BEECS-343 Operating Systems
Lecture 8:
Free-Space Management

Steve Tarzia

Spring 2019

Northwestern



Announcements

* Project 2 due Monday
* HW?2 1s out and due on Wednesday.
* Midterm in one week (Thursday)

* Tuesday will be a midterm review

* A Piazza post will ask for topics to cover.



Last Lecture: Swapping

* Disk 1s slow, but large, and can be used to store RAM’s overtlow

* Disks have high throughput (transfer bitrate) but high /arency (delay)
* Magnetic disks have even higher latency than SSDs, due to moving parts.

* Paging and swapping work together, using the same CPU mechanisms

* If a page 1s marked “not present” it may be either invalid or swapped to disk.
* Or it might indicate /uzy allocation, lazy loading, ot copy-on-write, as we saw last time.
* High bits of page table entry can store disk location ot swapped page.

* Page replacement policy decides which page(s) to evict to free memory
* Swapping can be done on demand or in the background
* Having some free physical frames will prevent delays for allocations.
* Accessed bit and Dirty bitin PTEs inform the page replacement policy

* Thrashing is when swapping prevents the system from doing any work.
* Unified page cache handles both traditional paging and file caching:.

* Makes filesystem access seem just as fast as memory access.



Paging overview

* Virtual memory addresses are translated to physical memory
addresses by the CPU, and the translation is dynamically contfigured by
the OS in each process’ page table.

* Swapping is the movement of pages between disk and physical mem.

* Page tables also allow several memory management optimizations:
* Copy-on-write fork — delays memory copies
* Shared libraries — read/execute-only code can be shared by several processes
* Lazy allocation/demand zeroing — wait before allocating user memory.

* Filesystem caching allows page-sized portions of files to be stored in
physical memory.



Memory management illustrations



The process’ view of memory

,LQ“

\gkoal Mewory CRW Regiders
— 7/, / e "‘XL, i]
7 = qerenet
/ ebx E ecal
K&r Y\Q«\ ;? ecx( ] | ewetese
cesesvel ;/f// edx [ _1
% esiL -~ } O\?L:Qrs
. &,“ ?bl
Eack N\ el
S § ‘\ Stack frome
| l«a"‘owf | eby| | * base pointer
Pocoss | esp C 1 Stack geinter
N
He ap Data, \ eve | ] inshracion
m““o ‘3 § gointer
Hobal Deka N

o I"-‘ILZO | reserved

|| When is memory Fitlea
N e

§ Q Lbﬂ{-"’;“_"{%

N |

N B Run—time

2 E Ne_uer

A

* Code and global data are filled by

exec syscall to load a program.

* A new frame is pushed on the
stack whenever a function is

called. (And popped on return.)
* Heap data 1s managed by malloc

How does mal LocC work?



Free-space management

Given: A single block of contiguous memory
Goals:

* Handle malloc and free requests
« void* malloc(int n): find a unused block of size n

» free(void* ptr): reclaim a block that was previously malloc-ed

* Minimize the total extent of memory required (be compact)

* Minimize the time required to malloc and free

Free-space management will also be a topic in filesystems.



Heap dynamics

* Ideally, malloc would waste no space:

O Ho16
* Actually, Stack memory looks nice and compact like above.

* But malloc 1s used for dynamic memory
* it will be freed later, at some unknown time

* Frees create vacancies in the Heap that waste space,

but can be re-allocated:
~ —

L. ~
O Hoqé
* Remember that user programs expect malloc to return a contiguous block
of (virtual) memory.

N

p\\




Grow the Heap only as a last resort

\figkoal N\u/\oq/a COW Registers * Goal is to make maximum use of
wr 7 eax 1 L the Heap range already in use.
Yeme\ {: ZE 1 ( postose * Look for a free block >= the
cesesvel ;/f edx [ ] current malloc request
k I esiC 1 } e * If none is found, then we have to
Stack § e expand the heap.
Yrsrows ‘\e\)vl SR * On xv06, malloc uses sbrk syscall to
Poos | e 1 sincke geimter tell the OS that the process’s address
Heap Data § et L cheastion range has increased and page table
(Matod) N gomter must be expanded.
Cloba Dda N * Modern OSes do not use sbrk, but
- N When s emory £illed mmap or perhaps nothing,
Codo ) W Load-tin
N B Run—time * Memory leaks cause heap to grow
o e N B e indefinitely (if you forget to free)
o L— id




Malloc in user and kernel code

* Both the kernel and user code must dynamically allocate memory
* Free space management algorithms can be the same in both cases

* But different implementations are used. In xvo6:
* User level: umalloc. c: 90 lines of code

* Basic C memory management: malloc & free
* Missing: calloc & realloc (it’s not ANSI C)

e Kernel level: KallocC. C: 72 lines of code

* xv06 lacks dynamic memory allocation in the kernel

* No malloc & free, just allocate and free a full page of memory (4kb block)

* Linux has kmalloc, kfree (like user-level malloc and free)



Free list is a linked list tracking free blocks

* Ordering is arbitrary

free used free * This example shows two free blocks
0 10 20 30 of size 10.

* Space between two free blocks can be
used by multiple mallocs

* We’ll track used blocks another way
* Like any linked list:

* It’s easy to insert and delete nodes

* Finding the n™ node is slow
e Start at the head node
* Traverse 7 pointers
* Lacks any zndexing
* Must examine every node when searching

Above 1s represented as:

addr:0
len:10

addr:20

head —» len:10

—> —» NULL



Allocate memory by spltting free blocks

Before:

addr:0
len:10

addr:20

head — len:10

—> —» NULL

After allocating one byte from the second free block:

addr:0 addr:21
head —» len-10 NULL

We just found a free block large enough for the allocation and claimed

a chunk of it. (The policy decides which block to choose.)



Coalescing eliminates artificial fragmentation

Before:

addr:20
len:10

addr:0

len:10 —» NULL

head —P —>

After freeing 10 bytes of data at address 10
(We usually add new nodes to a linked list’s head):

) addr:10 ; addr:0 addr:20 )
head len:10 len:10 len:10 NULL
After coalescing:

head —p. 29dr0 o iy

len:30

Splitting this big block
ot free space among
three small nodes

- makes it difficult to

recognize it as a large

contiguous free block




A trick to help with frees

» free(ptr) doesn’t tell us how long the block is, just where it starts
 But we need that information to free the block.

* Solution: cleverly prefix the block with a header:
Eg., malloc(20):

hptr >
size: 20

magic: 1234567

} The header used by malloc library

ptr >

The 20 bytes returned to caller

To handle free(ptr) just look at (ptr - (sizeof hptr)) to find the block size.



Heap example: step 1: initialization

* Start with an empty 4kb block of memory (4096 bytes)
* Part of the Heap is always used to store the free /ist.
* We just have a free list with one node, representing one big free block:

head >

size: 4088 header: size field

next: 0 header: next field (NULL is 0)

the rest of the 4KB chunk

. Assumin% §>

ointers are 32 bits = 4 bytes, the free list node occupies 8 bytes,
leaving 4

8 bytes free below it.



Heap example: step 2: malloc (100) ;

* The malloc implementation will traverse the free list (starting at “head”)
and find the one node that has >= 100 bytes.

* Free block had 4088 bytes
* Itis split, leaving 4088 — 100 — 8 = 3980 bytes.

* 8 bytes are reserved for the new node’s header.

Before:
head >
size: 4088
next: 0

ptr

| head

header: size field

header: next field (NULL is 0)

= the rest of the 4KB chunk

After:

size:

100

magic: 1234567

size:

3980

next:

0

The 100 bytes now allocated

The free 3980 byte chunk



After:

Heap example: step 3:

size: 100
. ic: 1234567
two more calls to malloc (100) ; magie .
. . = 100 bytes
* In each case there 1s one free block and we split.
size: 100 -
Before:
magic: 1234567
size: 100
magic: 1234567 " 100 bytes
ptr >
size: 100
= The 100 bytes still allocated magic: 1234567
head >
> size: 3980 L = 100-bytes
next: 0 head > .
size: 3764
next: 0
= The free 3980 byte chunk
The free 3764-byte chunk




Heap example: step 4: free(sptr)

Beforg: size: 100 ¢ Wheﬂ haﬂdhﬂg the Ccfree),, all wC
magic: 1234567 have iS Sptl‘ (thénge pafﬂm€t€f>
}100 bytes still allocated and bead (a glObal Vﬂflﬂbl@).

SEe— * The caller didn’t tell us how large

magic: 1234567

spr —> } a block to free, but we look back

100 bytes still allocated

(but about to be freed) fme Jpl‘?” to ﬁﬁd that Sizezl()().

size: 100

e 1294567 * To free the block, we just convert
the malloc header into a free list
node by changing the magic
number into a pointer to the
former head of the free list.

} 100-bytes still allocated

head —»

size: 3764

next: 0

The free 3764-byte chunk




Heap example:

100 bytes still allocated

sptr —»

100 bytes still allocated
(but about to be freed)

100-bytes still allocated

head —»

step 4:

Look back to
find block size

The free 3764-byte chunk

free(sptr)

Clear the
block

-
=

Create a new
free list node

... slow motion

head —»

sptr —»

100 bytes still allocated

(now a free chunk of memory)

100-bytes still allocated

III]

The free 3764-byte chunk




Heap example:

Before:

} 100 bytes still allocated

sptr —»

100 bytes still allocated
(but about to be freed)

} 100-bytes still allocated

head —»

The free 3764-byte chunk

step 4: free(sptr) ...zhe net change

After:

Actually, just two small
things changed!

} 100 bytes still allocated

head —»

sptr —»
e sptr - 4 = head
* head = sptr - 8

(now a free chunk of memory)

Our work 1s easy

because maﬂoc blOCk }100—bytes still allocated

headers are very similar
to free list nodes

} The free 3764-byte chunk




Heap example: step 5: free everything else

size: 100 size: 100
] magic: 1234567 next: 16492 | =
* This leaves a ] — oy
. . 100 bytes still allocate  free ..o (now free)
free list with R
size: 100 size: <
fOU.r Chuﬂks. oy |1 16708 next: 15;2:
® Notlce that the -t (now a free chunk of memory) . s . (now free)
free list is out of dzer 100 e T
Or der magic: 1234567 next: 16384
. I 100-bytes still allocated Dnd free . .. now free
* And it badly ] o
size: 3764 | < e _
needs to be Tk i
coalesced.

The free 3764-byte chunk
The free 3764-byte chunk




What’s up with the magic number?

-

It’s just an unusual, large numeric constant. A/ways the same numiber.

* [t allows free to detect whether the pointer it received 1s valid.

* It there is no magic number behind the pointer, then
* Free should abort and warn the user.

* Maybe the code already called free? In other words, a “double free” error.

hptr >
size: 20

The header used by malloc library
magic: 1234567

ptr >

The 20 bytes returned to caller




Intermission

Question: What could happen if you ignored the magic number and allowed a double
free to proceed?



Linked lists are just one way to track free space

* There are many alternatives, especially if you want:
* Quickly find a block of a given size
* Quuckly find neighboring blocks for coalescing

* One alternative is a bitmap:

* Divide the memory into fixed-size chunks and use a bit to indicate whether
the chunk has been allocated.

* Memory allocations would be rounded up to a multiple of the chunk size.

* Eg., “&000000001000000”
a used block a large free block

* But lists are a very common choice



Free space management policies & optimizations

* We have seen a basic malloc/free mechanism
* Glossed over some details of maintaining the linked list, but that’s trivial.

* There are still some policy decisions to make:
* Which of the free blocks do we choose for a given allocation?
* When do we coalesce?

* In other words, how do we avoid memory fragmentation?



Choosing a free block to serve an allocation:

* First fit — simple and fast:

\\w&{

R-C

N
B 4

-

r—?(\u\\

* Next fit — start looking where you left off:

\\MA—E

last

[0~

N
¥

aly

r?t\\a\\

* Best fit — try to leave the smallest remainder

* But have to search the whole list and leaves small holes (hard to reuse)

\\w&—j

—

-

alyl

r»n\\\

* Worst fit — try to leave large remainders that are easy to reuse

\\w&—j

.

RI-C

N
4

aly B

r?t\\a\\




Segregated lists (Slab memory allocator)

* Instead of keeping one list of free blocks, we can keep
different lists for small, medium, and large blocks.

* This will allow us to find the right sized block more
efficiently.

* Just keep an array of free lists (many heads)

* On free (or if splitting), add free block to the
appropriate list

2

4

8

16

32

64

128

* Many variations are possible, but this design often uses

fixed-length chunks (powers of 2).

Free block size



Warning: bad style

e xv06 codebase suffers from some code
style problems.
e [Lacks comments

* Variable names are too short: np, bp, hp,
s, b, efe. ' Why so short!?

* if/else should a/ways use {}

* goto

* Most of these are due to obsolete
habits. Computer screens used to be
small, so shorter code was favored.

* Don’t learn these bad habits!




Malloc 1n xv6

* Taken from Section 8.7 of Kernighan and Ritchie “C book”
* Free list is circular (tail points back to head instead of to null)
* Uses the “next fit” policy — head pointer changes each time

* Free list is ordered according to memory address
* This enables easy coalescing
* When freeing a block, don’t just place it at the list head:
* Scan for the correct location in the list for that address

* Check whether neighbors are directly adjacent in memory (and coalesce)

* When free list cannot serve the request, use sbrk syscall to get a
pointer to a block of new memory from the OS.



// user program's general purpose storage allocator
void* mallocQuint nbytes) {

xv6/umalloc.c

// round up allocation size to fit memory alignment (long)
uint nunits = (nbytes + sizeof(Header) - 1)/sizeof(Header) + 1;
// if there is no free list yet, set up a list with one empty block
if((prevp = freep) = 0){
base.s.ptr = freep = prevp = &base;
base.s.size = 0;
}
// scan through the free list

for(p = prevp->s.ptr; ; prevp = p, p = p->s.ptr){

typedef long Align; // for alignment to long boundary

union header { // block header // if it's big enough
struct { if(p->s.size >= nunits){
union header *ptr; // next block, if on free list // if exactly the right size, remove from the list
uint size; // size of this block (in 64-bit units) if(p->s.size = nunits){
}s; ; prevp->s.ptr = p->s.ptr;
}.Ahgn x; // force dlignment of blocks // split the free block by allocating the tail end
’ else {

. p->s.size -= nunits; // moke the free block smaller
typedef union header Header;

// Modify our copy of the free block's header "p"

// global variables: // to make it represent the newly allocated block.
static Header base; // the first free list node p += p->s.size;
static Header *freep; // start of the free list Chead) ) p->s.slze = nunits;

freep = prevp; // change the start of the free list
// to implement the "next fit" policy

return (void*)(p + 1); // allocated chunk, past the header
}
// if we looped around to list start again, no blocks are big enough
if(p = freep) {

// ask the 0S for another chunk of free memory

if((p = morecore(nunits)) = @) {

return @; // the memory allocation failed

}

}
1}



// minumum number of units to request
#define NALLOC 4096

// ask the 0S for more memory
static Header* morecore(uint nu) {
if(nu < NALLOC){ // never ask for just a tiny bit of memory
nu = NALLOC;
}
// sbrk asks the 0S to let us use more memory at the end of
// the address space and returns a pointer to the beginning
// of the new chunk
char* p = sbrk(nu * sizeof(Header));
// on failure, sbrk will return -1
if(p = (char*)-1){
return 0Q;
}

Header *hp = (Header*)p; // cast the new memory as a Header*
hp->s.size = nu; // set up the new header

free((void*)Chp + 1)); // add the new memory to the free list
return freep;

// put new block "ap" on the free list because we're done using it
void free(void *ap) {

Header *bp = (Header*)ap - 1; // the block header

// Scan through the free list looking for the right place to insert.
// Stop when we find a block p that is before the new block,
// but the new block is before p's "right neighbor"
Header *p;
for(p = freep; !(bp > p & bp < p->s.ptr); p = p->s.ptr) {
// There is a special case when the new block belongs at the start or end.
// If the scan got to the block with the highest address,
// and the new block is > the highest, or < the lowest
if(p >= p->s.ptr && (bp > p || bp < p->s.ptr)) {
break; // block is at the start or end of the range
}
}
// p will become the new block's "left neighbor" so insert after it,
// but first check whether to coalesce.

// if the end of the new block touches the right neighbor, coalesce-right
if(bp + bp->s.size = p->s.ptr){
bp->s.size += p->s.ptr->s.size; // add the size of the right neighbor
bp->s.ptr = p->s.ptr->s.ptr; // point to the neighbor's neighbor
}
// if there is a gap to the right, just point to the right neighbor
else bp->s.ptr = p->s.ptr;

// if the end of left neighbor touches the new block's start, coalesce-left
if(p + p->s.size = bp){
p->s.size += bp->s.size; // add the new block's size to the left neighbor
p->s.ptr = bp->s.ptr; // make the left neighbor point to the right neighbor
}
// if there is a gap to the left, the left neighbor points to the new block
else p->s.ptr = bp;

freep = p; // change the start of the free list, for "next fit" policy



Malloc with mmap

* Linux’s mmap syscall activates a new
range of virtual addresses.

* The kernel chooses the virtual addresses.
* Why let kernel choose?

* The simpler sbrk requires heap to be in
contiguous memoty.

* Mmap with kernel-chosen location allows
allocation to happen around shared libraries,
stack, etc.

* Notice that the malloc implementation
does not care if morecore () gives

ad]aceﬂt memorY’ 0x08048000 (32)
0x00400000 (64)

Kernel virtual memory

User stack
(created at run time)

Memory mapped region for
shared libraries

Run-time heap
(created at run time by malloc)

Read/write data

Read-only code and data

Memory
invisible to
user code

printf function

Loaded from the
hello executable file




Recap

* Freed memory 1s put on a free list to be reused for later allocations.

* A single header can be cleverly used and re-used for two purposes:
* As a linked list node when the block is free/available
* To store the size of the allocated block to help service free calls.

* Free space management policy determines:
* which free blocks to choose for an allocation, and
* When to coalesce (join) adjacent free blocks

* Free block choice policies include:
* First, next, best, and worst fit.



