BEECS-343 Operating Systems
Lecture 10:
Threads

Steve Tarzia

Spring 2019

Northwestern

Announcements

* Midterm exams are being graded as we speak.

* Project 2 was due yesterday

* Project 3 is due in two weeks from yesterday
* Must implement threads in xv6
* Should be easier than the last assignment
* There is an extra credit section

* Homework 2 will be out soon.

* Drop deadline 1s on Friday.

* I can tell you how you’re doing if you’re considering dropping.

Threads

\ikval Mewiory CRN Regicters
A pox n
. m \
* So far, we have discussed J\,T:;L
single-threaded processes.
’ da
° A thf@?}d 1S a part .Of a pfOC.eSS | _j } g;i:‘\:l'S
indicating where it’s executing. § '
5{’o.<.|< Q'_O-"\’-
* OS scheduler actually schedules | e pone

— sl geinter
threads, not processes.

1 wshracvion
cointer

.Mq

il

Iy

Multi-threaded processes

* A multi-threaded process can

execute in parallel Thread 1 Victuad Mo Theead
e
. 1 - Skecs o ey
* A thread 1s.hke a process, but it N e ODODoD
shares all its virtual memory N — - 17 eve
with all other threads of the same """’”.r/—\\\ Sl [
N J -
rOCESS.
b ek 2
* Each thread has: F"iiT,
* [ts own set ot register values ¥ '/’;

(Including the instruction pointer) G\oooN/ 'J
* Its own stack (ode

Why use threads?

* Allows a process to work in parallel/ and use multiple CPU cores to
get work done faster.

* Allows slow tasks to be done in a background thread.
* For example:

* Fetch an image for a website (I/O bound)
* Save a document to disk (I/O bound)
* Transcode a media file (CPU bound)

* This 1s usetul even on machines with a single CPU core.

* For GUI applications, allows main Ul thread to be responsive.

* UI thread will use little CPU time and retain high priority in MLFQ.
e Disk/network 1/O will not block the UI thread.

* Shared memory allows the threads to easily coordinate.
* For example, results can be stored in a global data structure.

Why do we need a stack tor each thread?

e Remember that the stack stores:
e [.ocal function variables
* Function parameters

e Return addresses

* CPU needs a stack to track it’s progress through C-style functions.

* Each thread takes its own path through the code.
* So, every thread needs its own stack.

* A thread usually should not access another thread’s stack
* The stack 1s thread local storage.

Thread creation example

1 #include <stdio.h> * “pthread” refers to the standard
2 #include <assert.h> .

3 #include <pthread.h> POSIX thread interface.

4 .

s void smythread(void xarg) | e POSIX is a set of standards
6 printf ("$s\n", (char *) arqg); :

’ return NULL, for Unix-style OSes.

8 }

9

10 int

11 main(int argc, char xargv([]) {

12 pthread_t pl, p2;

13 br int rc;

14 printf ("main: begin\n");

15 rc = pthread_create(&pl, NULL, mythread, "A"); assert(rc == 0);

16 rc = pthread_create(&p2, NULL, mythread, "B"); assert (rc == 0);

17 // join waits for the threads to finish

18 rc = pthread_join(pl, NULL); assert(rc == 0);

19 rc = pthread_join(p2, NULL); assert(rc == 0);

20 printf ("main: end\n");

N
—

return 0;

N
N
et

Thread creation vs. Fork

Thread creation

* pthread create()
e Creates a thread

* Shares all memory with all threads
ot the process.

* Scheduled independently of parent
* pthread join()

* Waits for a particular thread to
finish

* Can communicate by
reading/writing (shared) global

variables.

Forking a process

e fork ()

* Creates a single-threaded process
* Copies all memory from parent
* Can be quick using copy-on-write
* Scheduled independently of parent
*waitpid()

* Waits for a particular child process
to tinish

* Can communicate by setting up
shared memory, pipes,
reading/writing files, or using
sockets (network).

Concurrency can create tricky problems

#include <stdio.h>
#include <pthread.h>

static wvolatile int counter = 0;
static const int LOOPS = 1le7;

void* mythread (void* arg) {

printf ("%s: begin\n", (char*)arqg);

int i;

for (i=0; i<LOOPS; i++) {
counter++;

}

printf ("%s: done\n", (char*)arg);

return NULL;
}

int main (int argc,

char* argv[]) {

pthread t pl, p2;

printf ("main: begin (counter = %d)\n", counter);
pthread create(&pl, NULL, mythread, "A");
pthread create (&p2, NULL, mythread, "B");

// wait for threads to finish

pthread join(pl, NULL);

pthread join (p2, NULL);

printf ("main: done with both (counter = %d, goal

was %d)\n",

counter, 2*LOOPS) ;

* Start two threads, each of which increments a shared global counter variable 107 times.

* The volatile keyword tells the compiler that the counter variable may change unexpectedly

(in this case, changed by the other thread).

Test parallel_countl.c

* https://gist.github.com/starzia/b6456d74be2f3ab12a0dd4cbff252717

e ... or download it from Canvas.

* Compile with “gcc -lpthread parallel_countl.c”

https://gist.github.com/starzia/b6456d74be2f3ab12a0dd4cbff252717

What’s the problem?

* We have seen with the fork syscall that the scheduler is unpredictable

* We don’t know which of the two threads will run first and for how long.

* But is this a problem?

* Why does it matter who
increments the counter first?

* The net result should be
20,000,000 regardless, right?

* Actually, there is a serious bug

(S time ./a.out

main: begin (counter = 0)
A: begin

B: begin

A: done

B: done

main: done with both

\}counter = 10416197, goal was 20000000)

J

* It will yield a different result every time!

* You have to understand the low-level behavior to find the problem.

* In short, the “counter++” operation is not aromic.

Incrementing a number in assembly

e “counter+-+"" has to:
1. Copy from the memory location of the counter variable to a register
2. Increment the register’s value

3. Copy from the register back to memory

* Assuming that “counter” is in memory location 0x8049alc:

mov 0x8049%alc, %eax
add $0x1, %eax
mov seax, 0x8049%alc

* The scheduler can interrupt the thread before or after the “add”

* This would cause both threads to read the same value, increment it to the
same value, and thus they would repeat work.

The increment failure in detail: 50 + 1 + 1 = 51!

(after instruction)

OS Thread 1 Thread 2 PC %eax counter
before critical section 100 O 50
mov 0x8049alc, %eax 105 50 50
add $0x1, %eax 108 51 50
interrupt
save T1's state
restore T2's state 100 0 50
mov 0x8049alc, %eax 105 50 50
add $0x1, Y%eax 108 51 50
mov %eax, 0x8049alc 113 51 51
interrupt
save T2's state
restore T1’s state 108 51 50

mov %eax, 0x8049alc 113 51 51

The process scheduler creates concurrency

* Even 1f only one CPU is present, threads operate “concurrently” because

they are taking turns using the CPU.

* Hach process thinks it has its own CPU that is sometimes very, very slow...

Obvious concurrency

on two CPU cores:
CRW (RN 2
o oy
Ay >

Simulated concurrency on one CPU core:

| ((7—‘5 Vieuw
of (PU 1

‘CQ\’\ \-
| ~

lf” 3 '
| é—rg_ o

o=

W tim

o
(4

§

¢
«
4

S1

Slow time

Assume the scheduler 1s evil

* Remember that processes have no control over the scheduler.

* So, to protect against concurrency bugs, we must assume that the
scheduler can interrupt us at any time and schedule any other process.

* In other words, assume that the scheduler is adversarial, and will do
the worst possible scheduling.

* To prevent weird and rare concurrency bugs,
your code should work correctly even when
faced with an evil scheduler.

Intermission

“It’s not enough that we succeed. Cats must also fail.”

Terminology

e Race condition:

* Two or more things are happening at the same time,
* it’s not clear which will finish first, and

* the result will be different depending on which finishes first.
* Indeterminate: Output can be different each time (not deterministic).

e Critical section:

* Code that accesses a shared resource and must not be executed concurrently.
* In other words, code that would lead to a race condition.
* Sometimes called a transaction, especially in database systems.

* We must execute critical sections aromically, meaning that it cannot be partially
executed. Atomic means it cannot be divided, or is executed “all or none.”

* Mutual exclusion primitives are used to protect critical sections.

* Locks are the simplest kind of mutual exclusion primitive.

Critical sections

* Critical sections often involve modification of multiple related data
* While the modifications are happening there is some inconsistency
* The inconsistency 1s eventually resolved before leaving the critical section

* For example:
* Inserting an element in the middle of a linked list

* Two pointers must change. List is broken if just one is changed.

* Swapping two values.

* Don’t have to worry about critical sections if:
* Operation is just one assembly instruction (CPU executes these atomically), or
* Program is single-threaded or the particular data 1s not shared among threads

Buggy concurrent swap

#include <stdio.h>
#include <pthread.h>

static volatile char* personl;
static volatile char* person2;
static const int LOOPS = 1e4;

void* mythread (void* arg) {
printf ("%s: begin\n", (char*)arqg);

int i;
for (i=0; i<LOOPS; i++) {
// swap
volatile char* tmp = personl;
personl = person?Z;
personZ2 = tmp;

}

printf ("%s: done\n", (char*)arqg);
return NULL;

int main (int argc, char* argv/[]) {
pthread t pl, p2;
personl = "Jack";
personz2 = "Ji11";

printf ("main: begin (%s, %s)\n",
personl, person?);

pthread create (&pl, NULL, mythread,
pthread create (&p2, NULL, mythread,

// wait for threads to finish

pthread join(pl, NULL);

pthread join(pZ2, NULL);

printf ("main: end (%s, %s)\n",
personl, person?);

"A") ;
"B") ;

https://gist.github.com/starzia/3cfd83f736b54caeleb856561eb5e576

https://gist.github.com/starzia/3cfd83f736b54cae1eb856561eb5e576

Critical sections in xv6: process table in kernel/proc.c

* Why do we worry about critical sections in the kernel?

* An OS kernel on a multi-core machine is like a multi-threaded process, so we
must protect the kernel’s critical sections.

* A hardware interrupt can happen at any time and prempt the kernel
* Process table 1s a shared resource
* Proc structs have many fields
* Don’t want to read a proc struct that 1s just partially filled-in

* Don’t want to accidentally assign the same “next” pid to two processes

e Htc.

28
29
30
31
32
33
34
35
36
37
38
39
49
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

// Look in the process table for an UNUSED proc.
// If found, change state to EMBRYO and initialize
// state required to run in the kernel.
// Otherwise return 0.
static struct proc*
allocproc(void)
{
struct proc *p;

char *sp;

acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++) -5\\\
if(p->state == UNUSED)
goto found;
release(&ptable.lock);

return 0;

found:
p->state = EMBRYO;

p->pid = nextpid++; _—/,/

release(&ptable.lock);

// Allocate kernel stack if possible.
if((p->kstack = kalloc()) == 0){
p->state = UNUSED;
return 9;

}
sp = p->kstack + KSTACKSIZE;

Critical

Sections

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

// Wait for a child process to exit and return its pid.
// Return -1 if this process has no children.
int
wait(void)
{
struct proc *p;

int havekids, pid;

acquire(&ptable.lock);
for(;5;){
// Scan through table looking for zombie children.
havekids = 9;
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->parent != proc)
continue;
havekids = 1;
if(p->state == ZOMBIE){
// Found one.
pid = p->pid;
kfree(p->kstack);
p->kstack = @;
freevm(p->pgdir);
p->state = UNUSED;
p->pid = 9;
p->parent = 0;
p->name[@] = 9;
p->killed = 0;
release(&ptable.lock);

return pid;

Critical sections in Project 2

* Most importantly, when deciding whether to deallocate a shared page

* [t two processes sharing the page are killed concurrently then:

* Both processes might think the other 1s still using the page and nerther would
free it.

* Both processes might think they are the last to use the page and both would
try to free it.

* Depending on your implementation you may or may not need a lock
* The lock on the process table may already protect your critical section.

* Project 3 also has shared memory, and this time you must protect
critical sections.

Locks

* LLocks are the simplest mutual exclusion primitive

* Represent a resource that can be reserved and freed

e Has two main functions:

* Acquire/lock:
* Used before a critical section to reserve the resource
* If the lock 1s free (unlocked), then lock it and proceed.

* If the lock is already taken (someone else called acquire/ lock),
then wait until it’s free before proceeding.

* Release/unlock:

e Used at the end of a critical section to free the resource
* Allows one waiting (or future) thread to acquire the lock

Two different metaphors & etymology

Lock

* A lock is something that’s ! |
designed to block access. |

e Qur virtual lock works as followé:

* Anyone can lock or unlock
(there is no “key”).

* Trying to lock an already-locked
lock will cause you to wait until it’s
unlocked.

* The “lock™ 1s actually a
poor/confusing metaphor.

Token
* Holding the token gives

you permission to do somethmg

* There 1s only one token.

* Thus, you:

1. Try to acquire the token (“lock”).
You have to wait your turn 1f
someone else 1s holding it.

2. When done, release the token/lock.

* The token represents exclusive access
to a shared resource or a critical
section.

Spinlock 1n xv6

struct spinlock Stofres the state of
the lock (whether or not it’s acquired).

initlock () Initializes it (just once)

acquire () proceeds if the lock is not
already acquired.

* Must afomically check and set a value in
the struct spinlock. (details next lecture)

* It lock is already acquired, it waits until
thread releases it.
release () lets another thread acquire
the lock later.

e Must remember to release the lock!

28
29
30
31
32
33
34
35
36
37

39
40
41

43
44
45
46
47

struct {
struct spinlock lock;
struct proc proc[NPROC];
} ptable;

// Look in the process table for an UNUSED proc.
// If found, change state to EMBRYO and initialize
// state required to run in the kernel.
// Otherwise return @.
static struct proc*®
allocproc(void)
{
struct proc *p;

char *sp;

acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)
if(p->state == UNUSED)
goto found;
release(&ptable.lock);

return 9;

found:
p->state = EMBRYO;
p->pid = nextpid++;
release(&ptable.lock);

// Mutual exclusion lock.
struct spinlock {

XV6,S SpiﬂlOCk. [Ch] uint locked; // Is the lock held?

// For debugging:

char xname; // Name of Llock.
struct cpu *cpu; // The cpu holding the 1lock.
void uint pcs[10]; // The call stack (an array of program counters)
acquire(struct spinlock x1k) // that locked the lock.
{ : };
pushcli(); // disable interrupts to avoid deadlock. // Release the lock.
panic("acquire"); release(struct spinlock *1k)
{
// The XChg is atomic. 1f('h01d1ng(lk))
// It also serializes, so that reads after acquire are not panic("release");
// reordered before it.
while(xchg(&lk->locked, 1) != 0) lk->pcs[@] = 0;
; lk—>cpu = 0;
36 // Record info about lock acquisition for debugging. xchg (&lk—>locked, 0);
lk—>cpu = cpu;
getcallerpcs(&lk, lk—>pcs); popcli();

Recap

* Processes can have multiple threads sharing the virtual address space
* Critical sections are block of code that must be run atomically

* It unprotected, critical sections lead to race conditions that make
code indeterminant — we get different results depending on timing.

* Locks are the simplest mutual exclusion primitive, with two main
functions:

* Acquire/lock — get exclusive access to a shared resource.
* Release/unlock — release the shared resource.

* Concurrency occurs naturally in multi-CPU systems
* Concurrency is created by the process scheduler in single-CPU systems
* Next time: how locks and other synchronization primitives are built!

