
EECS-343 Operating Systems
Lecture 5:

Virtual Memory & Paging
Steve Tarzia
Spring 2019

Announcements
• Project 1 due yesterday
• Late policy: up to two days at 10% off per day
•HW 1 due Monday
• Project 2 due the following Monday
• It’s much more difficult than Project 1!

• Additional weekly office hours: Tuesdays 2-4pm in Wilkinson

Last Lecture
•Defined two conflicting metrics: turnaround time and response time
• Cannot optimize both – must tradeoff, or balance, the two

•Optimized by shortest job first and round robin, respectively
• Context switching overhead is due to the CPU caches
• CPU keeps most recently used data in nearby caches, so it’s more efficient to

let an ongoing process continue.
• I/O-blocked processes make progress without using the CPU
• We should prioritize I/O-bound processes

•Multi-Level Feedback Queues are often used in real OS schedulers
• Prioritizes “polite” processes that use little CPU time when scheduled
• CPU-bound processes squander their time quotas and lose priority

Program’s view of the Machine

• Programs are compiled to run alone
on a machine with lots of memory.
• “64-bit” machine = 264 bytes of

memory
• “32-bit” machine = 232 bytes = 4GB of

memory (xv6 is a 32-bit OS).
• In reality:
• Programs share memory with others
• Machine has less than the maximum

amount of memory.

Virtual Memory
• Splits memory between various processes,
• But gives each process the illusion that it has the

full address space.
• Code uses virtual memory addresses

• Called “logical address” by Intel
• CPU somehow translates to physical addresses

assigned to that process
• Virtual memory also gives the illusion that memory

is huge.
• OS swaps memory to disk if there is no space in

physical memory. (More on this in later lectures.)
• So, no memory is moved during context switch.
•We just need to configure the CPU to use a

different virtual-to-physical address translation

Virtual Memory
• Virtual Memory allows the OS and hardware to control how CPU

instructions’ memory addresses are translated to physical memory
addresses.
• adds a layer of indirection between programs and the physical memory.

• Virtual Memory gives each programs the illusion that it is not
competing with other processes for use of the machine’s memory
• This does not exactly mean that a program can access the full address range
• OS may still place restrictions on what memory can be accessed
• sbrk or mmap syscalls may be required for a process to request access to

areas of its address space.
• VM is disabled at boot time, but soon used by both kernel & user code

Segmentation
• Modern systems use paging to translate virtual memory

addresses
• Earlier systems used segmentation, which is simpler:
• Each process has a memory segment for its code, stack, and

heap.
• Segments can be any size, defined by a base and bound (size)
• Memory accesses are offset by the appropriate base and

checked that they don’t fall outside the bounds (otherwise you
get a segmentation fault).

• Segment registers (or table) would be altered by the OS
on context switch
• Flaw is that a program’s memory must reside in a large

chunk of physical memory. Paging can distribute a
program’s memory.

Virtual

Physical

Pages are contiguous blocks of memory
• Pages are usually all the same size
• Configurable by the OS

(at boot time)
from 4 kb to 4 Mb

•High bits of virtual address
identify the page
• Low bits identify the offset

within the page
• Larger pages lead to:
• More low bits identifying offset
• Fewer high bits identifying page#

Page 0

Page 1

Page 65,535
(0xFFFF)

Physical memory is split among multiple processes

•OS needs a policy for splitting
physical memory among
competing processes
• (We’ll discuss memory

management policies in a later
lecture.)

• CPU needs a mechanism to
implement that policy
• At runtime the CPU translates

every virtual address mentioned
by user code into the
appropriate physical address.

Page table translates virtual to physical addresses

• Just need to translate the page numbers
• The high bits of the virtual address

• The simplest type of page table is an
array of physical addresses, one for
each virtual page. (Linear page table)
• Special values can be used to indicate that

page has never been used or is on disk.
• To switch process contexts, just switch

to a different page table
• Different page table will cause the

program to access a totally different set
of physical memory locations.

Address translation
• Recall that the high bits of a virtual address refer to the page number,

and low bits refer to the offset within that page
• System must translate virtual page numbers to physical frame numbers

Page table example

Stored in
kernel

memory

Changing page tables

• Intel CPUs’ %CR3 register stores the
page table’s address.
• Cannot be changed in user mode.

•OS kernel changes the %CR3 value
when switching processes.
• CPU will use the page tables to

translate address of every single
memory access
• Except the OS’s boot code uses physical

addresses directly to set things up.

Inactive process state in xv6’s proc.h

• pde_t* pgdir points to
this process’ page table

Context switch in xv6
In vm.c and proc.c

Actually, Intel x86 supports more complex VM schemes

…and even more complex schemes

CPU behaviors
configured by the OS
Most importantly:
• Interrupt tables - %IDTR
• Page tables - %CR3

• Store tables in kernel memory
• Store pointers to tables in

control registers

The many benefits of Virtual Memory & Paging
• Program code need not worry about:
• where in memory it will run
• the size of physical memory
• Compiler and Loader’s job is now much easier

• Process memory is isolated & secure
(assuming pages table entries point to unique locations)
Changing page tables is a privileged instruction

• Can efficiently share memory between processes when desired
(just make page table entries for two processes point to same physical page)

• Can run programs needing more memory than we physically have
(by swapping to disk)

• Can build a machine with more memory than is addressable by programs
(eg., “physical address extension” on 32-bit Intel processors)

Page table entries (PTEs) in detail (32-bit Intel x86)

• PTEs just need the high bits for the physical frame number
• Low bits can be set by kernel to control access, etc.
•Hardware will automatically

check these bits when
“walking” the page table
for a memory access.

Last 3 bits control user program’s
permission to use this page

How OS controls virtual memory (x86)

Change the page table register
(%CR3) on context switch

Set low bits of PTEs to
control read/write and
user/kernel access

• Allocate a page table for each process.
• Set high bits of PTEs to control

which physical pages are used

Complete view of paging (from xv6 book)

Recap
• Introduced about Virtual Memory
• Showed the details of page tables and page table entries (PTEs)
• High bits translate from virtual page number to physical page number.
• Low bits in the PTE are used to indicate present/rw/kernel page.

•During a context switch, kernel changes the %CR3 register to switch
from the page table (VM mapping) of one process to another.
•Next time:
• Page faults
• Page table performance optimizations

