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Announcements
•HW 1 due Monday
• Project 2 due the following Monday
• It’s much more difficult than Project 1!

•Midterm exam in two weeks (Thurs. May 2nd).

• Physical memory management for Project 2.2:
• Free physical memory pages in xv6 is managed with a circular linked list.
• Each free physical page stores a pointer to another free physical page.
• kalloc() removes one physical page from the free list.
• kfree() returns a physical page to the free list.
• We’ll talk more about free lists next week.



Last Lecture: Virtual Memory
•Memory is divided into equal-sized pages.
• Page tables translate virtual page numbers to physical page numbers.
• Showed the details of  page table entries (PTEs):
• High bits translate from virtual page number to physical page number.
• Low bits in the PTE are used to indicate present/rw/kernel page.

•During a context switch, kernel changes the %CR3 register to switch 
from the page table (VM mapping) of  one process to another.
• VM is handled by both the OS and CPU:
• OS sets up the page tables and handles exceptions (page faults).
• CPU automatically translates every memory access in the program from 

virtual addresses to physical addresses by checking (walking) the page table.



Paging costs
1. Latency
• Every memory access now requires an additional read to get the physical 

page number from the page table
• RAM access is slow (~50ns), so this is very bad!

2. Space
• Each process must have a page table mapping the entire address range
• On a 32-bit system linear page tables would consume 4MB of  mem per process
• Assuming 4kb pages, and 32-bit addresses (4GB of  virtual memory)

we require one million PTEs.  Each PTE is 4 bytes.
• On a 64-bit system this would be much, much worse



Translation lookaside buffer (TLB)
• TLB is the solution to our paging latency problems
• TLB caches recently used PTEs
• In other words, it’s a small fraction of  the current page table that is stored on-

chip, in fast memory.
• Usually “fully associative”

• Caches are common in computer systems
• A cache is a record of  recent transactions that allows you to skip repeated 

requests
• Eg., a web browser caches all your HTTP GET requests so that you don’t 

have to reload repeated images, like logos, menus, etc.



Why does a TLB help?
• Because programs don’t access random addresses
•We’re likely to need the same translations in the future
• Temporal locality – programs reuse the exact same memory addresses
• Spatial locality – programs typically will access memory near recently-

used memory.  For example:
• Looping through an array (each access is adjacent to the last one)
• A function’s local variables and parameters are on the same stack frame.
• Code has to be read from memory, and these are contiguous until a 

branch/jump happens



Cache dynamics
• A cache hit is when data is found in the cache
• This is the fast case, and hopefully the most common

• A cache miss is when data is not found in the cache
• Our attempt to take a shortcut failed
• Must carry out the request normally (access page table in RAM)
• When done, store the data in the cache for next time
• To make space in the cache, we must chose an existing entry to evict (remove)

• CPU caches (like the TLB) make performance unpredictable because
• It’s usually invisible to the OS (*except for software-managed TLBs)
• Cache status depends on prior activity, perhaps by other processes.



Computers have a hierarchy of  storage 

• Disk is about ten billion times larger than registers, 
but has about ten million times larger delay (latency).
• Goal is to work as much as possible in the top levels.
• Large, rarely-needed data is stored at the bottom level
• “Memory” is not just RAM, but everything below the 

registers

delay capacity
0.3ns CPU Registers 1 kB (kilobyte)

5ns CPU Caches (L2) 16 MB
50ns Random Access Memory (RAM) 16 GB

100µs Flash Storage (SSD) 1 TB
5ms Magnetic Disk 8 TB

Larger, but slow
er



Paper-in-office analogy
• Imagine doing a really complex pen-and-paper data analysis.
• You would move papers between these storage levels, as 

needed:

• You would move papers in chunks (folders or boxes).
• Organize papers to keep related sheets together, to reduce the 

number of  data-fetching trips.

delay capacity
< 1s Papers on desk 4 sheets

5s Stack of  paper on desk 20 sheets

10s File folders in one desk drawer 1,000 sheets

5 min. Filing cabinets in storage room 100k sheets

1 day Off-site archival warehouse 10M sheets

Larger, but further



Software-controlled paging
• Intel x86 CPUs (and xv6) use hardware-managed TLB
• CPU automatically walks the page table & controls the TLB

• Some RISC CPUs use a software-managed TLB:
• These CPUs know nothing about the page tables.  Just uses the TLB.
• If  a translation is not present in the TLB, CPU causes an exception
• OS interrupt handler consults its page tables to find the address translation.
• OS evicts an entry from the TLB and adds the new translation to the TLB, 

using special instructions.
• Interrupt return instruction resumes by repeating the instruction that failed.
• Flush the TLB before a context switch.

• This can simplify the CPU hardware and gives more control to the OS.



Reducing space overhead of  paging
• Recall that we need 106 PTEs for 32-bit address space & 4kb pages
•We can reduce the page table size by making pages larger:
• 4MB “superpages” on x86 lead to just 1000 PTEs (4kb overhead) per process
• Also leads to more TLB hits, because each page translation serves more data
• However, superpages are not a full solution
• Allocating huge pages for everything will lead to wasted space

•We would like to keep fine-grained page allocation, but lose some of  
the overhead.



Linear (one-level) page table with 4mb (big) pages
• This is a real option on Intel x86.
• Page table size = 4gb/4mb = 1,000 * 32bit

• We actually want small (4kb) pages,
to waste less space when allocating.
• Theoretically, a linear page table could

also be used for regular-sized (4kb) pages…
• But it would be huge even for a 32-bit system

with just 4gb of  RAM:
• 4gb/4kb = 1 million entries
• Each process would need a 4mb page table!
• That’s OK for a large process, but unacceptably wasteful for small processes.

• A two-level page table can start small and it adapts its size as needed.



Linear page table addressing clarification
• How are 18 bits from PDE + 22 bit offset (40 bits) used to find a 32-bit address?
• Add 14 zeros to end of  18-bit PDE value to find the 32-bit starting address of  

the 4mb page (page must be aligned to a 16kb frame).
• 22 bit offset finds the location within that 4mb page.



Linear page table has fixed space overhead

• The page table space overhead is 
actually OK for large processes.
• 4MB page table is just 0.1% of  a process 

using the full 4GB of  memory
•However, the 4MB overhead is terrible 

for small processes
• Most of  the page table will be empty:
• (PTEs will have “present” bit = 0)



Multi-level page tables eliminate wasted space

Small page directory indicates which 
parts of  the page table are used. 
If  used, there is a pointer to the 
page table details

Only the 
occupied parts 
of  the page 
table are 
represented in 
full detail.



Multi-level page table mechanics

• Virtual address is broken into 3 or more parts
•Highest bits index into the highest-level page table
• A page fault can occur if  an

entry is missing at any level
•OS can initialize a process

with just a highest-level table
and just a few lower-level
tables.
•More tables are added as a

process demands more
memory



2-level page table addressing clarification

• Page table pages must be 
aligned to a 4096 byte page
• In other words, the bottom 12 

bits of  the address must be zero

• In two level paging:
• PTE address is constructed 

with:
• 20 bits from PDE
• 10 bits from middle of  linear 

address
• 2 remaining bits are zero because 

PTEs are 4 bytes long
• = total of  32 bits



Multi-level paging example  (from 3EP book)

• Notice the valid bits.
• CPU will cause a page 

fault exception if  it 
encounters a valid=0 
PTE when walking the 
table.
• Will also cause an 

exception if  writing 
to an address whose 
PTE is marked not 
writable, etc. 



Improper virtual memory access causes an exception
• Project 2.2 requires a new interrupt handler in trap.c:

…



Intermission



64-bit address space requires > 3 levels
• 64-bit address space allows 1.8 × 1019 = 18 billion gigabytes of  memory
• So, 64-bit address spaces are

very, very sparse
• Requires 3 or 4 paging levels

to keep page tables small:

• x86-64 CPUs actually use
48-bit memory addresses, not 64.
• But it still requires 3 or 4 levels



x86 lets you mix page sizes – throw in a 4mb page!

Set a bit here to skip 
straight to a big page.



… or even a 1GB huge page

Why use a huge page?
• If  you’re using a huge 

chunk of  data…
(it makes the page table 
smaller, but that’s not 
too important)

• Just one TLB entry 
can be used for 1GB 
of  data.
• Conserves precious 

TLB space.
• Thus, reduces TLB 

miss rate!



To see VM info on Linux
• cat /proc/meminfo
• vmstat
• top
• (resident)



top

RES column 
is “resident 
memory”

“q” to quit



Copy-on-write with Fork
• Recall that fork + exec is the only way to create a child process in unix
• Fork clones the entire process, including all virtual memory
• This can be very slow and inefficient, especially if  the memory will just be 

overwritten by a call to exec.
• Copy on write is a performance optimization:
• Don’t copy the parent’s pages, share them
• Make the child process’ page table point to the parent’s physical pages
• Mark all the pages as “read only” in the PTEs (temporarily)

• If  parent or child writes to a shared page, a page fault exception will occur
• OS handles the page fault by:
• Copying parent’s page to the child & marking both copies as writeable
• When the faulting process is resumed, it retries the memory write.



Demand zeroing
• If  a process asks for more memory with sbrk or mmap the OS can 

allocate it lazily.
• In other words, don’t allocation the full block immediately.
• Lazy allocation minimizes latency of  fulfilling the request
• and it prevents OS from allocating memory that will not be used.

•OS must also write zeros to newly assigned physical frames
• Program does not necessarily expect the new memory to contain zeros,
• But we clear the memory for security, so that other process’ data is not leaked.

•OS can keep one read-only physical page filled with zeros and just give 
a reference to this at first.
• After the first page fault (due to writing a read-only page), allocate a real page.



Virtual memory in practice
•On Linux, the pmap command shows a process’ VM mapping.
•We see:
• OS tracks which file code is loaded from, so it can be lazily loaded
• The main process binary and libraries are lazy loaded, not fully in memory
• Libraries have read-only sections that can be shared with other processes

• cat /proc/<pid>/smaps shows even more detail

References:
• https://unix.stackexchange.com/a/116332

• https://www.akkadia.org/drepper/dsohowto.pdf

https://unix.stackexchange.com/a/116332
https://www.akkadia.org/drepper/dsohowto.pdf


emacs
• “Mapping” shows source of  the 

section, more code can be loaded 
from here later.
• “anon” are regular program data,

requested by sbrk or mmap.
(In other words, heap data.)

• Each library has several sections:
• “r-x--” for code can be shared
• “r----” for constants
• “rw---” for global data
• “-----” for guard pages:

(not mapped to anything, just reserved to 
generate page faults)

• RSS means resident in physical mem.
• Dirty pages have been written and 

therefore cannot be shared with others

… … …



top has a column showing shared memory
• The duplicate processes are using 

a lot of  shared memory:
• ~50% of  resident memory for 
httpd is shared
(RES/2 == SHR)
• ~75% of  resident memory for 
sshd is shared

• Even if  there is just one instance 
of  emacs running, it may share 
many libraries with other running 
programs.
• Total virtual memory is ~10x 

larger than resident memory
• Processes only use a small 

fraction of  their VM!
• Due to sharing and lazy loading.



Recap: the costs of  virtual memory and paging
• Latency cost, because each memory access must be translated.
• Translation lookaside buffer (TLB) caches recent virtual to physical page 

number translations.
• Software-controlled paging removes page tables from the CPU spec and lets 

OS handle translations in software, in response to TLB miss exceptions.
• Space cost, due to storing a page table for each process.
• Linear (one-level) page tables are large.
• Smaller pages lead to less wasted space during allocation,

but more space is consumed by page tables.
• Multi-level page tables are the only way to truly conserve space.
• Mixed-size pages reduce TLB misses.

• Copy-on-write fork, demand zeroing, lazy loading, and library sharing 
all reduce physical memory demands.


