BEECS-343 Operating Systems
Lecture /:

Swapping

Steve Tarzia

Spring 2019

Northwestern

Announcements

* Project 2 due Monday

* It’s much more difficult than Project 1!

* Midterm exam next Thursday, May 224

Last Lecture: VM & Paging optimizations

* Latency cost, because each memory access must be translated.

* Translation lookaside buffer (TLB) caches recent virtual to physical page
number translations.

* Softwate-controlled paging removes page tables from the CPU spec and lets
OS handle translations in software, in response to TLB miss exceptions.
* Space cost, due to storing a page table for each process.
* Linear (one-level) page tables are large.

* Smaller pages lead to less wasted space during allocation,
but more space 1s consumed by page tables.

* Multi-level page tables are the only way to truly conserve space.
* Mixed-size pages reduce TLB misses.

* Copy-on-write fork, demand zeroing, lazy loading, and library sharing
all reduce physical memory demands.

Motivation tor swapping

* Paging allows many processes to share the same physical memory

* Each process has a large virtual address space

* Programs aren’t really aware of how much RAM is in the system

* This 1s very convenient to the programmer, but actually RAM space is limited!
* When physical RAM i1s fully consumed, OS must somehow react:
* Option I Give up and kill the memory-hog process(es)

* Option 2: Free some physical memory by temporarily moving pages to disk
* Disk 1s large (~100x RAM size), but very slow.

* Hopetully, some of the memory used by processes is infrequently used.

* Swapping is temporarily moving memory pages to disk

Computer storage hierarchy

delay capacity
Ug 0.3ns CPU Registers 1 kB (kilobyte)
A 5ns CPU Caches (L.2) 16 MB
g 50ns | Random Access Memory (RAM) | 16 GB
? 100us Flash Storage (SSD) 1TB
%
- 5ms Magnetic Disk 8 TB

* Disk is about 100 times larger than RAM,
but has about 10,000 times higher latency (delay)
it magnetic, or 1000 times higher latency if SSD.

* As always,
* Goal is to work as much as possible in the top levels.
* Large, rarely-needed data is stored at the bottom level

Swapped pages are stored on disk

* On Linux, swap space is a special (optional) disk partition
* Allocated when you install the OS
* This part of the disk is only used for swapping, never for regular files
* Its formatting is optimized for storing page-sized chunks of data

* On Windows, swap space 1s in a hidden file called pagefile.sys

* Allows swap space to grow and shrink on demand, sharing space with the
main filesystem.

* Compared to Linux’s strategy it’s more flexible, but slower.

* SSDs are better than magnetic disks for swap space, because of much
lower latency (relatively little space is needed for swapping).

A simple swapping example

* Process’s memory pages are distributed between RAM and disk:

PFNO PFN1 __PFN2 PFN3

Physical | Proc0O | Proc 1 | Proc 1
Memory | [VPNO] | [VPN2] | [VPN 3]

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7

Swap | ProcO | Proc O Proc1 | Proc 1 E{elok; Proc 3
Space | [VPN1] | [vPN2] | [Free] | (vpNo] | [vPN 1] NGENEY [VPN 1]

* Processes 0, 1, & 2 are partially in RAM
* Process 3 1s entirely in Swap Space
* System’s total memory is ettectively tripled (12 pages instead of 4)

* But, swapped memory cannot be used by the CPU. 1It’s in deep storage.
* A page fault exception and some kernel action will be needed to retrieve it.

Swapping Mechanics

To swap a page to disk:

Page-Table Entry (4-KByte Page)

* Set the PTE present bit to zero 31 1211 9876543210
PIP|URf 1
. Page Base Address Avail. |G|o|D[A|C|W|/]|/ EP:
* To distinguish from an invalid page, OlTls1%
also Store the dlf/é ﬂddVeJ‘.f Of th€ Available for system programmer’s use—l ‘
. Global page
page in a kernel data structure. Reservd (et o0
|
* We can actually store the disk address é‘;;ffjﬁgabled
in the high bits of the PTE! User/Snanisor
. Read/Write
* The top 31 bits can be used Present

* Copy the page to the disk location

Page faults occur when PTE 1s marked “not present”

If CPU sees a present bit set to zero when doing a virtual address translation, it:
* sets the %CR2 register to the offending virtual address
* generates a page fault exception #14

OS handles the page fault interrupts in two possible ways:

* Option I: 1t process made an invalid memory access
* Read an invalid (or privileged) address or wrote a read-only page.
* Kill the process and report “segmentation fault” to the user

* Option 2: it page was swapped out by the OS
* Program didn’t do anything wrong, it was just unlucky (or a memory hog)
* Have to swap in the page and retry the last instruction

* How to distinguish these two cases? Interrupt handler checks the high bits of PTE:
* OS can choose to store all zeros for invalid pages vs disk location for swapped pages.

Swapping in

* If swap space is being used, that means that RAM is in short supply
* Probably have to evicra page to make room for the demanded page.

* Page replacement policy determines which page to evict
* Recall that disk read/write is very slow, so we should chose wisely.
* Goal is to minimize future page faults by evicting an unpopular page
* BEvicted page can live happily on disk while it 1s unused

Magnetic disk demo

* Don’t try this at home:

* https://www.youtube.com/watch?v=3owqvmM{6No

https://www.youtube.com/watch?v=3owqvmMf6No

Throughputversus Latency

* There are two very different metrics for measuring [/O “speed”
* Throughputis bytes per second
* Latencyis the delay before the action starts

* Latency 1s always higher for large, distant storage devices
* Magnetic disk > SSD > RAM > L3 cache > .2 > .1 > Registers

* At best, speed of light limits information transfer to 30cm/ns
* Disk latency includes mechanical rotation and seek

* However, throughput can be increased using parallelization

* A small I/O to disk is just as slow as a larger one
* So, we try to batch I/O requests together.

A Postal analogy
* Letter represents as small disk 1 /O — L ?gﬁ;ﬁ'&%ﬁ:ﬁw Ave.,

* Package represents a big disk 1/O
* A small letter and a big package both

take the same time to reach Los Angeles.
* Latency is identical

* However, the big package transfers more
info at once.

* Package is a batched transfer
* Package throughput is higher

When to swap?

* Demand swapping — swap pages in response to page taults
* The simplest approach

* For etficiency, the swap would happen asynchronously:
* Interrupt handler should be fast — just start the disk I/O and block the process to let

another process run.
* Background swapping — swap pages preemptively
* A swap daemon (background process) periodically runs (like the scheduler)

* If # free physical frames < “low water mark,” evict some pages until the
quantity reaches the “high water mark”™
* The system will swap many pages at once to get from the /ow to high level.
* We do this because writing a /arge block to disk is more efficient (batched transfer)

Background swapping

* Avolds long, unexpected delays in allocating memory

* Also reduces page tfault latency because there 1s no need to evict a page
prior to swapping in.

* Can be scheduled with low priority
* Takes advantage of idle time to prepare future work

* Linux swap daemon is a process called kswapd

* Note: swapping is sometimes called “paging,” so the background
process can be called a “page daemon.”

Page faults enable lazy allocation and lazy loading

* In practice, paging is not just used to handle memory overtlow
* Paging provides an opportunity to be lazy about loading requested data
* This 1s an important performance optimization, reducing progran: start time

* It a process uses sbrk or mmap to request a huge chunk of memory,
maybe 1t will not use all that memory immediately (or ever!).
* Programmers and compilers are sometimes greedy in their requests
* We can virtually allocate memory, but mark most of the pages “not present”
* Let the CPU raise an exception when the memory is really used
* Then really allocate the demanded page

* Lazy loading also works for large code binaries
* Delay loading a page of instructions until it’s needed

Speaking of laziness — break timel

Page Replacement Policies

* Same idea as the Translation L.ookaside Buffer (TLLB) in last lecture

* Again memory access either A7t or miss. (Miss triggers a slow swap-in)

* When time comes to evict a page, we want to choose one that will not
be used again soon, and we use recent history to predict the future

* Page faults are more costly than TLB misses, so we can afford to spend
some time and energy implementing a sophisticated good policy.

* Definition: memory pressure is high demand for memory

Page replacement policy — problem definition

Given:

* A small number of page frames

* A larger number of virtual pages

* A sequence of memory accesses (a sequence of virtual page demands)
Choose:

* An mapping of VPs to PFs at each time step (page table config.)
Such that:

* No two VPs are mapped to the same PF at the same time

* Demanded virtual page at each time step is mapped to a physical page

* We minimize changes in the mapping over time. (Minimize swaps.)

Optimal page replacement policy

* Replace page that will be accessed
furthest in the future

* This makes sense because it will
evict rarely-used pages

* However, it’s not practical because
we can’t observe the future

 But it’s useful to construct simulations
comparing real policies to the optimal

policy — a performance upper-bound.

* Notice that even an optimal policy
has misses due to cold-start and
capacity.

Resulting

Access Hit/Miss? Evict Cache State

= N= QO WL ODN~=O

Table 22.1:

Miss 0
Miss 0,1
Miss 0,1,2
Hit 0,1,2
Hit 0,1,2
Miss 2 0,1,3
Hit 0,1,3
Hit 0,1,3
Hit 0,1,3
Miss 3 0,1,2
Hit 0,1,2

~
~

Tracing the Optimal Policy

Least Recently Used (ILRU) approximates optimal

* Evict the LRU virtual page

* Assuming temporal and spatial
locality, future memory accesses
should be similar to past
accesses.

Resulting
Access Hit/Miss? Evict Cache State
0 Miss LRU— 0
1 Miss LRU— 0,1
2 Miss LRU—- 0,1,2
0 Hit LRU— 1,2,0
1 Hit LRU— 2,0,1
3 Miss 2 LRU— 0,1,3
0 Hit LRU— 1,3,0
3 Hit LRU— 1,0,3
1 Hit LRU— 0,3,1
2 Miss 0 LRU— 3,1,2
1 Hit LRU— 3,2,1

~
~

Table 22.4: Tracing the LRU Policy

LLRU suffers from “corner case’” behaviors

* Certain access patterns can cause LRU to make the wrong prediction
every time.

* Imagine a system with 3 page frames and the following access pattern:
* Virtual pages: 1,2,3,4, 1,2,3,4, 1,2,3,4, ...
* In this case the LRU page is exactly the one we’re going to use next!
* Every access would be a miss.

* The problem 1s that LRU’s “remembers” only the past 3 accesses,
but the repetition happens on a longer time scale (4).

* Random eviction policy avoids this “worst case” behavior
* Simple to implement

* But performs worse that LRU on many workloads

OS performance analysis

* As we have seen, no one OS policy works best for every program.

* When testing an OS (or any complex software system),
must choose a sample workload:

* A workload (sometimes called a benchmark) is a repeatable execution scenario
that is meant to mimic a variety of realistic use patterns.

* Every program 1s written differently
* Every user places different demands on those programs

* Any performance evaluation is just an experiment in conditions that
should be designed to answer a particular question.

Some page replacement experiments (varying RAM size)

The 80-20 Workload

100% -

80% -

60% -

Q
©
o
L 40%-
- OPT
20% - LRU
X FIFO
| — RAND
0% I L] L]]] 1
0 20 40 60 80 100

Cache Size (Blocks) <«

Figure 22.3: The 80-20 Workload

The Looping-Sequential Workload

100% -
80% -
o 60%-
©
o
T 40%-
= OPT
20% - LRU
X FIFO
— RAND
0% - : . '
0 20 40 60 80 100
RAM — Cache Size (Blocks)

Figure 22.4: The Looping Workload

How to implement LRU

* So far, OS has no way of knowing which pages were used recently

* The CPU hardware provides some additional features to help the OS
* x86 sets an accessed bit in PTE if a page is read/written
* additionally sets dirty bit if page has been written

* Clock algorithmn:

Page-Table Entry (4-KByte Page)

* OS evicts the first page it sees having - L L PR
— Page Base Address Avail. |G|oiD|AdC|W|/|/]|P
accessed = 0. 7|35 7]s]v
° If 1t sees ﬂCCCSSCd — 1) Available for system programmer’s useJ ‘
reset the bit and move on to next page. Resaniad 5ot 0 0)
. . :Dirty ;
* Start looking where you left off last time, ‘assssso:
. . . . Cache disabled
using a circular linked list of pages. Wite-through
User/Supervisor
Read/Write
Present

Keeping your hands clean

* Read-only pages are good candidates for eviction because we can
simply throw out the page (without writing to disk).
* This assumes that the OS 1s being clever about tracking the source of pages.
* For example:

* Instructions from a code binary can be be re-read from the filesystem.
* A data page can be duplicated in both swap space and in memory

* If the in-memory copy was never written, it can be evicted without re-writing it to disk.

* Dirty bit allows OS to recognize data pages that have been changed
and thus are inconsistent with the copy on disk.

* In other words, the eviction policy should not touch the dirty pages.

Thrashing

* Thrashing 1s a condition where swapping happens constantly
* This 1s due to processes simply using way too much memory.
* Swapping is very slow, so all programs are essentially frozen

* Linux top command lets you see the page fault count per process to
detect thrashing.

* When thrashing, it’s usually a good idea to kill some processes.
* Better to do one thing well than to do many things very pootly

Approximating LRU for page replacement

* Clock algorithm 1s one option:

* Basically, just scan through pages until we find one with accessed bit = 0.
* Not truly LRU, but will find a page that was noz recently used.

* What if our CPU architecture doesn’t set an accessed bit (like VAX)?
* Emulate an accessed bit using the present bit and page faults.

* Set present bit = 0 but leave page in physical memory and leave address in PTE.

* Set one of the OS-reserved bits in the PTE to recognize that the page is given a
second chance.

* If we see a page fault then the page was read, set present = 1 (no need for 1/O)
* The above is called the Second chance algorithm:

* Pretend page was evicted, but just test to see if it will be accessed again

Disk butfering and filesystem caching

* Swapping gives the illusion that RAM is as big as the disk.

* Similarly, filesystem caching gives the illusion that disk 1s as fast as
RAM.

* Programs explicitly access three kinds of storage:
(1) registers (2) memory (3) tiles '
* File I/O can be a significant performance bottleneck: ‘ |

* A bottleneck is the one slow component that limits performance

* Filesystem caching:

* To improve performance, OS stores most recently used “pages”

of disk in RAM (physical page frames).

top also reports filesystem cache size

top - 10:25:45 up 7 days, 48 min, 3 users, load average: 0.04, 0.06, 0.09

Tasks: 650 total, 1 running, 649 sleeping, @ stopped, @ zombie
Cpu(s): 0.0%us, 0.0%sy, 0.0%ni, 99.9%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 132144848k total, 129331984k used, 2812864k free, 37895660k buffers'

Swap: 16383996k total, 436k used, 16383560k free, :45074412k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

9213 mysql 20 0 1263m 156m 14m S 0.0 0.1 3:57.24 mysqld
10001 root 20 0 5748m 219m 14m S 0.3 0.2 15:02.22 dsm_om_connsvcd
9382 root 20 O 337m 18m 11m S 0.0 0.0 0:10.67 httpd
8304 apache 20 O 352m 19m 10m S 0.0 0.0 0:00.29 httpd
8302 apache 20 O 339m 14m 7144 S 0.0 0.0 0:00.16 httpd
8298 apache 20 O 339m 14m 7140 S 0.0 0.0 0:00.12 httpd
8299 apache 20 O 339m 14m 7136 S 0.0 0.0 0:00.17 httpd
8303 apache 20 O 339m 14m 7136 S 0.0 0.0 0:00.17 httpd
8300 apache 20 O 339m 14m 7120 S 0.0 0.0 0:00.13 httpd
8301 apache 20 O 339m 14m 7120 S 0.0 0.0 0:00.16 httpd
8305 apache 20 0 339m 14m 7112 S 0.0 0.0 0:00.13 httpd
1386 apache 20 O 339m 14m 7096 S 0.0 0.0 0:00.06 httpd
1387 apache 20 O 339m 14m 7084 S 0.0 0.0 0:00.07 httpd
1122 sptl75 20 O 25Im 14m 6484 S 0.0 0.0 0:00.26 emacs

0.0 0.0 0:

0.3 0.0 9:

0.0 0.0 0

0.0 0.0 0:

0.0 0.0 3:

0.0 0.0 0:

0.0 0.0 0:

0.0 0.0 0:

88858§£888888888888

2615 root 20 0 9299% 6200 4816 S .93 NetworkManager
9865 root 20 0 1043m 23m 4680 S .98 dsm_sa_datamgrd
8737 postgres 20 @ 219m 5380 4588 S .00 postmaster

2786 haldaemo 20 @ 45448 5528 4320 S .99 hald

9956 root 20 O 491m 7268 3280 S .30 dsm_sa_snmpd
990 root 20 O 103m 4188 3172 S .01 sshd

1014 root 20 O 103m 4196 3172 S .02 sshd

19701 root 20 O 103m 4244 3172 S .01 sshd

* buffers and cached both
represent file data that 1s
being stored in memory for
improved performance

* There 1s a slight difference
between the two, but it’s not
important.

* This machine has lots of
RAM (128GB)

* The majority of RAM is now

being used to cache files
(~83GB)

Unified Page Cache

* In modern OSes, the page replacement policy simultaneously considers
placement of both VM pages and disk blocks in physical RAM.
* May choose to evict either a VM page or a cached disk block.
* Eventually, disk blocks are really written to the disk (flushed).

* Certainly when the page is evicted, but may also be flushed earlier to make sure the file
data is not lost 1f the machine crashes or loses power.

* A VM page 1s either:
* file-backed if it can be reloaded from a file (code)

* We can discard this page if evicting
* anonymous if 1t i1s memory that was created by a process

* Must save page to swap space 1f evicting

Programmer’s view

CPWU
Re,g'\S’N"S 0/0 eoX
|
QD'D % eb)(
Nick. Mem,
oV
Q\M\'\
¢oP
— |
Dfsk

Syscalls:
- open
+ read
<« Whie

OS’s view

Rer- Pcocess (oQres o\\' Reg',skc([y

e\ Q2 N
Lo [os) - oo

Ackve M £ Digk pe9es in RM"\

2
©

S\
_—‘5"\" m—

=)

£ile 2

feee

/

D
et

Eerne\

Dve_r(:\w\

wges 4 Lles on disk

Reality ...

Hardware has further
optimizations which
the OS cannot see:

* CPU places most

recently accessed
RAM in L3, 1.2, and
L1 caches.

e Disks have caches
of ~128 Mb.

* Hybrid disks
migrate data
between flash and
magnetic platters.

The benefits filesystem caching

Filesystem caching allows programmers to focus on tunctionality rather
than performance.

* Write data to disk if it needs to be persistent.

* Don’t worry about disk speed, OS will somehow make it seem fast.

* Actually, accessing a file can be almost as fast as a register if the disk
block is stored in an .1 cache.

* Although there will be some overhead for the file read/write syscall

* A great example of why intelligent OSes are important!

Recap

* Disk 1s slow, but large, and can be used to store RAM’s overtlow

* Disks have high throughput (transfer bitrate) but high /arency (delay)
* Magnetic disks have even higher latency than SSDs, due to moving parts.

* Paging and swapping work together, using the same CPU mechanisms

* If a page 1s marked “not present” it may be either invalid or swapped to disk.
* Or it might indicate /uzy allocation, lazy loading, ot copy-on-write, as we saw last time.
* High bits of page table entry can store disk location ot swapped page.

* Page replacement policy decides which page(s) to evict to free memory
* Swapping can be done on demand or in the background
* Having some free physical frames will prevent delays for allocations.
* Accessed bit and Dirty bitin PTEs inform the page replacement policy

* Thrashing is when swapping prevents the system from doing any work.
* Unified page cache handles both traditional paging and file caching:.

* Makes filesystem access seem just as fast as memory access.

