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Announcements
•Drop deadline is tomorrow. Stop by my office if  you’re thinking about 

dropping.



Last Lecture: Threads
• Processes can have multiple threads sharing the virtual address space
• Critical sections are block of  code that must be run atomically
• If  unprotected, critical sections lead to race conditions that make 

code indeterminant – we get different results depending on timing.
• Locks are the simplest mutual exclusion primitive, with two main 

functions:
• Acquire/lock – get exclusive access to a shared resource.
• Release/unlock – release the shared resource.

• Concurrency occurs naturally in multi-CPU systems
• Concurrency is created by the process scheduler in single-CPU systems



Simple approach for single-CPU: disable interrupts
void lock() {
disable_interrupts();

}

void unlock() {
enable_interrupts();

}

•Disabling interrupts prevents 
preemption during a critical section.
• This simple approach is used in some 

kernel code, but:
• Does not help with concurrency on 

multiple CPUs.
• Masking/unmasking interrupts is slow.
• Important HW interrupts might be lost.
• Would give too much power to user code
• A process could acquire a lock and run forever
• With interrupts disabled, kernel has no ability 

to preempt user processes.

• So, this is not a very useful lock strategy. 



Using a lock flag
int locked = 0;

void lock() {
while (locked);
locked = 1;

}

void unlock() {
locked = 0;

}

• Lock will keep checking the flag until it’s 
unset, then set it to exclude any other 
threads.
• But this implementation does not work 

because two threads may simultaneously
see locked==0, exit the while loop, and 
both grab the lock.
• In other words, the test and the set are 

not atomic.



CPU hardware support for concurrency

• Atomic test-and-set instruction
• Called “atomic exchange” – “lock; xchg” on x86

•Operates on a particular memory location
• Simultaneously sets a new value and returns the old value

• It’s atomic, so the three steps cannot be interrupted halfway through.



Our first useful spinlock, with test-and-set



xv6’s spinlock.[ch]



Compare and Swap
• Another, more powerful, atomic instruction
• Atomically compares a memory location to a register, returns the 

original result, and sets a new value if  the comparison was true.

• It’s a generalization of  test-and-set
• TestAndSet(ptr, new) à CompareAndSwap(ptr, *ptr, new)

• “lock; cmpxchg” in x86 assembly



How to evaluate a lock implementation?
• Correctness – must provide mutual exclusion
• Fairness – threads acquire lock in the order they request it
• Progress – if  several threads request the lock, one must acquire it
• (avoid deadlock)

• Bounded wait – no thread should wait forever (or starve).
• Performance – minimize latency/overhead introduced by the lock



Simple spinlock problems
• Lacks Fairness and bounded wait – starvation can occur.
• Next thread to acquire the lock is whichever the scheduler chooses
• Even if  scheduler is “fair” and schedules the waiting process periodically, 

there is no guarantee that the lock will be available when scheduled.
• Performance – (on uniprocessor)
• CPU “spins,” repeatedly checking a variable that will not change.
• Timeslice must expire before another thread is given a chance to unlock
• If  N threads want the lock, then N timeslices can be wasted spinning.
• Notice that spinlocks may be efficient on a multiprocessor, because a thread 

on another core may release the lock being waited for.

•Nevertheless, the spinlock is correct, simple, and safe for user code.



Spinlock starvation illustrated

• Problem is that scheduler has no knowledge of  locks,
and locking threads have no control over scheduler
• B makes no progress and wastes a timeslice every time it is scheduled!



Fetch and add

• Return old value and increment it
• This is yet another atomic instruction for concurrency
• Can be used to atomically reserve a “ticket number”
• “lock; xadd” in x86 assembly



Ticket lock • Each thread uses fetch-and-add 
to atomically reserve its turn 
number.
• In lock(), spin while checking 

whether it’s your turn.
• Unique turn numbers prevent race

• To unlock, just increment “turn”
• Prevents starvation because 

threads acquire the lock in FIFO 
order.

• Atomic instruction is not really 
needed in unlock.
• Can avoid overflow with:
lock->turn = (lock->turn + 1) % MAX_INT



GCC has built-in functions for atomic operations
• type __sync_fetch_and_add (type *ptr, type value)

• bool __sync_bool_compare_and_swap (type *ptr, type oldval type newval)

• type __sync_lock_test_and_set (type *ptr, type value)

• void __sync_lock_release (type *ptr)

•… and more
• See https://gcc.gnu.org/onlinedocs/gcc-4.1.0/gcc/Atomic-Builtins.html

• These will be compiled to the appropriate atomic instructions on the 
particular target CPU architecture.

https://gcc.gnu.org/onlinedocs/gcc-4.1.0/gcc/Atomic-Builtins.html


Load-linked & Store-conditional
• A special pair of  load/store instructions for concurrency
• Load-linked reads the value at an address
• Store-conditional writes a new value to an address
• However, it aborts if  there has already been a write to that address since the 

last load-linked.
• Can be used to implement a lock
• But more importantly, can be used directly for lock-free concurrent code.
• Instead of  locking before working on shared memory, just use load-linked.
• The store-conditional later on will tell you whether you need to retry.

• Supported on some RISC/ARM CPUs, but not on x86. 



Intermission



Ticket lock avoids starvation, but it’s still not ideal
• Imagine 4 processes competing  on one CPU for a lock:

• B,C,D are wasting time by busy waiting.
• Scheduler is trying to be fair to B,C,D by letting them run, but 

scheduler is ignorant of  locks, and does not know they are just waiting.
• It would be better to skip B,C,D and let A finish the critical section.



Yielding is a simple solution
•Give the user process just a little

control over the scheduler.
• Create a yield syscall that un-

schedules the current thread 
(before the timeslice expires).
• In acquire, the thread will check 

the lock variable once.
• If  the lock is not available, the 

thread is better off  letting 
another thread run because it’s 
waiting for someone else to 
unlock.



Yielding eliminates busy-waiting



One remaining problem
• Performance is better with yield,

but we are still doing a lot of
unnecessary context switches 
• Remember that context switches are 

costly because they flush caches & TLB.
• Solution is to make the scheduler aware of  who is holding which locks
• Then scheduler can avoid scheduling a thread until the lock it’s waiting 

for is free.
• Thread “A” should be scheduled again at time 20, because the other 

three processes are all waiting for a lock that has not yet been released.



Blocking locks and wait queues
• A better solution requires some

cooperation between the user thread’s locks and the OS scheduler.
• Solaris provides park/unpark syscalls to influence the scheduler:
• Park blocks the current thread.
• Yields, but also puts the thread in a special blocked state so it cannot run.

• Unpark unblocks another thread, identified by thread_id.
• A lock based on park/unpark can be implemented as follows:
• If  lock acquire fails, add the thread to the queue of  parked threads and park.
• release dequeues the next waiting thread (if  any) and unparks it, so it can run.
• Queue resides in user memory and unlocking thread effectively decides which 

thread is scheduled next.
• See the book for details.



Linux Futex (“fast userspace mutex”) syscalls
• Similar to park/unpark, but the queue is in the kernel.
• futex_wait(address, expected) – put the thread to sleep if  the value 

at address equals “expected.”  Used in lock/acquire function.
• futex_wake(address) – wake one thread (in FIFO order) that 

previously called futex_wait.    Used in unlock/release function.
• Behind the scenes, the kernel will create a queue for each address 

associated with a futex.  (Queue will be protected by locks.)



Two classes of locks
Spinlocks

• Just use an atomic CPU 
instruction like test-and-set or 
fetch-and-add.
• “Spinning” is trying to acquire 

the lock repeatedly in a loop.

• Simple
•Wastes CPU time

Blocking locks

• Still require atomic instructions.
• But somehow tell the scheduler to

run a different thread if  lock 
acquire failed.

• Frees up the CPU
• But context switches are costly



Both blocking locks and spinlocks are useful!
• Spinlocks on multiprocessors do not require a context switch.
• If  locks are held a short time, and threads are running on multiple CPUs, 

then spinlocks are the most efficient choice.
• In this scenario, a thread will only spin a few times before a thread scheduled on 

another CPU releases the lock.
• The short “hold time” suggests that the lock holder is probably running.  Why?
• Is this still true on a uniprocessor?

• On the other hand, a spinning thread on an uniprocessor will have to be 
preempted before another thread is given an opportunity to release.

• On a uniprocessor, blocking locks are always better
• On a multiprocessor, spinlocks are better for short critical sections.
• For long-held locks, spinning would waste a lot of  CPU time.



A two-phase lock (in Linux/glibc’s NPTL lib)

• The top bit (31st) is set if  
the lock is acquired.
• Lower 0-30 bits count the 

number of  waiting 
threads.
• If  there is no contention, 

lock and unlock are very 
fast (just one atomic op).
•Otherwise use the futex.
• Check the lock at least 

three times before 
blocking with futex.



Recap

•Hardware support for atomicity:
• Disable interrupts
• Test and set
• Compare and swap
• Fetch and add
• Load-linked & Store-conditional

• Various lock implementations
• Spinlock
• Ticket lock
• Yielding lock
• Queuing locks
• Park/unpark on Solaris
• Futex on Linux

• Sophisticated locks can be more fair and avoid starvation, but they can add 
unnecessary context-switch overhead on multiprocessors.

• Two-phase locks try to combine the best of  both approaches.
• OS scheduler and concurrent user code must coordinate for best performance.


