BEECS-343 Operating Systems

Lecture 9:
Midterm Review

Steve Tarzia

Spring 2019

Northwestern

Announcements

* Project 2 deadline was extended one week (due Monday)

* HW?2 is out and due on Wednesday.
* HW1 solutions have been posted.

* Midterm exam is on Thursday.

* Practice Midterm solution Q2 had an error. New solutions are posted.

Operating systems roles

* A user Interface tor humans to run programs

* A resource manager allowing multiple programs to share one set of
hardware.

* A programming interface (API) tfor programs to access the hardware
and other services. System calls are the OS APL.

Processes & System Calls

* Process 1s a program in execution

* Limited direct execution 1s a strategy whereby a process usually
operates as if it has tull use of the CPU & memory.

* CPUs have user and kernel modes to prevent user processes from
running privileged instructions, thus Z»zting execution.

* Interrupts are events that cause the kernel to run

* System Calls (or traps) are software interrupts called by a user
program to ask the OS to do something on its behalf.

* Timer Interrupt ensures that the kernel eventually runs.

Process Creation

* xvO OS code 1s written for the Intel x86 CPU architecture, but...
* Linux supports 31 ditferent CPU architectures

e [.ow-level mechanisms are different on each architecture.

* High-level policies are the same for all.
* Fork syscall: run once, exits twice!
* Nondeterminism is when a program’s output is unpredictable

* OS process scheduler can create race conditions in programs that rely
on an interaction of multiple processes.

* These are tricky to debug, because they are sensitive to timing (Heisenbugs).

* Kernel panic occurs when OS causes an exception and can’t recover

Process Scheduling

* Defined two conflicting metrics: turnaround time and response time
* Cannot optimize both — must tradeoff, or balance, the two

* Optimized by shortest job first and round robin, respectively

* Context switching overhead is due to the CPU caches

* CPU keeps most recently used data in nearby caches, so it’s more etficient to
let an ongoing process continue.

* 1/O-blocked processes make progress without using the CPU
* We should prioritize I/O-bound processes

* Multi-Level Feedback Queues are often used in real OS schedulers

* Prioritizes “polite” processes that use little CPU time when scheduled
* CPU-bound processes squander their time quotas and lose priority

Virtual Memory

* Memory is divided into equal-sized pages.

* Page tables translate virtual page numbers to physical page numbers.
* Showed the details of page table entries (PTEs):

* High bits translate from virtual page number to physical page number.

* Low bits in the PTE are used to indicate present/rw/kernel page.

* During a context switch, kernel changes the %0 CR3 register to switch
from the page table (VM mapping) of one process to another.

* VM 1s handled by both the OS and CPU:
* OS sets up the page tables and handles exceptions (page faults).

* CPU automatically translates every memory access in the program from

virtual addresses to physical addresses by checking (walking) the page table.

VM & Paging costs & optimizations

* Latency cost, because each memory access must be translated.
* Translation lookaside buffer (TLB) caches recent virtual to physical page
number translations.

* Software-controlled paging removes page tables from the CPU spec and lets
OS handle translations in software, in response to TLB miss exceptions.

* Space cost, due to storing a page table for each process.

* Linear (one-level) page tables are large.
* Smaller pages lead to less wasted space during allocation,
but more space is consumed by page tables.
* Multi-level page tables are the only way to truly conserve space.
* Mixed-size pages reduce TLB misses.

* Copy-on-write fork, demand zeroing, lazy loading, and library sharing
all reduce physical memory demands.

Paging overview

* Virtual memory addresses are translated to physical memory
addresses by the CPU, and the translation is dynamically configured by
the OS in each process’ page table.

* Swapping is the movement of pages between disk and physical mem.

* Page tables also allow several memory management optimizations:

* Copy-on-write fork — delays memory copies
* Shared libraries — read/execute-only code can be shared by several processes

* Lazy allocation/demand zeroing — wait before allocating user memory.

* Filesystem caching allows page-sized portions of files to be stored in
physical memory.

Swapping gives the illusion of lots of memory

* Disk is slow, but large, and can be used to store RAM’s overflow
* Disks have high throughpurt (transter bitrate) but high /arency (delay)
* Magnetic disks have even higher latency than SSDs, due to moving parts.
* Paging and swapping work together, using the same CPU mechanisms

* If a page is marked “not present” it may be either invalid or swapped to disk.

* Or it might indicate /lazy allocation, lazy loading, ot copy-on-write
* High bits of page table entry can store disk location of swapped page.

* Page replacement policy decides which page(s) to evict to free memory

* Swapping can be done on demand or 1n the background
* Having some free physical frames will prevent delays for allocations.
* Accessed bit and Dirty bitin PTEs inform the page replacement policy

* Thrashing 1s when swapping prevents the system from doing any work.
* Unified page cache handles both traditional paging and file caching:.

* Makes filesystem access seem just as fast as memory access.

Types of page faults (new slide)

* Minor/soft: Page is loaded in memory, but PTE is not configured:

* OS just wants to be informed when the page is accessed, so it prefends to evict the
page (just mark it not present). Useful if CPU has no accessed/dirty bit.

* Memory can be shared from another process (eg., copy on write, shared library)
Response: update the PTE.

* Major/hard: A disk access will be needed:

* Anonymous page (process data) may have been swapped out.
* Lazy-loading program executable.
Response: load the page from disk

* Invalid: User program misbehaved:
* Dereference null or invalid pointer.
* Write to page that is read-only.

* Execute code on a page that is not executable (for security).
Response: terminate the process.

Free Lists

* Freed memory is put on a free list to be reused for later allocations.
* A single header can be cleverly used and re-used for two purposes:

e As a linked list node when the block is free/available
* 'To store the size of the allocated block to help service free calls.

* Free space management policy determines:
* which free blocks to choose for an allocation, and

* When to coalesce (join) adjacent free blocks
* Free block choice policies include:
* First, next, best, and worst fit.

\H
2 =, 3%
Q4) xv6 uses a two-level page table and 4888 byte pages.
How much space is consumed by an xv6 page table for a
process that uses just the Iower]40 megabytes
(40*1024*1024) of memory?

Q5) How much space would be consumed by the process
above if a linear (one level) page table was used?

. = Aw: Moz e

! SN > =Pz
e e

S@W\ SRe= T M Qpec 4+ I dude. (20ate) b5es
~ +3 =4 Py

3 (S (3
— Y e x g—w S, =20
= ¢ o — oM

‘NWY

Q5:

)
56 |

