BEECS-343 Operating Systems
Lecture 11:
Implementing Locks

Steve Tarzia

Spring 2019

N Orthwe stern Diagrams in the slides are by Arpaci-Dussean

Announcements

* Drop deadline is tomorrow. Stop by my ottice if you’re thinking about
dropping.

Midterm exam score distribution

100
90
80
70

60

that score

50 Median=78
40

30

% of students <

20

10

40 50 60 70 80 90 100
Score

I.ast Lecture: Threads

* Processes can have multiple threads sharing the virtual address space
* Critical sections are block of code that must be run aromically

* It unprotected, critical sections lead to race conditions that make
code indeterminant — we get different results depending on timing.

* Locks are the simplest mutual exclusion primitive, with two main
functions:

* Acquire/lock — get exclusive access to a shared resource.
* Release/unlock — release the shared resource.

* Concurrency occurs naturally in multi-CPU systems

* Concurrency is created by the process scheduler in single-CPU systems

Simple approach ftor single-CPU: disable interrupis

void lock() * Disabling interrupts prevents
disable_interrupts(); preemption during a critical section.
} * This simple approach is used in some

kernel code, but:

* Does not help with concurrency on
enable_interrupts(); multiple CPUs.

} * Masking/unmasking interrupts is slow.
* Important HW interrupts might be lost.

* Would give too much power to user code
* A process could acquire a lock and run forever

* With interrupts disabled, kernel has no ability

to preempt UuSCr processes.

volid unlock() {

* So, this 1s not a very usetul lock strategy.

Using a lock tlag

int locked = 0;

void lock() {
while (locked);
locked = 1;

volid unlock() {
locked = 0;

* Lock will keep checking the tlag until it’s
unset, then set it to exclude any other
threads.

* But this implementation does not work
because two threads may sizultaneously

see locked==0), exit the while loop, and
both grab the lock.

* In other words, the testand the serare
not atomic.

CPU hardware support for concurrency

e Atomic rest-and-set instruction

* Called “atomic exchange” — “lock; xchg” on x86
* Operates on a particular memory location

* Simultaneously sets a new value and returns the old value

//int TestAndSet (int *ptr, int new) { \\
int old = xptr; // fetch old value at ptr
*xptr = new; // store 'new’ into ptr
return old; // return the old value
}
N /

* It’s atomic, so the three steps cannot be interrupted halfway through.

Our first useful spinlock, with test-and-set

typedef struct _ lock_t {
int flag;
} lock_t;

volid init (lock_t xlock) {
// 0 indicates that lock is available, 1 that it is held
lock->flag = 0;

}

O 00 NN O G b WO N =

i
(@)

vold lock (lock_ _t =*lock) {
while (TestAndSet (&lock->flag, 1) == 1)
; // spin-wait (do nothing)

—
LWQN =

}

[=Y
162 TN

vold unlock (lock _t xlock) {
lock—->flag = 0;

[=
N Y

}

// Mutual exclusion lock.
struct spinlock {

XV6,S SpiﬂlOCk. [Ch] uint locked; // Is the lock held?

// For debugging:

char xname; // Name of Llock.
struct cpu *cpu; // The cpu holding the 1lock.
void uint pcs[10]; // The call stack (an array of program counters)
acquire(struct spinlock x1k) // that locked the lock.
{ : };
pushcli(); // disable interrupts to avoid deadlock. / // Release the lock.
panic("acquire"); | release(struct spinlock *1k)
A
// The XChg is atomic. AF 1f('h01d1ng(lk))
// It also serializes, so that reads after acquire are not panic("release");
// reordered before it. 5
while(xchg(&lk->locked, 1) != 0) A€ lk->pcs[0] = 0;
; — lk->cpu = 0;
36 // Record info about lock acquisition for debugging. 50 xchg (&lk—>1locked, 0);
lk—>cpu = cpu; :
getcallerpcs(&lk, lk—>pcs); ¥ popcli();

Compare and Swap

* Another, more powertful, atomic instruction

* Atomically compares a memory location to a register, returns the
original result, and sets a new value if the comparison was true.

//;nt CompareAndSwap (int xptr, int expected, int new) ;\
int actual = xptr;
1f (actual == expected)
*xptr = new;
return actual;

\ /
* [t’s a generalization of test-and-set
* TestAndSet(ptr, new) = CompareAndSwap(ptr, *ptr, new)

e ‘¢

lock; cmpxchg” 1n x86 assembly

How to evaluate a lock implementation?

* Correctness — must provide mutual exclusion
* Fairness — threads acquire lock in the order they request it

* Progress — it several threads request the lock, one must acquire it
* (avoid deadlock)

* Bounded wait— no thread should wait forever (or starve).

* Performance — minimize latency/overhead introduced by the lock

Simple spinlock problems

* Lacks Fairness and bounded wait — starvation can occur.
* Next thread to acquire the lock 1s whichever the scheduler chooses

* Even if scheduler is “fair” and schedules the waiting process periodically,
there 1s no guarantee that the lock will be available when scheduled.

* Performance — (on uniprocessor)
* CPU “spins,” repeatedly checking a variable that will not change.
* Timeslice must expire before another thread is given a chance to unlock
* I[f N threads want the lock, then IN timeslices can be wasted spinning.

* Notice that spinlocks may be efficient on a multiprocessor, because a thread
on another core may release the lock being waited for.

* Nevertheless, the spinlock is correct, simple, and safe for user code.

Spinlock starvation illustrated

unlqck chk unlqck chk unlqck chk unlqck chk

0 20 40 o60 80 100 120 140 160

* Problem is that scheduler has no knowledge of locks,
and locking threads have no control over scheduler

* B makes no progress and wastes a timeslice every time it is scheduled!

Fetch and add

* Return old value and increment it
* This is yet another atomic instruction for concurrency
* Can be used to atomically reserve a “ticket number”

e ‘¢

lock; xadd” 1n x86 assembly

//int FetchAndAdd (int *ptr) {\\
int old = *ptr;
*ptr = old + 1;
return old;

. Y

X NN G B N =

Pt e e e el e ed ed e e
O O N\ O U b WO N = © O

Ticket lock

typedef struct __ lock_t {

int ticket;
int turn;

} lock_t;

void lock_init (lock_t =*xlock) {

}

lock—>ticket

0;
lock—>turn 0;

void lock (lock_t xlock) {

}

int myturn = FetchAndAdd (&lock—->ticket);
while (lock—>turn != myturn)
; // spin

void unlock (lock_t =*lock) {

}

FetchAndAdd (&lock—->turn) ;

* Hach thread uses fetch-and-add

to atomically reserve its turn
number.

* In lock(), spin while checking
whether i1t’s your turn.
* Unique turn numbers prevent race

* To unlock, just increment “turn”

* Prevents starvation because
threads acquire the lock in FIFO
order.

Atomic instruction is not really
needed in unlock.

* Can avoid overflow with:
lock->turn = (lock->turn + 1) % MAX INT

X

GCC has built-1n functions for atomic operations

* type @ sync fetch and add (type *ptr, type value)
* bool @ sync bool compare and swap (type *ptr, type oldval type newval)
* type @ sync lock test and set (type *ptr, type value)

* void @ sync lock release (type *ptr)

* ... and more
* See https://gcc.gnu.org/onlinedocs/gcc-4.1.0/gcc/ Atomic-Builtins.html

* These will be compiled to the appropriate atomic instructions on the
particular target CPU architecture.

https://gcc.gnu.org/onlinedocs/gcc-4.1.0/gcc/Atomic-Builtins.html

Load-linked & Store-conditional

* A special pair of load/store instructions for concurrency

e L.oad-linked reads the value at an address

* Store-conditional writes a new value to an address
* However, it aborts 1f there has already been a write to that address since the
last load-linked.
* Can be used to implement a lock

* But more importantly, can be used directly for /ock-free concurrent code.

* Instead of locking before working on shared memory, just use load-linked.

* The store-conditional later on will tell you whether you need to retry.

* Supported on some RISC/ARM CPUs, but not on x806.

Intermission

JOEPATOR,

“Do you know vou've had vour caps lock on for the last ten miles?”

Ticket lock avoids starvation, but it’s still not ideal

* Imagine 4 processes competing on one CPU for a lock:

lock unlock| |lock

0 20 40 60 80 100 120 140 16

* B,C,D are wasting time by busy waiting.

* Scheduler 1s trying to be fair to B,C,D by letting them run, but
scheduler is ignorant ot locks, and does not know they are just waiting.

* [t would be better to skip B,C,D and let A finish the critical section.

Yielding 1s a simple solution

typedef struct | * Give the user process just a little

int ticket; control over the scheduler.
Lt turn; * Create a yzeld syscall that un-
} lock t;

schedules the current thread
(before the timeslice expires).

* In acquire, the thread will check

volid acquire (lock t *lock) { .
™ — the lock variable once.

int myturn = FAA(&lock->ticket);
while (lock->turn != myturn) e [f the lock 1s not available, the

yield(); thread is better off letting
another thread run because it’s

void release(lock t *lock) { waiting for someone else to
lock->turn += 1; unlock.

}

}

Yielding eliminates busy-waiting

lock unlock

spin spin spin

no yield: A B C D A

0 20 40 o0 80 100 120 140 16

lock unlock| |lock

yield: A II A l

B
0 20 40 60 380 100 120 140 16

One remaining problem

lock unlock| [(lock

* Performance 1s better with yreld, @~ — ...-;
but we are still doing a lot of
unnecessary context switches B

* Remember that context switches are £ A~
costly because they flush caches & TLB. ¢ 20 40 60 80

* Solution 1s to make the scheduler aware of who 1s holding which locks

* Then scheduler can avoid scheduling a thread until the lock it’s waiting
for 1s free.

* Thread “A” should be scheduled again at time 20, because the other
three processes are all waiting for a lock that has not yet been released.

Blocking locks and wait queues

* A better solution requires some
cooperation between the user thread’s locks and the OS scheduler.

* Solaris provides park/unpark syscalls to influence the scheduler:

* Park blocks the current thread.
* Yields, but also puts the thread in a special blocked state so it cannot run.

* Unpark unblocks another thread, identified by thread_id.

* A lock based on park/unpark can be implemented as follows:
* It lock acquire fails, add the thread to the queue of parked threads and park.
* release dequeues the next waiting thread (if any) and unparks it, so it can run.

* Queue resides in user memory and unlocking thread effectively decides which
thread 1s scheduled next.

* See the book for details.

Linux Futex (“‘fast userspace mutex”) syscalls

* Similar to park/unpark, but the queue is in the kernel.

* futex_wait (address, expected) — put the thread to Sl€€p if the value
at address equals “expected.” Used in lock/acquire function.

* futex wake(address) — wake one thread (in FIFO order) that
previously called futex_wait. Used in unlock/release function.

* Behind the scenes, the kernel will create a queue for each address
associated with a futex. (Queue will be protected by locks.)

Two classes of locks

Spinlocks

* Just use an atomic CPU
instruction like test-and-set or

fetch-and-add.

* “Spinning’’ 1s trying to acquire
the lock repeatedly in a loop.

* Simple
* Wastes CPU time

Blocking locks

* Still require atomic instructions.

 But somehow tell the scheduler to
run a different thread if lock
acquire failed.

* Frees up the CPU

* But context switches are costly

Both blocking locks and spinlocks are usetul!

* Spinlocks on multiprocessors do not require a context switch.

* If locks are held a short time, and threads are running on multiple CPUs,
then spinlocks are the most etficient choice.

* In this scenario, a thread will only spin a few times before a thread scheduled on
another CPU releases the lock.

* The short “hold time” suggests that the lock holder is probably running. Why?
* Is this still true on a uniprocessor?

* On the other hand, a spinning thread on an uniprocessor will have to be
preempted before another thread is given an opportunity to release.

* On a uniprocessor, blocking locks are always better

* On a multiprocessor, spinlocks are better for short critical sections.
* For long-held locks, spinning would waste a lot of CPU time.

A two-phase lock (in Linux/glibc’s NPTL lib)

NN G WON =

P e e e e e e e e
BRENEBOEREBRNREBEBESEIaGRERNES ©

void mutex_lock (int *mutex) ({
int v;

/* Bit 31 was clear, we got the mutex (this is the fastpath) x/

if (atomic_bit_test_set (mutex, 31) == 0)*
return;

atomic_increment (mutex);

while (1) {

if (atomic_bit_test_set (mutex, 31) == 0) {*
atomic_decrement (mutex);
return;

}

/* We have to wait now. First make sure the futex value
we are monitoring is truly negative (i.e. locked). */

v = smutex;

if (v >= 0)
continue;

futex_wait (mutex, v);

}
}

void mutex_unlock (int *mutex) ({
/* Adding 0x80000000 to the counter results in 0 if and only if
there are not other interested threads x*/
if (atomic_add_zero (mutex, 0x80000000))
return;

/* There are other threads waiting for this mutex,
wake one of them up. =*/
futex_wake (mutex);

* The top bit (31%) is set 1f
the lock 1s acquired.

e [.ower 0-30 bits count the
number of waiting
threads.

* [f there 1s no contention,
lock and unlock are very
fast (just one atomic op).

* Otherwise use the futex.
* Check the lock at least

three times before

blocking with futex.

Recap

* Hardware support for atomicity: * Various lock implementations

* Disable interrupts * Spinlock

* Test and set * Ticket lock

* Compare and swap * Yielding lock

* Fetch and add * Queuing locks

* Load-linked & Store-conditional * Park/unpark on Solaris

e Futex on Linux

* Sophisticated locks can be more fairand avoid starvation, but they can add
unnecessary context-switch overhead on multiprocessors.

* Two-phase locks try to combine the best of both approaches.

* OS scheduler and concurrent user code must coordinate for best performance.

