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Announcements
• Project 2 due Monday
• It’s much more difficult than Project 1!

•Midterm exam next Thursday, May 2nd



Last Lecture: VM & Paging optimizations
• Latency cost, because each memory access must be translated.
• Translation lookaside buffer (TLB) caches recent virtual to physical page 

number translations.
• Software-controlled paging removes page tables from the CPU spec and lets 

OS handle translations in software, in response to TLB miss exceptions.
• Space cost, due to storing a page table for each process.
• Linear (one-level) page tables are large.
• Smaller pages lead to less wasted space during allocation,

but more space is consumed by page tables.
• Multi-level page tables are the only way to truly conserve space.
• Mixed-size pages reduce TLB misses.

• Copy-on-write fork, demand zeroing, lazy loading, and library sharing 
all reduce physical memory demands.



Motivation for swapping
• Paging allows many processes to share the same physical memory
• Each process has a large virtual address space
• Programs aren’t really aware of  how much RAM is in the system
• This is very convenient to the programmer, but actually RAM space is limited!

•When physical RAM is fully consumed, OS must somehow react:
• Option 1: Give up and kill the memory-hog process(es)
• Option 2: Free some physical memory by temporarily moving pages to disk
• Disk is large (~100x RAM size), but very slow.
• Hopefully, some of  the memory used by processes is infrequently used.

• Swapping is temporarily moving memory pages to disk



Computer storage hierarchy

•Disk is about 100 times larger than RAM,
but has about 10,000 times higher latency (delay)
if  magnetic, or 1000 times higher latency if  SSD.
• As always,
• Goal is to work as much as possible in the top levels.
• Large, rarely-needed data is stored at the bottom level

delay capacity
0.3ns CPU Registers 1 kB (kilobyte)

5ns CPU Caches (L2) 16 MB
50ns Random Access Memory (RAM) 16 GB

100µs Flash Storage (SSD) 1 TB
5ms Magnetic Disk 8 TB

Larger, but slow
er



Swapped pages are stored on disk
•On Linux, swap space is a special (optional) disk partition
• Allocated when you install the OS
• This part of  the disk is only used for swapping, never for regular files
• Its formatting is optimized for storing page-sized chunks of  data

•On Windows, swap space is in a hidden file called pagefile.sys
• Allows swap space to grow and shrink on demand, sharing space with the 

main filesystem.
• Compared to Linux’s strategy it’s more flexible, but slower.

• SSDs are better than magnetic disks for swap space, because of much
lower latency (relatively little space is needed for swapping).



A simple swapping example
• Process’s memory pages are distributed between RAM and disk:

• Processes 0, 1, & 2 are partially in RAM
• Process 3 is entirely in Swap Space
• System’s total memory is effectively tripled (12 pages instead of  4)
• But, swapped memory cannot be used by the CPU.  It’s in deep storage.
• A page fault exception and some kernel action will be needed to retrieve it.



Swapping Mechanics

To swap a page to disk:
• Set the PTE present bit to zero
• To distinguish from an invalid page,

also store the disk address of  the 
page in a kernel data structure.
• We can actually store the disk address 

in the high bits of  the PTE!
• The top 31 bits can be used

• Copy the page to the disk location



Page faults occur when PTE is marked “not present”
If  CPU sees a present bit set to zero when doing a virtual address translation, it:
• sets the %CR2 register to the offending virtual address
• generates a page fault exception #14

OS handles the page fault interrupts in two possible ways:
• Option 1: if  process made an invalid memory access
• Read an invalid (or privileged) address or wrote a read-only page.
• Kill the process and report “segmentation fault” to the user

• Option 2: if  page was swapped out by the OS
• Program didn’t do anything wrong, it was just unlucky (or a memory hog)
• Have to swap in the page and retry the last instruction

• How to distinguish these two cases?  Interrupt handler checks the high bits of  PTE:
• OS can choose to store all zeros for invalid pages vs disk location for swapped pages.



Swapping in
• If  swap space is being used, that means that RAM is in short supply
• Probably have to evict a page to make room for the demanded page.
• Page replacement policy determines which page to evict
• Recall that disk read/write is very slow, so we should chose wisely.
• Goal is to minimize future page faults by evicting an unpopular page
• Evicted page can live happily on disk while it is unused



Magnetic disk demo
•Don’t try this at home:
• https://www.youtube.com/watch?v=3owqvmMf6No

https://www.youtube.com/watch?v=3owqvmMf6No


Throughput versus Latency
• There are two very different metrics for measuring I/O “speed”
• Throughput is bytes per second
• Latency is the delay before the action starts

• Latency is always higher for large, distant storage devices
• Magnetic disk > SSD > RAM > L3 cache > L2 > L1 > Registers
• At best, speed of  light limits information transfer to 30cm/ns
• Disk latency includes mechanical rotation and seek

•However, throughput can be increased using parallelization
• A small I/O to disk is just as slow as a larger one
• So, we try to batch I/O requests together.



A Postal analogy

• Letter represents as small disk I/O
• Package represents a big disk I/O
• A small letter and a big package both 

take the same time to reach Los Angeles.
• Latency is identical

•However, the big package transfers more 
info at once.
• Package is a batched transfer
• Package throughput is higher



When to swap?
•Demand swapping – swap pages in response to page faults
• The simplest approach
• For efficiency, the swap would happen asynchronously:
• Interrupt handler should be fast – just start the disk I/O and block the process to let 

another process run.

• Background swapping – swap pages preemptively
• A swap daemon (background process) periodically runs (like the scheduler)
• If  # free physical frames < “low water mark,” evict some pages until the 

quantity reaches the “high water mark”
• The system will swap many pages at once to get from the low to high level.
• We do this because writing a large block to disk is more efficient (batched transfer)



Background swapping
• Avoids long, unexpected delays in allocating memory
• Also reduces page fault latency because there is no need to evict a page 

prior to swapping in.
• Can be scheduled with low priority
• Takes advantage of  idle time to prepare future work
• Linux swap daemon is a process called kswapd

•Note: swapping is sometimes called “paging,” so the background 
process can be called a “page daemon.”



Page faults enable lazy allocation and lazy loading
• In practice, paging is not just used to handle memory overflow
• Paging provides an opportunity to be lazy about loading requested data
• This is an important performance optimization, reducing program start time

• If  a process uses sbrk or mmap to request a huge chunk of  memory, 
maybe it will not use all that memory immediately (or ever!).
• Programmers and compilers are sometimes greedy in their requests
• We can virtually allocate memory, but mark most of  the pages “not present”
• Let the CPU raise an exception when the memory is really used
• Then really allocate the demanded page

• Lazy loading also works for large code binaries
• Delay loading a page of  instructions until it’s needed



Speaking of  laziness – break time!



Page Replacement Policies
• Same idea as the Translation Lookaside Buffer (TLB) in last lecture
• Again memory access either hit or miss.  (Miss triggers a slow swap-in)

•When time comes to evict a page, we want to choose one that will not 
be used again soon, and we use recent history to predict the future
• Page faults are more costly than TLB misses, so we can afford to spend 

some time and energy implementing a sophisticated good policy.

•Definition: memory pressure is high demand for memory



Page replacement policy – problem definition
Given:
• A small number of  page frames
• A larger number of  virtual pages
• A sequence of  memory accesses (a sequence of  virtual page demands)
Choose:
• An mapping of  VPs to PFs at each time step (page table config.)
Such that:
•No two VPs are mapped to the same PF at the same time
•Demanded virtual page at each time step is mapped to a physical page
•We minimize changes in the mapping over time. (Minimize swaps.)



Optimal page replacement policy

• Replace page that will be accessed 
furthest in the future
• This makes sense because it will 

evict rarely-used pages
•However, it’s not practical because 

we can’t observe the future
• But it’s useful to construct simulations 

comparing real policies to the optimal 
policy – a performance upper-bound.

•Notice that even an optimal policy 
has misses due to cold-start and 
capacity.



Least Recently Used (LRU) approximates optimal

• Evict the LRU virtual page
• Assuming temporal and spatial 

locality, future memory accesses 
should be similar to past 
accesses.



LRU suffers from “corner case” behaviors
• Certain access patterns can cause LRU to make the wrong prediction 

every time.
• Imagine a system with 3 page frames and the following access pattern:
• Virtual pages:   1, 2, 3, 4,   1, 2, 3, 4,   1, 2, 3, 4, …
• In this case the LRU page is exactly the one we’re going to use next!
• Every access would be a miss.
• The problem is that LRU’s “remembers” only the past 3 accesses,

but the repetition happens on a longer time scale (4).

• Random eviction policy avoids this “worst case” behavior
• Simple to implement
• But performs worse that LRU on many workloads



OS performance analysis
• As we have seen, no one OS policy works best for every program.
•When testing an OS (or any complex software system),

must choose a sample workload:
• A workload (sometimes called a benchmark) is a repeatable execution scenario 

that is meant to mimic a variety of  realistic use patterns.
• Every program is written differently
• Every user places different demands on those programs

• Any performance evaluation is just an experiment in conditions that 
should be designed to answer a particular question.



Some page replacement experiments (varying RAM size)

RAM



How to implement LRU
• So far, OS has no way of  knowing which pages were used recently
• The CPU hardware provides some additional features to help the OS
• x86 sets an accessed bit in PTE if  a page is read/written
• additionally sets dirty bit if  page has been written

• Clock algorithm:
• OS evicts the first page it sees having

accessed = 0.
• If  it sees accessed = 1,

reset the bit and move on to next page. 
• Start looking where you left off  last time,

using a circular linked list of  pages.



Keeping your hands clean
• Read-only pages are good candidates for eviction because we can 

simply throw out the page (without writing to disk).
• This assumes that the OS is being clever about tracking the source of  pages.

• For  example:
• Instructions from a code binary can be be re-read from the filesystem.
• A data page can be duplicated in both swap space and in memory
• If  the in-memory copy was never written, it can be evicted without re-writing it to disk.

•Dirty bit allows OS to recognize data pages that have been changed 
and thus are inconsistent with the copy on disk.
• In other words, the eviction policy should not touch the dirty pages.



Thrashing
• Thrashing is a condition where swapping happens constantly
• This is due to processes simply using way too much memory.
• Swapping is very slow, so all programs are essentially frozen

• Linux top command lets you see the page fault count per process to 
detect thrashing.
•When thrashing, it’s usually a good idea to kill some processes.
• Better to do one thing well than to do many things very poorly



Approximating LRU for page replacement
• Clock algorithm is one option:
• Basically, just scan through pages until we find one with accessed bit = 0.
• Not truly LRU, but will find a page that was not recently used.

•What if  our CPU architecture doesn’t set an accessed bit (like VAX)?
• Emulate an accessed bit using the present bit and page faults.
• Set present bit = 0 but leave page in physical memory and leave address in PTE.
• Set one of  the OS-reserved bits in the PTE to recognize that the page is given a 

second chance.
• If  we see a page fault then the page was read, set present = 1 (no need for I/O)

• The above is called the Second chance algorithm:
• Pretend page was evicted, but just test to see if  it will be accessed again



Disk buffering and filesystem caching

• Swapping gives the illusion that RAM is as big as the disk.
• Similarly, filesystem caching gives the illusion that disk is as fast as 

RAM.
• Programs explicitly access three kinds of  storage:

(1) registers (2) memory (3) files
• File I/O can be a significant performance bottleneck:
• A bottleneck is the one slow component that limits performance

• Filesystem caching:
• To improve performance, OS stores most recently used “pages”

of  disk in RAM (physical page frames).



top also reports filesystem cache size

• buffers and cached both 
represent file data that is 
being stored in memory for 
improved performance
• There is a slight difference 

between the two, but it’s not 
important.

• This machine has lots of  
RAM (128GB)
• The majority of  RAM is now 

being used to cache files 
(~83GB)



Unified Page Cache
• In modern OSes, the page replacement policy simultaneously considers

placement of  both VM pages and disk blocks in physical RAM.
• May choose to evict either a VM page or a cached disk block.
• Eventually, disk blocks are really written to the disk (flushed).
• Certainly when the page is evicted, but may also be flushed earlier to make sure the file 

data is not lost if  the machine crashes or loses power.

• A VM page is either:
• file-backed if  it can be reloaded from a file (code)
• We can discard this page if  evicting

• anonymous if  it is memory that was created by a process
• Must save page to swap space if  evicting



Programmer’s view OS’s view Reality …
Hardware has further 
optimizations which 
the OS cannot see:
• CPU places most 

recently accessed 
RAM in L3, L2, and 
L1 caches.
• Disks have caches 

of  ~128 Mb.
• Hybrid disks

migrate data 
between flash and 
magnetic platters.



The benefits filesystem caching
Filesystem caching allows programmers to focus on functionality rather 
than performance.
•Write data to disk if  it needs to be persistent.
•Don’t worry about disk speed, OS will somehow make it seem fast.
• Actually, accessing a file can be almost as fast as a register if  the disk 

block is stored in an L1 cache.
• Although there will be some overhead for the file read/write syscall

• A great example of  why intelligent OSes are important!



Recap
• Disk is slow, but large, and can be used to store RAM’s overflow
• Disks have high throughput (transfer bitrate) but high latency (delay)
• Magnetic disks have even higher latency than SSDs, due to moving parts.

• Paging and swapping work together, using the same CPU mechanisms
• If  a page is marked “not present” it may be either invalid or swapped to disk.

• Or it might indicate lazy allocation, lazy loading, or copy-on-write, as we saw last time.
• High bits of  page table entry can store disk location of  swapped page.

• Page replacement policy decides which page(s) to evict to free memory
• Swapping can be done on demand or in the background
• Having some free physical frames will prevent delays for allocations.
• Accessed bit and Dirty bit in PTEs inform the page replacement policy

• Thrashing is when swapping prevents the system from doing any work.
• Unified page cache handles both traditional paging and file caching.
• Makes filesystem access seem just as fast as memory access.


