
EECS-343 Operating Systems
Lecture 10:

Threads
Steve Tarzia
Spring 2019

Announcements
•Midterm exams are being graded as we speak.
• Project 2 was due yesterday
• Project 3 is due in two weeks from yesterday
• Must implement threads in xv6
• Should be easier than the last assignment
• There is an extra credit section

•Homework 2 will be out soon.
•Drop deadline is on Friday.
• I can tell you how you’re doing if you’re considering dropping.

Threads

• So far, we have discussed
single-threaded processes.
• A thread is a part of a process

indicating where it’s executing.
•OS scheduler actually schedules

threads, not processes.

Multi-threaded processes
• A multi-threaded process can

execute in parallel.
• A thread is like a process, but it

shares all its virtual memory
with all other threads of the same
process.
• Each thread has:
• Its own set of register values

(Including the instruction pointer)
• Its own stack

Why use threads?
• Allows a process to work in parallel and use multiple CPU cores to

get work done faster.
• Allows slow tasks to be done in a background thread.
• For example:
• Fetch an image for a website (I/O bound)
• Save a document to disk (I/O bound)
• Transcode a media file (CPU bound)

• This is useful even on machines with a single CPU core.
• For GUI applications, allows main UI thread to be responsive.
• UI thread will use little CPU time and retain high priority in MLFQ.
• Disk/network I/O will not block the UI thread.

• Shared memory allows the threads to easily coordinate.
• For example, results can be stored in a global data structure.

Why do we need a stack for each thread?
• Remember that the stack stores:
• Local function variables
• Function parameters
• Return addresses

• CPU needs a stack to track it’s progress through C-style functions.
• Each thread takes its own path through the code.
• So, every thread needs its own stack.

• A thread usually should not access another thread’s stack
• The stack is thread local storage.

Thread creation example

• “pthread” refers to the standard
POSIX thread interface.
• POSIX is a set of standards

for Unix-style OSes.

Thread creation vs. Fork
Thread creation
• pthread_create()
• Creates a thread
• Shares all memory with all threads

of the process.
• Scheduled independently of parent

• pthread_join()
• Waits for a particular thread to

finish
• Can communicate by

reading/writing (shared) global
variables.

Forking a process
• fork()
• Creates a single-threaded process
• Copies all memory from parent
• Can be quick using copy-on-write

• Scheduled independently of parent
• waitpid()
• Waits for a particular child process

to finish
• Can communicate by setting up

shared memory, pipes,
reading/writing files, or using
sockets (network).

Concurrency can create tricky problems

• Start two threads, each of which increments a shared global counter variable 107 times.
• The volatile keyword tells the compiler that the counter variable may change unexpectedly

(in this case, changed by the other thread).

#include <stdio.h>
#include <pthread.h>

static volatile int counter = 0;
static const int LOOPS = 1e7;

void* mythread(void* arg) {
printf("%s: begin\n", (char*)arg);
int i;
for (i=0; i<LOOPS; i++) {

counter++;
}
printf("%s: done\n", (char*)arg);
return NULL;

}

int main(int argc, char* argv[]) {
pthread_t p1, p2;
printf("main: begin (counter = %d)\n", counter);
pthread_create(&p1, NULL, mythread, "A");
pthread_create(&p2, NULL, mythread, "B");

// wait for threads to finish
pthread_join(p1, NULL);
pthread_join(p2, NULL);
printf("main: done with both (counter = %d, goal

was %d)\n",
counter, 2*LOOPS);

}

Test parallel_count1.c
• https://gist.github.com/starzia/b6456d74be2f3ab12a0dd4cbff252717
•… or download it from Canvas.
• Compile with “gcc -lpthread parallel_count1.c”

https://gist.github.com/starzia/b6456d74be2f3ab12a0dd4cbff252717

What’s the problem?
•We have seen with the fork syscall that the scheduler is unpredictable
• We don’t know which of the two threads will run first and for how long.
• But is this a problem?
• Why does it matter who

increments the counter first?
• The net result should be

20,000,000 regardless, right?
• Actually, there is a serious bug
• It will yield a different result every time!

• You have to understand the low-level behavior to find the problem.
• In short, the “counter++” operation is not atomic.

$ time ./a.out
main: begin (counter = 0)
A: begin
B: begin
A: done
B: done
main: done with both
(counter = 10416197, goal was 20000000)

Incrementing a number in assembly
• “counter++” has to:

1. Copy from the memory location of the counter variable to a register
2. Increment the register’s value
3. Copy from the register back to memory

• Assuming that “counter” is in memory location 0x8049a1c:
mov 0x8049a1c, %eax
add $0x1, %eax
mov %eax, 0x8049a1c

• The scheduler can interrupt the thread before or after the “add”
• This would cause both threads to read the same value, increment it to the

same value, and thus they would repeat work.

The increment failure in detail: 50 + 1 + 1 = 51!

XX

The process scheduler creates concurrency
• Even if only one CPU is present, threads operate “concurrently” because

they are taking turns using the CPU.
• Each process thinks it has its own CPU that is sometimes very, very slow…

Simulated concurrency on one CPU core:

Is like

Obvious concurrency
on two CPU cores:

Sl
ow

 ti
m

e Sl
ow

 ti
m

e
Sl

ow
 ti

m
e

Sl
ow

Assume the scheduler is evil
• Remember that processes have no control over the scheduler.
• So, to protect against concurrency bugs, we must assume that the

scheduler can interrupt us at any time and schedule any other process.
• In other words, assume that the scheduler is adversarial, and will do

the worst possible scheduling.
• To prevent weird and rare concurrency bugs,

your code should work correctly even when
faced with an evil scheduler.

Intermission

Terminology
• Race condition:
• Two or more things are happening at the same time,
• it’s not clear which will finish first, and
• the result will be different depending on which finishes first.

• Indeterminate: Output can be different each time (not deterministic).
• Critical section:
• Code that accesses a shared resource and must not be executed concurrently.
• In other words, code that would lead to a race condition.
• Sometimes called a transaction, especially in database systems.
• We must execute critical sections atomically, meaning that it cannot be partially

executed. Atomic means it cannot be divided, or is executed “all or none.”
• Mutual exclusion primitives are used to protect critical sections.
• Locks are the simplest kind of mutual exclusion primitive.

Critical sections
• Critical sections often involve modification of multiple related data
• While the modifications are happening there is some inconsistency
• The inconsistency is eventually resolved before leaving the critical section

• For example:
• Inserting an element in the middle of a linked list
• Two pointers must change. List is broken if just one is changed.

• Swapping two values.
•Don’t have to worry about critical sections if:
• Operation is just one assembly instruction (CPU executes these atomically), or
• Program is single-threaded or the particular data is not shared among threads

Buggy concurrent swap
#include <stdio.h>
#include <pthread.h>

static volatile char* person1;
static volatile char* person2;
static const int LOOPS = 1e4;

void* mythread(void* arg) {
printf("%s: begin\n", (char*)arg);
int i;
for (i=0; i<LOOPS; i++) {
// swap
volatile char* tmp = person1;
person1 = person2;
person2 = tmp;

}
printf("%s: done\n", (char*)arg);
return NULL;

}

int main(int argc, char* argv[]) {
pthread_t p1, p2;
person1 = "Jack";
person2 = "Jill";
printf("main: begin (%s, %s)\n",

person1, person2);
pthread_create(&p1, NULL, mythread, "A");
pthread_create(&p2, NULL, mythread, "B");

// wait for threads to finish
pthread_join(p1, NULL);
pthread_join(p2, NULL);
printf("main: end (%s, %s)\n",

person1, person2);
}

https://gist.github.com/starzia/3cfd83f736b54cae1eb856561eb5e576

https://gist.github.com/starzia/3cfd83f736b54cae1eb856561eb5e576

Critical sections in xv6: process table in kernel/proc.c

•Why do we worry about critical sections in the kernel?
• An OS kernel on a multi-core machine is like a multi-threaded process, so we

must protect the kernel’s critical sections.
• A hardware interrupt can happen at any time and prempt the kernel

• Process table is a shared resource
• Proc structs have many fields
•Don’t want to read a proc struct that is just partially filled-in
•Don’t want to accidentally assign the same “next” pid to two processes
• Etc.

Critical
Sections

Critical sections in Project 2
•Most importantly, when deciding whether to deallocate a shared page
• If two processes sharing the page are killed concurrently then:
• Both processes might think the other is still using the page and neither would

free it.
• Both processes might think they are the last to use the page and both would

try to free it.
•Depending on your implementation you may or may not need a lock
• The lock on the process table may already protect your critical section.
• Project 3 also has shared memory, and this time you must protect

critical sections.

Locks
• Locks are the simplest mutual exclusion primitive
• Represent a resource that can be reserved and freed

•Has two main functions:
• Acquire/lock:
• Used before a critical section to reserve the resource
• If the lock is free (unlocked), then lock it and proceed.
• If the lock is already taken (someone else called acquire/lock),

then wait until it’s free before proceeding.

• Release/unlock:
• Used at the end of a critical section to free the resource
• Allows one waiting (or future) thread to acquire the lock

Two different metaphors & etymology
Lock
• A lock is something that’s

designed to block access.
• Our virtual lock works as follows:
• Anyone can lock or unlock

(there is no “key”).
• Trying to lock an already-locked

lock will cause you to wait until it’s
unlocked.

• The “lock” is actually a
poor/confusing metaphor.

Token
• Holding the token gives

you permission to do something.
• There is only one token.
• Thus, you:

1. Try to acquire the token (“lock”).
You have to wait your turn if
someone else is holding it.

2. When done, release the token/lock.
• The token represents exclusive access

to a shared resource or a critical
section.

Spinlock in xv6

• struct spinlock stores the state of
the lock (whether or not it’s acquired).
• initlock() initializes it (just once)
• acquire() proceeds if the lock is not

already acquired.
• Must atomically check and set a value in

the struct spinlock. (details next lecture)
• If lock is already acquired, it waits until

thread releases it.
• release() lets another thread acquire

the lock later.
• Must remember to release the lock!

xv6’s spinlock.[ch]

Recap
• Processes can have multiple threads sharing the virtual address space
• Critical sections are block of code that must be run atomically
• If unprotected, critical sections lead to race conditions that make

code indeterminant – we get different results depending on timing.
• Locks are the simplest mutual exclusion primitive, with two main

functions:
• Acquire/lock – get exclusive access to a shared resource.
• Release/unlock – release the shared resource.

• Concurrency occurs naturally in multi-CPU systems
• Concurrency is created by the process scheduler in single-CPU systems
•Next time: how locks and other synchronization primitives are built!

