BEECS-343 Operating Systems
Lecture 5:
Virtual Memory & Paging

Steve Tarzia

Spring 2019

Northwestern

Announcements

* Project 1 due yesterday

* Late policy: up to two days at 10% ott per day
* HW 1 due Monday

* Project 2 due the following Monday

* It’s much more difficult than Project 1!

* Additional weekly office hours: Tuesdays 2-4pm in Wilkinson

l.ast Lecture

* Defined two conflicting metrics: turnaround time and response time
* Cannot optimize both — must tradeotf, or balance, the two

* Optimized by shortest job first and round robin, respectively

* Context switching overhead 1s due to the CPU caches

* CPU keeps most recently used data in nearby caches, so it’s more efficient to
let an ongoing process continue.

* 1/O-blocked processes make progress without using the CPU
* We should prioritize I/O-bound processes

* Multi-Level Feedback Queues are often used in real OS schedulers
* Prioritizes “polite” processes that use little CPU time when scheduled
* CPU-bound processes squander their time quotas and lose priority

Program’s view ot the Machine

\J“)m\\ Mewiory CRW Qegisters .
il 7] T m * Programs are compiled to run alone
% - . . .
7l ~C S on a machine with lots of memory.
{&N\.@\ f ecx | | et . < . . — ~e4
cegesved ///k o — 64-bit” machine = 2°* bytes of
// estL 1 } A"‘:‘;r memory
: . »i S . .
FSEA(.\Q § S m—— * “32-bit” machine = 2°*bytes = 4GB of
— Lorows \e\,ﬂ | Stockfons memory (xv0 1s a 32-bit OS).
Cows e LS ointer
. N - o * In reality:
H@, oap DG."'Q § eve | — 1 wstradion .
(maed) N gointer * Programs share memory with others
(odbal Dda N : .
N\ When i mamary filed? Machine has less than the maximum
Codo § E LoaA-Fims amount of memory.
A Run —time
NN
[0 e {%/4 B Never

Virtual Memory

* Splits memory between various processes,

* But gives each process the illusion that it has the
full address space.

* Code uses virtual memory addresses
* Called “logical address” by Intel

* CPU somehow translates to physical addresses
assigned to that process

* Virtual memory also gives the illusion that memory
is huge.
* OS swaps memory to disk if there 1s no space in
physical memory. (More on this in later lectures.)
* So, no memory is moved during context switch.

* We just need to configure the CPU to use a
different virtual-to-physical address translation

Virtual memory Physical
(per process) memory

Virtual Memory

* Virtual Memory allows the OS and hardware to control how CPU
instructions’ memory addresses are translated to physical memory
addresses.

* adds a layer of indirection between programs and the physical memory.

* Virtual Memory gives each programs the illusion that it is not
competing with other processes for use ot the machine’s memory
* This does not exactly mean that a program can access the full address range
* OS may still place restrictions on what memory can be accessed

* sbrk or mmap syscalls may be required for a process to request access to
areas of its address space.

* VM is disabled at boot time, but soon used by both kernel & user code

Segmentation

* Modern systems use paging to translate virtual memory
addresses

* Harlier systems used segmentation, which is simpler:
* Fach process has a memory segment for its code, stack, and

heap.
* Segments can be any size, defined by a base and bound (size)

* Memory accesses are offset by the appropriate base and
checked that they don’t fall outside the bounds (otherwise you
get a segmentation fault).

* Segment registers (or table) would be altered by the OS
on context switch

* Flaw 1s that a program’s memory must reside in a large
chunk of physical memory. Paging can distribute a
program’s memoty.

Operating System

DATA

CODE

DATA

STACK

Virtual

CODE

Physical

Pages are contiguous blocks of memory

OxFFF

!

(0xFFFF)

i

Ox0OC2, oo ce

QOO0 00©0

O e FFFF
FFFE

€FFD

QQ93

0002

0°0)
Oy 00000000

g

Page 65,535 |

/\/\

Page 1

Page 0

* Pages are u#sually all the same size

* Configurable by the OS
(at boot time)
from 4 kb to 4 Mb

* High bits of virtual address
identify the page

* Low bits identity the offset
within the page

* Larger pages lead to:

* More low bits identifying offset
* Fewer high bits identifying page#

Physical memory 1s split among multiple processes

* OS needs a policy for splitting

| | physical memory among
Viehald (Memocy Ohwysical Memeory competing processes

Qeocess 1 Qeocess 2

rrs * (We’ll discuss memory
1 O 57, management policies in a later
. C lecture.)
T lm Traivas .
| ~s|liii * CPU needs a mechanism to

implement that policy

* At runtime the CPU translates
every virtual address mentioned
by user code into the
appropriate physical address.

Page table translates virtual to physical addresses

* Just need to translate the page numbers
* The high bits of the virtual address

32-bit Virtual Address * The simplest type of page table is an
31 1211 0 array of physical addresses, one for

each virtual page. (Linear page table)

* Special values can be used to indicate that
l page has never been used or 1s on disk.

4.% * To switch process contexts, just switch
' +2.bit Physical Address to a different page table
Page * Different page table will cause the

Table program to access a totally different set
ot physical memory locations.

Address translation

* Recall that the high bits of a virtual address refer to the page number,
and low bits refer to the otfset within that page

* System mwust translate vzrzual page numbers to physical frame nunibers

VPN offset 32-bit Virtual Address
| . H : I ~
Viwal 1o 1y g | 1] o | 1 > L0
Address
Addres_s
Translation
1 l l Y Y Vv v 4%
Physical | 1 4 | 1 ol 1|0l 1 : 32-bit Physical Address
Address

PFN offset]P,i%j’e

Page table example

e

\iehal (‘\&ho\“’ Ohwysi cal Memory

Qeocess 1 Qcocess
WO " —

T

Ol_— :

PWJQ— Kb(e_g

?POC&(; 1 P@Q;s 2 Stored in
1 > kernel

“é o\ memory
o] | \\
05| o0 T

' -

EXA"Y{Q oddrese Acorslations

Process1: poorvie) » 00011 10]
o)\ 00100603 | 11 c0l00d

g | ==

Croess 20 00OV D\ 100\1 10|
lO 00000\ —>©\00009|
0\ 00000 —> oac,e m..M /

Changing page tables

* Intel CPUs’ %CR3 register stores the
page table’s address.

* Cannot be changed in user mode.

* OS kernel changes the %CR3 value

when switching processes.

* CPU will use the page tables to
translate address of every single
MEMmMOory access

* Except the OS’s boot code uses physical
addresses directly to set things up.

Linear Address

4-MByte Page

31 22 21 0
Directory Offset
422
/10 Page Directory [5

—»| PDE with PS=1

Physical Address

CR3

Inactive process state 1n xv6’s proc.h

» pde_t* pgdir points to
this process’ page table

// Per-process state

struct proc {

uint sz;

//

Size of process memory (bytes)

pde_t* pgdir;

//

Page table -

}s

char *kstack;

enum procstate state;
volatile int pid;

struct proc *parent;

struct trapframe *tf;
struct context *context;
void *chan;

int killed;

struct file *ofile[NOFILE];
struct inode *cwd;

char name[16];

//
//
//
//
//
//
//
//
//
//
//

Bottom of kernel stack for this process
Process state

Process ID

Parent process

Trap frame for current syscall

swtch() here to run process

If non-zero, sleeping on chan

If non-zero, have been killed

Open files

Current directory

Process name (debugging)

Context switch 1n xv6

In vm.c and proc.c

171

// Switch TSS and h/w page table to correspond to process p.
void
switchuvm(struct proc *p)
{
pushcli();
cpu—>gdt [SEG_TSS] = SEG16(STS_T32A, &cpu->ts, sizeof(cpu->ts)-1, 0);
cpu->gdt [SEG_TSS].s = 0;
cpu->ts.ss@ = SEG_KDATA << 3;
cpu—>ts.esp@ = (uint)proc->kstack + KSTACKSIZE;
Ltr(SEG_TSS << 3);
if(p->pgdir == 0)
.= =-R201c(switchuvm:, no pgdir®);

= lcr3(PADDR(p->pgdir)); = // switch to new address space

4EEEEEEEEEEEEEEEEEEEEEER

popcli();

// P
// E
/7S
//
//
//
//
void
sche
{

st

fo

er-CPU process scheduler.
ach CPU calls scheduler() after setting itself up.
cheduler never returns. It loops, doing:
- choose a process to run
- swtch to start running that process
- eventually that process transfers control
via swtch back to the scheduler.

duler(void)
ruct proc xp;

r(;iAd
// Enable interrupts on this processor.
sti();

// Loop over process table looking for process to run.
acquire(&ptable. lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->state != RUNNABLE)
continue;

// Switch to chosen process. It is the process's job
// to release ptable.lock and then reacquire it
// before jumping back to us.

roc =

‘ EEEER ;IIID
3 «n
» Switchuvm(p) ;s
p—>state = RUNNING;
swtch(&cpu->scheduler, proc->context);

switchkvm();

// Process is done running for now.
// It should have changed its p->state before coming back.
proc = @;

}

release(&ptable. lock);

Actually, Intel x86 supports more complex VM schemes

Linear Address
31 22 21 12 11 0

Directory Table Offset

/
/1 12 4-KByte Page

/10 A10 Page Table —>»| Physical Address

Page Directory
—>{ PTE e
20
—>»| PDE with PS=0
- 20

A32

CR3

Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

...and even more complex schemes

Logical Address
(or Far Pointer)

Segment l

Selector Offset

Linear Address

Physical
Address
Space

| | | | Space
. Linear Address
Global Descriptor -
Table (GDT) —>| Dir | Table | Offset |
Segment
S Page Table
egment
Descriptor
i D L Page Directory
‘|—> Lin. Addr. —
iiiiiii (—> Entry
A Entry -
SegmentJ
Base Address
—— Page
’— Segmentation | Paging

Figure 3-1. Segmentation and Paging

CPU behaviors
contigured by the OS

Most importantly:
* Interrupt tables - %IDTR

* Page tables - %CR3

* Store tables in kernel memory

* Store pointers to tables in
control registers

EFLAGS Register

Control Registers

Task Re%ister

Y

Linear Address
R

CR4 Segment Selector

CR3 ~—-—-->»
CRa
CR1

CRO

Global Descriptor
Table (GDT)

[Segment Sel. | - »| Seg. Desc. |—

Interrupt
Vector

Table (IDT)

Trap Gate

|TSS Seg. Sel.|— - »| TSS Desc.

Interrupt Descriptor

Interrupt Gate

|
Task Gate | — - - -

Call-Gate -»| Seg. Desc.
Segment Selector

Code, Data or
Stack Segment

Task-State

_ Segment (TSS) Task

>

- -1 ' Code

. _ | JData
tl: Stack

Interrupt Handler

- —— - Seg. Desc.

- — » TSS Desc.

LDT Desc. |—

! Local Descriptor
! Table (LDT)

.y
T

Code |
Current- — »
TSS |— Stack
Task-State

Segment (TSS) Task

Yo
ol8
Z

Stack

o

Exception Handler

S
[

} - » callGate | -

XCRO %XFEM)

Linear Address Space

“TCode |
Current- — »
TSS |_ Stack

Protected Procedure

Linear Addr. J

0

7777777 Code
- Current- — >» Stack
TSS |_ C
Linear Address
»| Dir | Table | Offset |
Page Directory Page Table Page
Physical Addr.

»

»| Pg. Dir. Entry —‘ Pg. Tbl. Entry *‘

'

This page mapping example is for 4-KByte pages

*Physical Address

and the normal 32-bit physical address size.

Figure 2-1. IA-32 System-Level Registers and Data Structures

The many benefits of Virtual Memory & Paging

* Program code need not worry about:

* where in memory it will run
* the size of physical memory
* Compiler and Loader’s job is now much easier

* Process memory is isolated & secure

(assuming pages table entries point to unique locations)
Changing page tables 1s a privileged instruction

* Can efficiently share memory between processes when desired
(just make page table entries for two processes point to same physical page)

* Can run programs needing more memory than we physically have
(by swapping to disk)

* Can build a machine with more memory than 1s addressable by programs
(eg., “physical address extension” on 32-bit Intel processors)

Page table entries (PTEs) in detail (32-bit Intel x86)

* PTEs just need the high bits for the physical frame number
* Low bits can be set by kernel to control access, etc.

* Hardware will automatically Page-Table Entry (4-KByte Page)

check these bits when 31 211 9876543210
“Wﬁ.lkiﬂg” th€ page table Page Base Address Avail. |c|o|D|A g \;Fr)v z \?v P

for a memory access.

Global page
Reserved (setto 0)
Dirty
Accessed
Cache disabled
Write-through

Last 3 bits control user program’s {User/SuPeNisor
..) Read/Write
permission to use this page

Available for system programmer’s use —| ‘ |

Present

How OS controls virtual memory (x86)

* Allocate a page table for each process.

* Set high bits of PTEs to control
which physical pages are used

31 22 21

Linear Address

Directory

Offset

—

/10 Page Directo

—>»| PDE

/|
/122 4-MByte Page

Physical Address

CR3

\

)

Change the page table register

Y

(%CR3) on context switch

Set low bits of PTEs to
control read /write and
user/kernel access

Complete view of paging (from xv6 book)

Virtual address
10 12

10

Physical Address
20

12

——»| Dir |Table|Offset | PPN |Offset |
| A
20 12
1023
-
> PPN [Flags
20 12
1023 T
1
9
‘ »
L » PPN |Flags Page Table
1
0
CR3 >

31

Page Directory

1211109 8 7 6 54 3 2 10

Physical Page Number

A
\
L

C

DAD

W

T

uwp

Page table and page directory
entries are identical except for
the D bit.

=

P - Present
W - Writable
U - User
WT - 1=Write-through, 0=Write-back
CD - Cache Disabled
A - Accessed
D - Dirty (0 in page directory)
AVL - Available for system use

Recap

* Introduced about Virtual Memory
* Showed the details of page tables and page table entries (PTEs)

* High bits translate from virtual page number to physical page number.
* Low bits in the PTE are used to indicate present/rw/kernel page.

* During a context switch, kernel changes the % CR3 register to switch
from the page table (VM mapping) of one process to anothetr.

* Next time:
* Page faults
* Page table performance optimizations

