
EECS-343 Operating Systems
Lecture 9:

Midterm Review
Steve Tarzia
Spring 2019



Announcements
• Project 2 deadline was extended one week (due Monday)
•HW2 is out and due on Wednesday.
•HW1 solutions have been posted.
•Midterm exam is on Thursday.
• Practice Midterm solution Q2 had an error.  New solutions are posted.



Operating systems roles
•A user interface for humans to run programs
•A resource manager allowing multiple programs to share one set of  

hardware.
•A programming interface (API) for programs to access the hardware 

and other services.  System calls are the OS API.



Processes & System Calls
• Process is a program in execution
•Limited direct execution is a strategy whereby a process usually 

operates as if  it has full use of  the CPU & memory.
•CPUs have user and kernel modes to prevent user processes from 

running privileged instructions, thus limiting execution.
• Interrupts are events that cause the kernel to run
• System Calls (or traps) are software interrupts called by a user 

program to ask the OS to do something on its behalf.
•Timer Interrupt ensures that the kernel eventually runs.



Process Creation
• xv6 OS code is written for the Intel x86 CPU architecture, but…
• Linux supports 31 different CPU architectures
• Low-level mechanisms are different on each architecture.
• High-level policies are the same for all.

• Fork syscall: run once, exits twice!
•Nondeterminism is when a program’s output is unpredictable
•OS process scheduler can create race conditions in programs that rely 

on an interaction of  multiple processes.
• These are tricky to debug, because they are sensitive to timing (Heisenbugs).

•Kernel panic occurs when OS causes an exception and can’t recover



Process Scheduling
•Defined two conflicting metrics: turnaround time and response time
• Cannot optimize both – must tradeoff, or balance, the two

•Optimized by shortest job first and round robin, respectively
•Context switching overhead is due to the CPU caches
• CPU keeps most recently used data in nearby caches, so it’s more efficient to 

let an ongoing process continue.
• I/O-blocked processes make progress without using the CPU
• We should prioritize I/O-bound processes

•Multi-Level Feedback Queues are often used in real OS schedulers
• Prioritizes “polite” processes that use little CPU time when scheduled
• CPU-bound processes squander their time quotas and lose priority



Virtual Memory
•Memory is divided into equal-sized pages.
• Page tables translate virtual page numbers to physical page numbers.
• Showed the details of  page table entries (PTEs):
• High bits translate from virtual page number to physical page number.
• Low bits in the PTE are used to indicate present/rw/kernel page.

•During a context switch, kernel changes the %CR3 register to switch 
from the page table (VM mapping) of  one process to another.
•VM is handled by both the OS and CPU:
• OS sets up the page tables and handles exceptions (page faults).
• CPU automatically translates every memory access in the program from 

virtual addresses to physical addresses by checking (walking) the page table.



VM & Paging costs & optimizations
•Latency cost, because each memory access must be translated.
• Translation lookaside buffer (TLB) caches recent virtual to physical page 

number translations.
• Software-controlled paging removes page tables from the CPU spec and lets 

OS handle translations in software, in response to TLB miss exceptions.
• Space cost, due to storing a page table for each process.
• Linear (one-level) page tables are large.
• Smaller pages lead to less wasted space during allocation,

but more space is consumed by page tables.
• Multi-level page tables are the only way to truly conserve space.
• Mixed-size pages reduce TLB misses.

•Copy-on-write fork, demand zeroing, lazy loading, and library sharing 
all reduce physical memory demands.



Paging overview
•Virtual memory addresses are translated to physical memory 

addresses by the CPU, and the translation is dynamically configured by 
the OS in each process’ page table.
• Swapping is the movement of  pages between disk and physical mem.
• Page tables also allow several memory management optimizations:
• Copy-on-write fork – delays memory copies
• Shared libraries – read/execute-only code can be shared by several processes
• Lazy allocation/demand zeroing – wait before allocating user memory.

• Filesystem caching allows page-sized portions of  files to be stored in 
physical memory.



Swapping gives the illusion of  lots of  memory
• Disk is slow, but large, and can be used to store RAM’s overflow
• Disks have high throughput (transfer bitrate) but high latency (delay)
• Magnetic disks have even higher latency than SSDs, due to moving parts.

• Paging and swapping work together, using the same CPU mechanisms
• If  a page is marked “not present” it may be either invalid or swapped to disk.

• Or it might indicate lazy allocation, lazy loading, or copy-on-write
• High bits of  page table entry can store disk location of  swapped page.

• Page replacement policy decides which page(s) to evict to free memory
• Swapping can be done on demand or in the background
• Having some free physical frames will prevent delays for allocations.
• Accessed bit and Dirty bit in PTEs inform the page replacement policy

• Thrashing is when swapping prevents the system from doing any work.
• Unified page cache handles both traditional paging and file caching.
• Makes filesystem access seem just as fast as memory access.



Types of  page faults (new slide) 
•Minor/soft: Page is loaded in memory, but PTE is not configured:
• OS just wants to be informed when the page is accessed, so it pretends to evict the 

page (just mark it not present).  Useful if  CPU has no accessed/dirty bit.
• Memory can be shared from another process (eg., copy on write, shared library)
Response: update the PTE.

•Major/hard: A disk access will be needed:
• Anonymous page (process data) may have been swapped out.
• Lazy-loading program executable.
Response: load the page from disk

• Invalid: User program misbehaved:
• Dereference null or invalid pointer.
• Write to page that is read-only.
• Execute code on a page that is not executable (for security).
Response: terminate the process.



Free Lists
• Freed memory is put on a free list to be reused for later allocations.
•A single header can be cleverly used and re-used for two purposes:
• As a linked list node when the block is free/available
• To store the size of  the allocated block to help service free calls.

• Free space management policy determines:
• which free blocks to choose for an allocation, and
• When to coalesce (join) adjacent free blocks

• Free block choice policies include:
• First, next, best, and worst fit.



Q4:



Q5:


