BEECS-343 Operating Systems
Lecture 0:
Memory management
optimizations

Steve Tarzia

Spring 2019

Northwestern

Announcements

* HW 1 due Monday
* Project 2 due the following Monday

* It’s much more difficult than Project 1!

* Midterm exam in two weeks (Thurs. May 2°9),

* Physical memory management for Project 2.2:

* Free physical memory pages in xv6 is managed with a circular linked list.
* Each free physical page stores a pointer to another free physical page.

* kalloc () removes one physical page from the free list.

* Kfree () returns a physical page to the free list.

* We'll talk more about free lists next week.

Last Lecture: Virtual Memory

* Memory 1s divided into equal-sized pages.
* Page tables translate virtual page numbers to physical page numbers.
* Showed the details of page table entries (PTEs):

* High bits translate from virtual page number to physical page number.
* Low bits in the PTE are used to indicate present/rw/kernel page.

* During a context switch, kernel changes the % CR3 register to switch
from the page table (VM mapping) of one process to anothetr.

* VM is handled by both the OS and CPU:

* OS sets up the page tables and handles exceptions (page faults).

* CPU automatically translates every memory access in the program from
virtual addresses to physical addresses by checking (walking) the page table.

Paging costs

1. Latency

* Every memory access now requires an additional read to get the physical
page number from the page table

* RAM access 1s slow (~50ns), so this is very bad!
2. Space

* Each process must have a page table mapping the entire address range

* On a 32-bit system linear page tables would consume 4MB of mem per process

* Assuming 4kb pages, and 32-bit addresses (4GB of virtual memory)
we require one million PTEs. Each PTE 1s 4 bytes.

* On a 64-bit system this would be much, much worse

Translation lookaside bufter (TLB)

s

* TLB is the solution to our paging latency problems

Il

* TLLB caches recently used PTEs

* In other words, it’s a small fraction of the current page table that is stored on-
chip, in fast memory.

* Usually “fully associative”

* Caches are common in computer systems

* A cache 1s a record of recent transactions that allows you to skip repeated
requests

* Eg., a web browser caches all your HI'TP GET requests so that you don’t
have to reload repeated images, like logos, menus, etc.

Why does a TLB help?

* Because programs don’t access random addresses

* We're likely to need the same translations in the future

* Temporal locality — programs reuse the exact same memory addresses

* Spatial locality — programs typically will access memory near recently-
used memory. For example:
* Looping through an array (each access is adjacent to the last one)
* A function’s local variables and parameters are on the same stack frame.
* Code has to be read from memory, and these are contiguous until a

branch/jump happens

Cache dynamics

A cache Arris when data is found in the cache

* This 1s the fast case, and hopefully the most common

* A cache missis when data is nof found in the cache
* Our attempt to take a shortcut failed
* Must carry out the request normally (access page table in RAM)
* When done, store the data in the cache for next time
* To make space in the cache, we must chose an existing entry to evzc/ (remove)

* CPU caches (like the TLB) make performance unpredictable because

* It’s usually invisible to the OS (*except for software-managed TLBs)
* Cache status depends on prior activity, perhaps by other processes.

Computers have a hierarchy ot storage

delay capacity
Ug 0.3ns CPU Registers 1 kB (kilobyte)
A 5ns CPU Caches (L.2) 16 MB
g 50ns | Random Access Memory (RAM) | 16 GB
? 100us Flash Storage (SSD) 1TB
%
- 5ms Magnetic Disk 8 TB

* Disk 1s about zen billion times larger than registers,
but has about fen million times larger delay (latency).

* Goal is to work as much as possible in the top levels.
* Large, rarely-needed data is stored at the bottom level

* “Memory” is not just RAM, but everything below the
registers

Paper-in-ottice analogy

* Imagine doing a really complex pen-and-paper data analysis.

* You would move papers between these storage levels, as
needed:

delay capacity
<1s Papers on desk 4 sheets
5s Stack of paper on desk 20 sheets

10s | File folders in one desk drawer | 1,000 sheets

5 min. Filing cabinets in storage room 100k sheets

JOUIINJ Inq Fo3IE |

1 day Off-site archival warehouse 10M sheets

* You would move papers in chunks (folders or boxes).

* Organize papers to keep related sheets together, to reduce the
number of data-fetching trips.

Sottware-controlled paging

* Intel x86 CPUs (and xv06) use hardware-managed TLB
* CPU automatically walks the page table & controls the TLB

* Some RISC CPUs use a software-managed TLB:
* These CPUs know nothing about the page tables. Just uses the TLB.
* If a translation 1s not present in the TLB, CPU causes an exception
* OS interrupt handler consults its page tables to find the address translation.

* OS evicts an entry from the TLB and adds the new translation to the TLB,
using special instructions.

* Interrupt return instruction resumes by repeating the instruction that failed.
* Flush the TLB before a context switch.

* This can simplify the CPU hardware and gives more control to the OS.

Reducing space overhead of paging

* Recall that we need 10° PTEs for 32-bit address space & 4kb pages

* We can reduce the page table size by making pages larger:

* 4MB “superpages” on x86 lead to just 1000 PTEs (4kb overhead) per process
* Also leads to more TLB hits, because each page translation serves more data
* However, superpages are nota full solution

* Allocating huge pages for everything will lead to wasted space

* We would like to keep fine-grained page allocation, but lose some of
the overhead.

Linear (one-level) page table with 4mb (big) pages

* This 1s a real option on Intel x86. . 22Li:;nf:ar Address .
* Page table size = 4gb / 4mb = 1,000 * 32bit Directory Offset
A 22 4-MByte Page

* We actually want small (4kb) pages, , Page Directo |

to waste less space when allocating, 10 = ~— >|Physical Address
* Theoretically, a linear page table could

also be used for regular-sized (4kb) pages... >| PDE with PS=1 -~ >
* But it would be huge even for a 32-bit system g "

with just 4gb of RAM: ’ CR3

* 40b/4kb = 1 million entries
* Each process would need a 4mb page tablel
* That’s OK for a large process, but unacceptably wasteful for small processes.

* A two-level page table can start small and it adapts its size as needed.

Linear page table addressing clarification

* How are 18 bits from PDE + 22 bit offset (40 bits) used to find a 32-bit address?

* Add 14 zeros to end of 18-bit PDE value to find the 32-bit starting address of
the 4mb page (page must be aligned to a 16kb frame).

* 22 bit offset finds the location within that 4mb page.

Linear Address
31 22 21 0

Directory Offset

A 22 4-MByte Page

, |
/(10 _Page Directory —»|Physical Address

—>» PDE with PS=1 1/8/ »

CR3

Linear page table has fixed space overhead

* The page table space overhead 1s
actually OK for large processes.

* 4MB page table is just 0.1% of a process
using the full 4GB of memory

* However, the 4 overhead 1s terrible
for small processes
* Most of the page table will be empty: —
* (PTEs will have “present” bit = 0)

Multi-level page tables eliminate wasted space

Only the
occupied parts
ot the page

table are

-

represented in

full detail.

\)

Y
Small page directory indicates which

parts of the page table are used. ewmety
If used, there is a pointer to the hl _

page table details

Multi-level page table mechanics

* Virtual address is broken into 3 or more parts

* Highest bits index into the highest-level page table
° A page fault can occur if an

entry is missing at any level .
Linear Address
31 22 21 12 11 0
¢ OS can 11’11'[19,1126 ad pfOC€SS Directory Table Offset
with just a highest-level table JEZ 4-KByte Page
and]uSt a few lower_level 10 10 Page Table Physical Address
table S. Page Directory
* More tables are added as a - PTE -
process demands more B I
memory 2 R

Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

2-level page table addressing clarification

* Page table pages must be
. Li Add
aligned to a 4096 byte page s 221 2 0
Direct Tabl Offset
* In other words, the bottom 12 e ~
bits of the address must be zero JE ¥O0o Page
. . /10 /10 Page Table Physical Address
* In two level paging: 1" page Directory
* PTE address i1s constructed N .
with: i (A .
' > PDE with PS=0 | <>
¢ 20 bits from PDE > 20
> 10 bits from middle of linear 1% [crs
address

¢ 2 remaining bits are zero because Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

PTEs are 4 bytes long
= total of 32 bits

Multi-level paging example (from 3EP book)

* Notice the valid bits.

* CPU will cause a page
fault exception if it
encounters a valid=0

PTE when walking the
table.

e Will also cause an
exception 1f writing
to an address whose

PTE is marked not
writable, etc.

Linear Page Table

PTBR| 201

|

PFN

12

13

+ [R|R | prot

i B

100

86

= [=lolololo|o|o]o|eo|e|e]=|eo|=|=]valid

2RI]

15

PFN204 ' PFN203 ' PFN202 ' PFN 201 \

Multi-level Page Table

PDBR| 200 |

e B =

T T 2

> PFN S A PFN
o 11 201 » [1] rx 12 _
S - 1] rx 13 Q
£ |0 - ol - - z
& 7 204 — 1w 100 o

The Page Directory

[Page 1 of PT: Not Allocated]

[Page 2 of PT: Not Allocated]

—p

PFN 204

86
15

0
0
1
1

212

Figure 20.2: Linear (Left) And Multi-Level (Right) Page Tables

Improper virtual memory access causes an exception

* Project 2.2 requires a new interrupt handler in trap.c:

void
trap(struct trapframe xtf)
{
if(tf->trapno == T_SYSCALL){
if(myproc()—>killed)

exitii; o -t default:
->tf = tf; :
myproc if(myproc() == 0 || (tf->cs&3) == 0){

syscall(); . .

i £ (myproc()->killed) // In kernel, it must be our mistake.

exit(): cprintf("unexpected trap %d from cpu %d eip %x (cr2=0x%x)\n",

return; tf->trapno, cpuid(), tf->eip, rcr2());

} panic("trap");
}

switch(tf->trapno){
case T_IRQ@® + IRQ_TIMER:
if(cpuid() == 0){
acquire(&tickslock);
ticks++;

// In user space, assume process misbehaved.
cprintf("pid %d %s: trap %d err %d on cpu %d "
"eip @x%x addr Ox%x--kill proc\n",
myproc()->pid, myproc()->name, tf->trapno,
tf->err, cpuid(), tf->eip, rcr2());
myproc()->killed = 1;

wakeup (&ticks);

release(&tickslock);
y }
lapiceoi();
break;

Intermission

RELAX.. EMPTY
YOUR CACHE..CLEAR
YOUR HISTORY...

64-bit address space requires > 3 levels

* 64-bit address space allows 1.8 X 10 = 18 billion gigabytes of memory
* So, 64-bit address spaces are

V€f VCI_' S afse inear ress
Y> y p I47 39|38 - 30|2'3dd 21]20 12I11 0
. . PML4 Directory Ptr Director Table Offset
* Requires 3 or 4 paging levels | D
79 dh /19 1o_4-KByte Page
to keep page tables Small: \» L Physical Addr
PTE |
Page-Directory- “»| PDE with PS=0 |—< ZOLF
Pointer Table 40 Page Table
Page-Directory
¢ X86—64 CPUS actually usc > PDPTE 40
48-bit memory addresses, not 64. 0k
* But it still requires 3 or 4 levels e |4°

E
CR3

Figure 4-8. Linear-Address Translation to a 4-KByte Page using 4-Level Paging

x80 lets you mix page sizes — throw in a 4mb page!

Linear Address
47 39 38 30 29 2120 0
PML4 Directory Ptr Directory Offset
J Ao A 21
/9
‘ 2-MByte Page
Physical Addr
Page-Directory- PDE:with PS=1 7~ >
Pointer Table- [~ 31
A Page-Directory
—» PDPTE -
" 40
/19 . .
Set a bit here to skip
/(40 straight to a big page.
—»| PML4E
/E
CR3

Figure 4-9. Linear-Address Translation to a 2-MByte Page using 4-Level Paging

... or even a 1GB huge page

Linear Address

47 39 38 30 29 0
PML4 Directory Ptr Offset
|, 30
/9
Page-Directory- 1-GByte Page
Pointer Table
»+ Physical Addr
3 PDPTE;with PS=1: 7
, 22
/19
-«
A 40
—»| PML4E
>
A 40

CR3

Figure 4-10. Linear-Address Translation to a 1-GByte Page using 4-Level Paging

Why use a huge page?
* If you’re using a huge
chunk of data...

(it makes the page table
smaller, but that’s not
too important)

* Just one TLB entry
can be used for 1GB
of data.

* Conserves precious
TLB space.

* Thus, reduces TLB
miss rate!

To see VM info on Linux

ecat /proc/meminfo

*vmstat
* top
* (resident)

[[spfi?Séhuﬁbhy ~]i caéilﬁroc/meminfo

MemTotal: 132144848 kB
MemFree: 130263996 kB
Buffers: 63880 kB
Cached: 539824 kB
SwapCached: 0 kB
Active: 665300 kB
Inactive: 323932 kB
Active(anon): 385768 kB
Inactive(anon): 2460 kB
Active(file): 279532 kB
Inactive(file): 321472 kB
Unevictable: 0 kB
Mlocked: 0 kB
SwapTotal: 16383996 kB
SwapFree: 16383996 kB
Dirty: 96 kB
Writeback: 0 kB
AnonPages: 387972 kB
Mapped: 61012 kB
Shmem: 2688 kB
Slab: 88844 kB
SReclaimable: 28140 kB
SUnreclaim: 60704 kB
KernelStack: 12672 kB
PageTables: 15000 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 82456420 kB
Committed_AS: 1659096 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 486616 kB
VmallocChunk: 34291646280 kB
HardwareCorrupted: 0 kB
AnonHugePages: 276480 kB
HugePages_Total : 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
DirectMap4k: 5604 kB
DirectMap2M: 2078720 kB

DirectMaplG:

132120576 kB

top

RES column
1s “resident
memory’’

“q” to quit

top - 10:25:45 up 7 days, 48 min,

Tasks:

: Mem:

! Swap: 16383996k total,

650 total,

3 users,
1 running, 649 sleeping,

0.0%us, 0.0%sy, 0.0%ni, 99.9%id,

132144848k total, 129331984k used,

load average: 0.04, 0.06, 0.09

@ stopped, @ zombie

0.0%hi, 0.0%si, 0.0%st

2812864k free, 37895660k buffers ;

436k used, 16383560k free, 45074412k cached

u

%MEM

PID USER PR NI: VIRT RES SHR:S %CP
9213 mysql 20 ©0:1263m 156m 14m:S 0.
10001 root 20 ©0:5748m 219m 14m:S 0.
9382 root 20 0 337m 18m 11m:S 0.
8304 apache 20 ©: 352m 19m 10m:S 0.
8302 apache 20 ©: 339m 14m 7144:S 0.
8298 apache 20 ©@: 339m 14m 7140:S 0.
8299 apache 20 @: 339m 14m 7136:S O.
8303 apache 20 ©: 339m 14m 7136:S O.
8300 apache 20 ©: 339m 14m 7120:S 0.
8301 apache 20 0: 339m 14m 7120:S 0.
8305 apache 20 @: 339m 14m 7112:S 0.
1386 apache 20 @: 339m 14m 7096:S 0.
1387 apache 20 ©@: 339m 14m 7084:S 0.
1122 spt175 20 @i 251m 14m 6484:S 0.
2615 root 20 0:92996 6200 4816:S 0.
9865 root 20 0_1043m 23m 4680:S 0.
8737 postgres 20 ©@: 219m 5380 4588:S 0.
2786 haldaemo 20 ©:45448 5528 4320:S 0.
9956 root 20 ©: 491m 7268 3280:S O.

990 root 20 ©0: 103m 4188 3172iS 0.
1014 root 20 ©0: 103m 4196 3172:S 0.
19701 root 20 0: 103m 4244 3172:S 0.

. .

U
0
3
0
0
0
0
0
0
0
0
0
0
0
0
0
3
0
0
0
0
0
0

LS IS IS S IS S IS TS S IS B S TS S IS B S TS S IS T
[IS IS S S S S IS S IS IS S IS S IS S S TS S S

TIME+ COMMAND

:57.24 mysqld

:02.22 dsm_om_connsvcd
1 .67 httpd

.29 httpd

.16 httpd
.12 httpd
.17 httpd
.17 httpd
.13 httpd
.16 httpd
.13 httpd

.0

.0
2

9

9

Ul w

1

Q

6 httpd

7 httpd

6 emacs

3 NetworkManager
8 dsm_sa_datamgrd
.00 postmaster
.99 hald

.30 dsm_sa_snmpd
.01 sshd

.02 sshd

.01 sshd

SoOoowWoeSowWwSeSSeSSSOSSSSSSSSS
888588t888888888888

Copy-on-write with Fork

* Recall that fork + execis the only way to create a child process in unix

* Fork clones the entire process, including all virtual memory

* This can be very slow and inefficient, especially if the memory will just be
overwritten by a call to exec.

* Copy on write 1s a performance optimization:

* Don’t copy the parent’s pages, share them

* Make the child process’ page table point to the parent’s physical pages

* Mark all the pages as “read only” in the PTEs (temporarily)
* If parent or child writes to a shared page, a page fault exception will occur
* OS handles the page tault by:

* Copying parent’s page to the child & marking both copies as writeable

* When the faulting process is resumed, it retries the memory write.

Demand zeroing

* It a process asks for more memory with sbrk or mmap the OS can
allocate 1t Jazily.

* In other words, don’t allocation the full block immediately.
* Lazy allocation minimizes latency ot tulfilling the request
* and it prevents OS from allocating memory that will not be used.

* OS must also write zeros to newly assigned physical frames
* Program does not necessarily expect the new memory to contain zeros,
* But we clear the memory for security, so that other process’ data is not leaked.

* OS can keep one read-only physical page tilled with zeros and just give
a reference to this at first.

* After the first page fault (due to writing a read-only page), allocate a real page.

Virtual memory in practice

* On Linux, the pmap command shows a process’ VM mapping.
* We see:

* OS tracks which file code 1s loaded from, so it can be lazily loaded
* The main process binary and libraries are lazy loaded, not tully in memory
* Libraries have read-only sections that can be shared with other processes

ecat /proc/<pid>/smaps shows even more detail

References:

* https://unix.stackexchange.com/a/116332

* https://www.akkadia.org/drepper/dsohowto.pdf

https://unix.stackexchange.com/a/116332
https://www.akkadia.org/drepper/dsohowto.pdf

[[Sptl?S@murphy ~]$ pmap -x 1122
1122: emacs kernel/proc.c

Address Kbytes RSS Dirty Mode Mapping cmMacCs
0000000000400000 2032 1344 @ r-x-- emacs-23.1
00000000007 fb000 8856 8192 6140 rw--- emacs-23.1 c . > h f h
0000000001dd5000 1204 1204 1204 rw--- [anon])
00000035cCc600000 16 12 ® r-x-- 1libuuid.so.1.3.0 Mapplng shows source ot the
00000035CC604000 2044 0 0 ———-- libuuid.so.1.3.0 section, more code can be loaded
00000035cc803000 4 4 4 rw--- libuuid.so0.1.3.0 f h 1
00000035cCa00000 28 12 0 r-x-- 1ibSM.s0.6.0.1 rom here latet.
00000035ccad7000 2048 0 0 ----- 1ibSM.s0.6.0.1 o ¢ 99 1 d
00000035ccc07000 4 4 4 rw--- 1ibSM.s0.6.0.1 anon are IG%H ar program data,
00000035d0e00000 32 12 ® r-x-- 1libgif.s0.4.1.6
00000035d0c08000 2048) [J— libgif.s0.4.1.6 requeSted by sbrk ot mn dp .
00000035d1008000 4 4 4 rw--- libgif.so.4.1.6 (In other Words, heap data.)
0000003 65000000 128 116 0 r-x-- 1d-2.12.so0 .)
0000003f65c20000 4 4 4 r--— 1d-2.12.50 * Hach library has several sections:
0000003165c21000 4 4 4 rw--- 1d-2.12.so iy 5
0000003652200 - . 4 rw--- [anon] * “rx-- for code can be shared
0000003f65¢00000 1576 536 0 r-x-- 1libc-2.12.so0 “ .
0000003f65f8a000 2048) [, J— libc-2.12.s0 e “+ ___” for constants
0000003f0618a000 16 16 8 r---- 1libc-2.12.s0 ° c< 29 f 1 1d
0000003f6618¢000 8 8 8 rw--- libc-2.12.50 rw---"" for global data

* “--—-" for guard pages:
00007 fca3aa85000 52 20 OEI"-X-- l}bnss_f}les-Z.lz.so: (not mapped tO anythlng,]ust reserved tO
00007fca3aa92000 2044 0 0:———-- libnss_files-2.12.s0; enerate pace faults)
000071 ca3ac91000 4 4 4:p-———- 1ibnss_ﬁles-2.12.so§ g p g
00007 fca3ac92000 4 4 4:rw--- libnss_files-2.12.s0:; . . .
00007£ca3ac93000 96348 44 0 it Yocale_archive =~ ot" ¢ RSS means remdent 1n physmal memn.
00007 fca40b27000 104 104 104 rw--- [anon] . .
00007Ca40054000 80 80 80 rw-—- [anon] * Dirty pages have been written and
00007 fccb300000 164 128 128 rw--- [stack] .
00007Ffccb341000 4 4 O r-x— [anon] therefore cannot be shared with others
600000 4 0 0 r-x-- [anon]

total kB 257068 14604 8128

tOp has a column showing shared memory

top - 10:25:45 up 7 days, 48 min,
1 running, 649 sleeping,
99.9%id,

Tasks: 650 total,
Cpu(s): 0.0%us,
Mem:
Swap: 16383996k total,
PID USER
9213 mysql 20
10001 root 20
9382 root 20
8304 apache 20
8302 apache 20
8298 apache 20
8299 apache 20
8303 apache 20
8300 apache 20
8301 apache 20
8305 apache 20
1386 apache 20
1387 apache 20
1122 sptl75 20
2615 root 20
9865 root 20
8737 postgres 20
2786 haldaemo 20
9956 root 20
990 root 20
1014 root 20
19701 root 20

0.0%sy,

0.0%ni,

132144848k total, 129331984k used,

@ 1263m 156m
@ 5748m 219m
337m :18m
352m : 19m :
339m : 14m 7144:S
339m : 14m 7140:S
339m :14m 7136:S
339m : 14m 7136:S
339m : 14m 7120:S
339m :14m 7120:S
339m :14m 7112:S
339m :14m 7096:S
339m :14m_ 7084:5S
25I1m 14m 6484 S
0 92996 6200 4816 S
0 1043m 23m 4680 S
@ 219m 5380 4588 S
@ 45448 5528 4320 S
491m 7268 3280 S
103m:4188 3172:S
103m:4196 3172:S
103m:4244 3172:S

14m S

(SIS IS IS S TS IS RS I IS

oo

3 users,

(]
(]

(SIS IS I IS IS I IS TS I IS I IS S IS B S I I
SO0 WEOOOOOOOOOOOOOOOOOOOOW

o
[

SO SSSS
OO0 OOOOOOOON

PR NI VIRT RES SHR S %CPU %MEM

1

load average: 0.04, 0.06, 0.09
@ stopped,
0.0%wa,

0.0%hi,

TIME+ COMMAND
3:57.24 mysqld
5:02.22 dsm_om_connsvcd

B O ¢
Q

.67 httpd
.29 httpd
.16 httpd
.12 httpd
.17 httpd
.17 httpd
.13 httpd
.16 httpd
.13 httpd
.06 httpd
.07 httpd
.26 emacs

.00
.99 hald
0

3

.01 sshd
.02 sshd
.01

0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
9:
0:
0:
3:
0:
0:
0: sshd

SSS522£338S8S8388SS8S

@ zombie
0.0%s1,
2812864k free, 37895660k buffers
430k used, 16383560k free, 45074412k cached

.93 NetworkManager
.98 dsm_sa_datamgrd
postmaster

dsm_sa_snmpd

* The duplicate processes are using
a lot of shared memory:
* ~50% of resident memory for

httpd is shared
(RES /2 == SHR)

* ~75% of resident memory for
sshd 1s shared

e Even if there is just one instance
of emacs running, it may share
many libraries Wlﬂ% other running
programs.

* Total virtual memory is ~10x
larger than resident memory

* Processes only use a small
fraction of their VM!

* Due to sharing and lazy loading.

Recap: the costs ot virtual memory and paging

* Latency cost, because each memory access must be translated.

* Translation lookaside buffer (TLB) caches recent virtual to physical page
number translations.

* Softwate-controlled paging removes page tables from the CPU spec and lets
OS handle translations in software, in response to TLB miss exceptions.

* Space cost, due to storing a page table for each process.
* Linear (one-level) page tables are large.

* Smaller pages lead to less wasted space during allocation,
but more space 1s consumed by page tables.

* Multi-level page tables are the only way to truly conserve space.
* Mixed-size pages reduce TLB misses.

* Copy-on-write fork, demand zeroing, lazy loading, and library sharing
all reduce physical memory demands.

