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Announcements
• Project 2 due Monday
•HW2 is out and due on Wednesday.
•Midterm in one week (Thursday)
• Tuesday will be a midterm review
• A Piazza post will ask for topics to cover.



Last Lecture: Swapping
• Disk is slow, but large, and can be used to store RAM’s overflow
• Disks have high throughput (transfer bitrate) but high latency (delay)
• Magnetic disks have even higher latency than SSDs, due to moving parts.

• Paging and swapping work together, using the same CPU mechanisms
• If  a page is marked “not present” it may be either invalid or swapped to disk.

• Or it might indicate lazy allocation, lazy loading, or copy-on-write, as we saw last time.
• High bits of  page table entry can store disk location of  swapped page.

• Page replacement policy decides which page(s) to evict to free memory
• Swapping can be done on demand or in the background
• Having some free physical frames will prevent delays for allocations.
• Accessed bit and Dirty bit in PTEs inform the page replacement policy

• Thrashing is when swapping prevents the system from doing any work.
• Unified page cache handles both traditional paging and file caching.
• Makes filesystem access seem just as fast as memory access.



Paging overview
• Virtual memory addresses are translated to physical memory 

addresses by the CPU, and the translation is dynamically configured by 
the OS in each process’ page table.
• Swapping is the movement of  pages between disk and physical mem.
• Page tables also allow several memory management optimizations:
• Copy-on-write fork – delays memory copies
• Shared libraries – read/execute-only code can be shared by several processes
• Lazy allocation/demand zeroing – wait before allocating user memory.

• Filesystem caching allows page-sized portions of  files to be stored in 
physical memory.



Memory management illustrations



The process’ view of  memory
• Code and global data are filled by 
exec syscall to load a program.
• A new frame is pushed on the 

stack whenever a function is 
called. (And popped on return.)
•Heap data is managed by malloc

How does malloc work?



Free-space management
Given: A single block of  contiguous memory
Goals:
•Handle malloc and free requests
• void* malloc(int n): find a unused block of  size n
• free(void* ptr): reclaim a block that was previously malloc-ed

•Minimize the total extent of  memory required (be compact)
•Minimize the time required to malloc and free

Free-space management will also be a topic in filesystems.



Heap dynamics
• Ideally, malloc would waste no space:

• Actually, Stack memory looks nice and compact like above.
• But malloc is used for dynamic memory
• it will be freed later, at some unknown time

• Frees create vacancies in the Heap that waste space,
but can be re-allocated:

• Remember that user programs expect malloc to return a contiguous block 
of  (virtual) memory.



Grow the Heap only as a last resort
• Goal is to make maximum use of  

the Heap range already in use.
• Look for a free block >= the 

current malloc request
• If  none is found, then we have to 

expand the heap.
• On xv6, malloc uses sbrk syscall to 

tell the OS that the process’s address 
range has increased and page table 
must be expanded.
• Modern OSes do not use sbrk, but 

mmap or perhaps nothing.
•Memory leaks cause heap to grow 

indefinitely (if  you forget to free)



Malloc in user and kernel code
• Both the kernel and user code must dynamically allocate memory
• Free space management algorithms can be the same in both cases
• But different implementations are used.  In xv6:
• User level: umalloc.c: 90 lines of  code
• Basic C memory management: malloc & free
• Missing: calloc & realloc (it’s not ANSI C)

• Kernel level: kalloc.c: 72 lines of  code
• xv6 lacks dynamic memory allocation in the kernel
• No malloc & free, just allocate and free a full page of  memory (4kb block)

• Linux has kmalloc, kfree (like user-level malloc and free)



Free list is a linked list tracking free blocks

• Ordering is arbitrary
• This example shows two free blocks 

of  size 10.
• Space between two free blocks can be 

used by multiple mallocs
• We’ll track used blocks another way

• Like any linked list:
• It’s easy to insert and delete nodes
• Finding the nth node is slow

• Start at the head node
• Traverse n pointers

• Lacks any indexing
• Must examine every node when searching

Above is represented as:



Allocate memory by splitting free blocks

Before:

After allocating one byte from the second free block:

We just found a free block large enough for the allocation and claimed 
a chunk of  it.  (The policy decides which block to choose.)



Coalescing eliminates artificial fragmentation

Before:

After freeing 10 bytes of  data at address 10
(We usually add new nodes to a linked list’s head):

After coalescing:

Splitting this big block 
of  free space among 
three small nodes 
makes it difficult to 
recognize it as a large 
contiguous free block



A trick to help with frees
• free(ptr) doesn’t tell us how long the block is, just where it starts
• But we need that information to free the block.

• Solution: cleverly prefix the block with a header:
Eg., malloc(20):

To handle free(ptr) just look at (ptr – (sizeof hptr)) to find the block size.



Heap example: step 1: initialization
• Start with an empty 4kb block of  memory (4096 bytes)
• Part of  the Heap is always used to store the free list.
• We just have a free list with one node, representing one big free block:

• Assuming pointers are 32 bits = 4 bytes, the free list node occupies 8 bytes, 
leaving 4088 bytes free below it.



Heap example: step 2: malloc(100);
• The malloc implementation will traverse the free list (starting at “head”)

and find the one node that has >= 100 bytes.
• Free block had 4088 bytes
• It is split, leaving 4088 – 100 – 8  = 3980 bytes.
• 8 bytes are reserved for the new node’s header.

Before:

After :



Heap example: step 3:
two more calls to malloc(100);
• In each case there is one free block and we split.

After:

Before:



Heap example: step 4: free(sptr)
•When handling the “free,” all we 

have is sptr (the free parameter) 
and head (a global variable).
• The caller didn’t tell us how large 

a block to free, but we look back 
from sptr to find that size=100.
• To free the block, we just convert 

the malloc header into a free list 
node by changing the magic 
number into a pointer to the 
former head of  the free list.

Before:



Heap example: step 4: free(sptr) …in slow motion

Create a new 
free list node

Look back to 
find block size

Clear the 
block



Heap example: step 4: free(sptr) …the net change

Actually, just two small 
things changed!

• sptr – 4 = head
• head = sptr – 8

Our work is easy 
because malloc block 
headers are very similar 
to free list nodes

Before: After :



Heap example: step 5: free everything else

• This leaves a 
free list with 
four chunks.
•Notice that the 

free list is out of  
order.
• And it badly 

needs to be 
coalesced.

1st free

2nd free



What’s up with the magic number?
• It’s just an unusual, large numeric constant.  Always the same number.
• It allows free to detect whether the pointer it received is valid.
• If  there is no magic number behind the pointer, then
• Free should abort and warn the user.
• Maybe the code already called free?  In other words, a “double free” error.



Intermission
Question: What could happen if  you ignored the magic number and allowed a double 
free to proceed?



Linked lists are just one way to track free space
• There are many alternatives, especially if  you want:
• Quickly find a block of  a given size
• Quickly find neighboring blocks for coalescing

•One alternative is a bitmap:
• Divide the memory into fixed-size chunks and use a bit to indicate whether 

the chunk has been allocated.
• Memory allocations would be rounded up to a multiple of  the chunk size.
• Eg., “111000000001000000”

a used block       a large free block

• But lists are a very common choice



Free space management policies & optimizations
•We have seen a basic malloc/free mechanism
• Glossed over some details of  maintaining the linked list, but that’s trivial.

• There are still some policy decisions to make:
• Which of  the free blocks do we choose for a given allocation?
• When do we coalesce?

• In other words, how do we avoid memory fragmentation?



Choosing a free block to serve an allocation:
• First fit – simple and fast:

•Next fit – start looking where you left off:

• Best fit – try to leave the smallest remainder
• But have to search the whole list and leaves small holes (hard to reuse)

•Worst fit – try to leave large remainders that are easy to reuse

last



Segregated lists (Slab memory allocator)

• Instead of  keeping one list of  free blocks, we can keep 
different lists for small, medium, and large blocks.
• This will allow us to find the right sized block more 

efficiently.
• Just keep an array of  free lists (many heads)
•On free (or if  splitting), add free block to the 

appropriate list
•Many variations are possible, but this design often uses 

fixed-length chunks (powers of  2). Free block size



Warning: bad style
• xv6 codebase suffers from some code 

style problems.
• Lacks comments
• Variable names are too short: np, bp, hp, 

s, b, etc.  Why so short!?
• if/else should always use {}
• goto

•Most of these are due to obsolete 
habits.  Computer screens used to be 
small, so shorter code was favored.
•Don’t learn these bad habits!



Malloc in xv6
• Taken from Section 8.7 of  Kernighan and Ritchie “C book”
• Free list is circular (tail points back to head instead of  to null)
• Uses the “next fit” policy – head pointer changes each time
• Free list is ordered according to memory address
• This enables easy coalescing
• When freeing a block, don’t just place it at the list head:
• Scan for the correct location in the list for that address
• Check whether neighbors are directly adjacent in memory (and coalesce)

•When free list cannot serve the request, use sbrk syscall to get a 
pointer to a block of  new memory from the OS.



xv6/umalloc.c

(in 64-bit units)





Malloc with mmap
• Linux’s mmap syscall activates a new 

range of  virtual addresses.
• The kernel chooses the virtual addresses.
• Why let kernel choose?
• The simpler sbrk requires heap to be in 

contiguous memory.
• Mmap with kernel-chosen location allows 

allocation to happen around shared libraries, 
stack, etc.

•Notice that the malloc implementation 
does not care if  morecore() gives 
adjacent memory.



Recap
• Freed memory is put on a free list to be reused for later allocations.
• A single header can be cleverly used and re-used for two purposes:
• As a linked list node when the block is free/available
• To store the size of the allocated block to help service free calls.

• Free space management policy determines:
• which free blocks to choose for an allocation, and
• When to coalesce (join) adjacent free blocks

• Free block choice policies include:
• First, next, best, and worst fit.


