
EECS-343 Operating Systems
Lecture 4:
Scheduling

Steve Tarzia
Spring 2019

Announcements
• Project 1 due on Monday
•HW1 due the next Monday (22nd).

Recap
• xv6 OS code is written for the Intel x86 CPU architecture, but…
• Linux supports 31 different CPU architectures
• Low-level mechanisms are different on each arch.
• High-level policies are the same for all.

• Fork syscall: run once, exits twice!
•Nondeterminism is when a program’s output is unpredictable
•OS process scheduler can create race conditions in programs that rely on

an interaction of multiple processes.
• These are tricky to debug, because they are sensitive to timing (Heisenbugs).

• Kernel panic occurs when OS causes an exception and can’t recover

Recap (continued)
• fork + exec runs a program.
• fork duplicates the current process
• exec copies code and global data

from an executable file, and creates
a new empty stack.

• Stack grows from high addresses
down to lower.
• Grows larger when a function is

called.
• Shrinks when a function returns.

•Heap is a block of memory
managed by C’s malloc & free.

Scheduling
•We have talked about the mechanisms for sharing the CPU:
• Limited direct execution
• User/kernel mode
• Timer interrupts
• System calls

• Scheduling is creating a policy for sharing the CPU:
• Which process is chosen to run, and when?
• When (if ever) are running processes preempted (interrupted)?

We’ll begin with a simplified scheduling problem
Let’s take ideas from Operations Research (process == “job”)

Simplifying assumptions:
1. Jobs are the same length
2. No new jobs are added (they all are available at the beginning)
3. Jobs cannot be preempted (interrupted)
4. No I/O is done; it’s just CPU work
5. Job length is known ahead of time
6. There is only one CPU
7. All processes have equal priority

Metrics
• A metric is a standard for measuring something
• Like an “objective function” in mathematical optimization,
• or a “utility function” in economics.

•We must choose a metric before designing a scheduling policy
• Computing systems have many different goals and uses, so there are many

competing performance metrics.
•Operating systems (and life) are full of tradeoffs

“fast acting” or “long lasting”?
Do I want to feel better now or later?

Average turnaround time is our first scheduling metric

Tturnaround = Tcompletion – Tarrival

• It’s just the total time waited to finish the job, including both it’s
execution time and the time it was waiting before execution.
•Average turnaround time is computed across all processes.

First in, first out (FIFO)
• FIFO is the simplest scheduling policy.
• Just let a job run until it is done, then schedule the next job

• Average turnaround time here is (10 + 20 + 30)/3 = 20

FIFO shortcomings
• FIFO is like a grocery store with

one checkout line
• One big job can cause lots of jobs

behind it to wait

• Above, avg turnaround time = 110
• Convoy effect – lots of small jobs

getting stuck behind a big one Photo from https://www.flickr.com/photos/countryluvinchix/4013902615

Shortest Job First (SJF)
• Start with the smallest jobs to minimize the number of waiting jobs
•Minimizing waiting will minimize average turnaround time

• Above, average turnaround time = (10 + 20 + 120) / 3 = 50 !
• Compare to 110 for FIFO

Let’s get real
• Allow new jobs to be added after the start (drop assumption #2)
•Now, we can suffer from long waits even with Shortest Job First!

SJF fail:

• If B & C arrive late, they will have to wait because we already
scheduled job A, and jobs must finish once they start (assumption #3)
• Average turnaround time = (100 + (110-10) + (120-10))/3 = 103.3 !

Shortest Time-to-Completion First (STCF)

• Let’s give our schedule the power to
preempt jobs
• Preemption is pausing a job to run

another one (word “interrupt” was
taken)

• Shortest Time-to-Completion First
causes scheduler to:
• reevaluate all the jobs when a new one

arrives
• schedule the job with the shortest

remaining time

• After B & C arrive, A is no
longer the shortest time-to-
completion job.
• Avg turnaround time =

(120 + 10 + 20) / 3 = 50

A different metric – response time
• STCF gives optimal avg turnaround time
• But long jobs may wait a long, long time and this may be undesirable
• Response time metric minimizes the time we wait for a job to start:

Tresponse = Tstart – Tarrival

• But we do not care how long it takes to finish a job
• This is good for interactive processes (GUI) which must quickly show

that they are reacting to user inputs, but can service requests slowly

Round Robin optimizes response time
• Round Robin (RR) scheduling runs a job for a small time slice, then

schedules the next job:

• Above, avg response time = (0 + 1 + 2) / 3 = 1
• In general, avg response time = (num_jobs – 1) * time_slice / num_jobs

• Smaller time slice means smaller response time

Different policies favor different metrics

Round Robin scheduling:
• Avg turnaround time = 14
• Avg response time = 1
• Context switches = 14

Shortest Job first or STCF:
• Avg turnaround time = 10
• Avg response time = 5
• Context switches = 2

Time slice (a.k.a. time quantum) tradeoffs

Round Robin scheduling
with time slice = 1:
• Avg response time = 1
• Context switches = 14

Round Robin scheduling
with time slice = 5:
• Avg response time = 5
• Context switches = 2

Better response time vs. Less context switch overhead

Context switching overhead
•We might expect context switches to be very quick because it just

involves switching a few registers.
•However, there is a large cost in “warming” the CPU’s caches.
• Caches store copies of recently-used memory on the CPU itself
• L1, L2, L3 memory cache
• Translation Lookaside Buffer (TLB) is a cache of recent page mappings

(it’s a cache of the current page table)
• Execution speed is often dominated by memory access, so this is important

•New process will use totally different physical memory locations, so all
the cache data is useless to the new process.

Intermission

I/O creates scheduling overlap opportunities

• If process A does I/O every ten
milliseconds and each I/O takes 10 ms,
then the CPU is free during those I/Os:
• A is blocked during it’s I/O.
• It’s just waiting for data from the disk
• But it does not need the CPU

• We can schedule another job during
process A’s I/O:
• Scheduler should favor processes that will

do I/O soon because I/O frees the CPU
and makes use of other hardware.

Blocked processes are actually making progress, but not using the CPU.

I/O bound and CPU bound processes

•We say a process is CPU bound if it
needs lots of CPU time to progress
• These processes have a lot of logic and math.
• Usually in running or ready state

• A process is I/O bound if it needs to do
lots of I/O to progress
• These processes access disk, network, etc.
• or they are interactive, spending most of

their time waiting for the next user input
(from the keyboard, mouse, or touchscreen)

• Usually in the blocked state

Real OS Schedulers
• In reality, we don’t know the future behavior of processes
• How long will a process run?
• When will it perform I/O next?

•However, we can track past behavior and assume future will be similar

• Usually we want a policy that balances response time and turnaround
time, and without too much context switching overhead
• Interactive processes should usually be prioritized, because they will

use little CPU, but make the system feel responsive.

• Xv6 uses a simple round-robin scheduler, but that’s not realistic

Multi-Level Feedback Queue (MLFQ)

• Several run queues, with varying priority
• Keep interactive jobs in high priority queues
• Processes at a given level are Round Robin

scheduled
• Always run the highest priority processes
• Run lower-priority processes when all higher

processes are blocked.
• Over time, processes lose and gain priority
• Each process has a CPU usage quota at a given

level. When used up, it moves down one level.
• Periodically reset by moving all processes up to

highest priority.

MLFQ rules
1. If Priority(A) > Priority(B),

A runs (B doesn’t).
2. If Priority(A) = Priority(B),

A & B run in RR.
3. When a job enters the system, it is

placed at the highest priority (the
topmost queue).

4. Once a job uses up its time allotment at
a given level (regardless of how many
times it has given up the CPU), its
priority is reduced (i.e., it moves down
one queue).

5. After some time period S, move all the
jobs in the system to the topmost
queue.

MLFQ parameters
• Round-robin time slice
•Number of levels
• CPU time quota at each level
• Reset interval (S)

Note that we can use a formula to calculate a process’ current priority
level if we know the amount of CPU time used in the past S seconds.

Avoiding starvation

• Low-priority
processes are said
to starve if they
never are given a
chance to run.
•MLFQ avoids

starvation by
periodically
boosting all process’
priorities (rule 5).

Many new interactive
processes are created that
hog the CPU

Process A’s priority
drops as it runs on
the CPU

*This diagram shows a simplified version of MLFQ

An MLFQ optimization
• Lower priority processes are CPU-bound, not interactive, so we can

use longer time slices (quanta) to minimize context switches:

User-defined process priority
•MLFQs are designed to automatically favor the right processes
• But sometimes it makes sense to give the OS some scheduling hints

•Most OSes also have a way for users to specify a process’ “priority”
• Eg., nice command on Unix
• User-specified priority can change the MLFQ behavior
• For example, if the user marks a process as “low priority” then
• MLFQ may reset it to one of the middle levels instead of the top level.
• May give it a smaller CPU quota at each level

• The OS may also treat system (root) processes with higher priority

Context switch mechanisms revisited
• Recall that OS takes over when an interrupt occurs
• At this time, it can use its scheduling algorithm to determine which

process should run next.
• Can return to the same process, or
• Can context switch to a different process

• Programmable timer should be set to the scheduling time slice (or a
multiple of it) to give the OS scheduler an opportunity to run.

Recap
•Defined two conflicting metrics: turnaround time and response time
• Cannot optimize both – must tradeoff, or balance, the two

•Optimized by shortest job first and round robin, respectively
• Context switching overhead is due to the CPU caches
• CPU keeps most recently used data in nearby caches, so it’s more efficient to

let an ongoing process continue.
• I/O-blocked processes make progress without using the CPU
• We should prioritize I/O-bound processes

•Multi-Level Feedback Queues are often used in real OS schedulers
• Prioritizes “polite” processes that use little CPU time when scheduled
• CPU-bound processes squander their time quotas and lose priority

