}

fed el
N o=

void xchild(void xarg) {
printf ("child\n");
thr_exit ();
return NULL;

-
(]

* Spurious wakeups were included in
the specification because they may
allow some implementations be
more efficient.

bk jed e
N O e

}

-
® 3

void thr_join() {

Pthread mutex_lock (&m) ;
[while (done == 0)|
| Pthread_cond_wait (&c, &m);
Pthread_mutex_unlock (&m) ;

19

* There 1s no guarantee that the
condition you’ve been waiting for is
true when you are awoken

}

int main(int argc, char xargv[]) {

26 printf ("parent: begin\n");

27 pthread_t p;

28 Pthread_create (&p, NULL, child, NULL);
29 thr_join();

30 printf ("parent: end\n");

31 return 0;

* So, we must also use a “predicate

loop.” (while, not if)

Bounded buffer (producer/consumer)

* We have multiple producers and multiple consumers that communicate

with a shared queue (FIFO butfer).

* Concurrent queue allows work to happen asynchronously.
* Buffer has finite size (does not dynamically expand).

* Two operations:

* Put, which should block (wait) if the buffer is full.
* Get, which should block (wait) if the buffer is empty.

* This is more complex than a (linked-list-based) concurrent queue
because of the finite size and waiting,

* Example: request queue in a multi-threaded web server.

Managing the butfer

O 0 NN O b WO N =

O e e S S S
NN G s WO = O

int buffer [MAX];

int fill
int use
int count

0;
0;
0;

void put (int value) {

int

buffer[fill] = value;
fill = (fill + 1) % MAX;
count++;

get () {

int tmp = buffer[use];
use = (use + 1) % MAX;
count——;

return tmp;

* A simple implementation of a
circular buffer that stores data in a
fixed-size array.

* f1ll1s the index of the tail
* 1se 1s the index of the head
* count — (£ill - use) % MAX

This simple implementation assumes:
* Concurrency 1s managed elsewhere

* It will overwrite data it we try to put
more than MAX elements.

0 NN W=

NNNNNBNNHHHHHHHHHH
N O G W O W 00NN WO N = O YO

Managing the concurrency

cond_t empty, fill;
mutex_t mutex;

void xproducer (void xarg) {

int i;

for (1 = 0; 1 < loops; i++) {
Pthread_mutex_lock (&mutex) ;
while (count == MAX)

Pthread_cond_wait (&empty, &mutex);

put (i) ;
Pthread_cond_signal (&fill);
Pthread_mutex_unlock (&mutex) ;

}

void xconsumer (void xarg) {

int i;

for (i = 0; i < loops; i++) {
Pthread_mutex_lock (&mutex) ;
while (count == 0)

Pthread_cond_wait (&£fill, &mutex);

int tmp = get();
Pthread_cond_signal (&empty) ;
Pthread_mutex_unlock (&mutex) ;
printf ("$d\n", tmp);

* Always acquire mutex

e Must use same mutex in both functions
e Use two condition variables

* Producer waits for an empty it the
buffer is full

* Consumer signals empty after get

* Consumer waits for fill if the buffer
1s empty
* Producer signals fill atter put

* While loops re-check count condition
after breaking out of wait, to handle
spurious wakeups.

Covering conditions

* Recall that signal/ wakes one waiting thread (FIFO)
* But there are times when threads are not all equivalent
* The signal may not be serviceable by any of the threads

* For example, consider memory allocation/free requests

* An allocation can only be serviced by free of >= size

* pthread cond broadcast wakes all threads

* This approach may be inefficient, but it may be necessary to ensure
progress.

Rules of thumb

e Shared state determines if condition is true or not
* Check the state in a while loop before waiting on CV

* Use a mutex to protect:
* the shared state on which condition i1s based, and
* operations on the CV

* Remember to acquire the mutex before calling cond signal () and
cond broadcast()

e Use different CVs for different conditions

* Sometimes, cond_broadcast () helps if you can’t find an elegant
solution using cond_signal ()

Pthreads condition variable API

* Initialization/cleanup
pthread cond init(cv, attr)
pthread cond . destroy (cv)

* Specity attributes of CVs (eg., threads of this process only or all procs)
pthread condattr 1n1t(attr)
pthread condattr _destroy (attr)

* Waiting and signalling

pthread cond wait (cv, mutex)

pthread cond __timedwait (cv, mutex, time)
pthread cond __signal (cv)

pthread cond ._broadcast (cv)

Recap — Concurrent Data Structures

* Simplest strategy is to use one big lock, but this limits concurrency
* It’s thread-safe, but not really concurrent

* Concurrent queue used two locks (head & tail)

* Concurrent hash table used one lock per bucket

* Condition Variables are used to order threads, using szonal() & wait().
* Wait puts a thread to sleep, signalwakes a waiting thread.
* Pthreads allows spurious wakeups, so we still need to check a status variable.
* broadcast() wakes all waiting threads

* Producer/consumer queue was implemented using two condition
variables.

