BEECS-343 Operating Systems
Lecture 3:
Process Creation and
Memory lLayout

Steve Tarzia

Spring 2019

Northwestern

Announcements

* Project 1 due on Monday!

l.ast Lecture

* Process 1s a program in execution

* Limited direct execution 1s a strategy whereby a process usually
operates as if it has full use of the CPU & memory.

* CPUs have user and kernel modes to prevent user processes from
running privileged instructions, thus Amiting execution.

* Interrupts are events that cause the kernel to run

* System Calls (or traps) are software interrupts called by a user
program to ask the OS to do something on its behalf.

* Timer Interrupt ensures that the kernel eventually runs.

Readings

* So far, we’ve covered Chapters 1-

4 and 6 (Chapter 5 1s today). O N
eratln 1

* Please read the Scheduling i P g
chapters next (Chapters 7-9) S)’Stems

* In the future, juSt try to follow Three Easy Pleces
along on your own. | '

* The syllabus says which chapters
we’re skipping.

By Remziv H'.A;'pa_ci‘fDus;_é‘au
Andrea C._Arpa’ci-Qusse,él:u

Example Unix syscalls (process-related)

* exit — terminate the current process

* fork — duplicate the current process

* walt — walt for a process to terminate

° exec — run a program (in the current process)

* time/stime — get/set current time (in seconds)

* brk — change the process “break,” meaning max memory address

* oetpid — get current process’s id

* pause — wait for a signal from another process

* kill — send a signal to another process (named after one signal type)

* oetuid/setuid — get/set the effective user id of the current process

Example Unix syscalls (file-related)

* read/write — read /write data from a file descriptor
* open — open/create a file

* close — close a file descriptor

* chdir — change working directory

* mknod — create a filesystem folder

* chmod — change permissions of a file

* chown — change ownership of a file

* seek — change r/w offset in a file

* utime — change modification time of a file/folder

* mount/umount — mount or unmount a filesystem

“Hello world” with syscalls (in Linux)

C code:

int main() {
write(l, “Hello, world\n”, 13);

exit(0);
}

* Notice that we are not using printf
* printf 1s a libc function

* libc’s implementation of printf will
use write, which 1s a syscall.

(Bryant and O’Hallaron, Figure 8.11) =

w N —

wn N

(@)}

10
11

13

14
15

.section .data
string:

.ascii "hello, world\n"

string_end:

.equ len, string_end - string

.section .text
.globl main
main:

First, call write(1, "hello, world\n", 13)

movl $4, Yeax
movl $1, Yebx
movl $string, %ecx
movl $len, %edx
int $0x80

Next, call exit(0)
movl $1, %eax
movl $0, %ebx
int $0x80

System call number 4
stdout has descriptor 1
Hello world string
String length

System call code

System call number 0
Argument is 0
System call code

Last time: Arrows on this slide were wrong

,ﬁ,"\

\[ikeal Mewory

| Stored on the top of

CRW &Qﬂiskrj
eox]__]
e 3\ esal
wr j e\ufpst
edx []
. —]) dalq)
ou } guimers
ebp

1 wasttadtion

cointer J

the process’ stack

5‘,'“;‘(QQMQ >\
| 7 base pointer

Memory is “virtual.”
We'll see later that it’s
very easy to switch.

struct context {

uint| edi;
uint| esi;
uint| ebx;

uint| ebp;

uint| eip;

}s

xv0 stores register values are stored in #hree places

C W &Qﬂiskf;
2 (’,“1 l
1 ebx 1 juc.m\
2 erX pargese
7 edX
) datqg
1 est
intelrs
1 e&i- } N
fock Frome
1 ebp 5 \?f;o pointer
3 esp Stk Qoin-}u*
1 evel] instrudion

eoiw\tr

1. In struct context (proc->context):
ebx, esi, edi, ebp, eip
and esp 1s the address of the struct.
2. In the user process’ stack:

eax, ecx, edx
(by the x86 calling convention)

3. In struct trapframe (proc->tf):
esp, and also copies of
edi, esi, ebp, eax, ebx, ecx, edx
* These are automatically written by the CPU
hardware when an interrupt occurs.

* Why store duplicates? ...zdk

proc.h

//
//
//
//
//
//
//
//
//
//
st

Saved registers for kernel context switches.

Don't need to save all the segment registers (%cs, etc),

because they are constant across kernel contexts.

Don't need to save %eax, %ecx, %edx, because the Pushed on “top”
x86 convention is that the caller has_sawvee em.

Contexts are stored at theof the stack they
describe; the stack pointer is the address of the context.

The layout of the context matches the layout of the stack in swtch.S

at the "Switch stacks" comment. Switch doesn't save eip explicitly,

but
ruct
uint
uint
uint
uint
uint

it is on the stack and allocproc() manipulates it.

context {

edi;

esi; When kernel takes over during the interrupt handler, it
ebx; copies register values from the trap frame to a new struct
ebp; context that’s pushed on the user process’ stack.

eip;

...and

// Layout of the trap frame built on the stack by the
// hardware and by trapasm.S, and passed to trap().

struct

in x36.h:

trapframe {

// registers as pushed by pusha

uint
uint
uint
uint
uint
uint
uint

uint

edi;
esi;
ebp;
oesp; // useless & ignored
ebx;
edx;
ecx;

eax;

// rest of trap frame

ushort gs;

ushort paddingl;

ushort fs;

ushort padding2;

ushort es;

ushort padding3;

ushort ds;

ushort padding4;

uint

trapno;

}s

// below here defined by x86 hardware
uint err;

uint eip;

ushort cs;

ushort padding5;

uint eflags;

// below here only when crossing rings, such as from user to kernel
uint esp;
ushort ss;

ushort padding6;

The OS Coder’s Curse

* Not only do we have to use C...

e We also have to understand the
Intel x86 processor architecture

* X80 1s messy because it carries

* 40 years of incremental updates

and backward compatibility

* but it’s the architecture most
relevant to SW Eng. practice

* We’ll gloss over some of the low-
level details

* Read the xv6 book & code when
you really need to know.

Interrupt handling involves
both hardware and software

In response to interrupt, the

CPU hardware:

* Saves main registers to trap frame
on the kernel stack (each process has
two stacks)

* Switches to kernel mode

* Jumps to interrupt handler code

Then kernel software takes over to
handle the interrupt and when
finished can switch to a different
process 1f desired.

OS @ boot Hardware
(kernel mode)

initialize trap table
remember address of...
syscall handler

OS @ run Hardware Program
(kernel mode) (user mode)

Create entry for process list
Allocate memory for program
Load program into memory
Setup user stack with argv
Fill kernel stack with reg/PC
return-from-trap

restore regs from kernel stack

move to user mode

jump to main

Run main()

Call system call
trap into OS
save regs to kernel stack
move to kernel mode
jump to trap handler
Handle trap
Do work of syscall
return-from-trap
restore regs from kernel stack
move to user mode
jump to PC after trap

return from main
trap (via exit ())
Free memory of process
Remove from process list

Table 6.2: Limited Direction Execution Protocol

Instruction set architectures vary

* Low-level OS code for Intel x86 looks very different than that for
ARM, PowerPC, SPARC, etc.

* Linux supports all of the above architectures and it requires different
assembly code to handle context switches and interrupts on each.

* So, let’s try not to get hung up on the machine-dependent details.

AAAAAAAA

An OS can support multiple CPU architectures

* Linux supports x86 plus 30 other architectures, and growing!
* See https://github.com/torvalds/linux/tree/master/arch

* How? Ditterent low-level code is used for different builds.
* Includes some C and Assembly code

* This is just a small fraction of the overall Linux codebase
* But it would probably be close to half of xv0, since it’s such a simple OS.

* “Ports” of the Linux OS tend to be managed by different groups

* Eg., much of the ARM source code bears the following comment:

Copyright (C) 2012 ARM Ltd.
Authors: Will Deacon <will.deacon@arm.com>
Catalin Marinas <catalin.marinas@arm.com>

https://github.com/torvalds/linux/tree/master/arch

Writing an OS for multiple CPU architectures

What’s different? What’s the same? ... most C code:

* All the assembly code + some C * Filesystems

e Process scheduler
* Boot code

* Inter-process communication

* Mechanisms tor * Networking
* Interrupt handling * Security / user management
* Context switching o DPolicies for
* Memory management * Context switching
* Device drivers (to control peripheral * Memory management
hardware)

* Etc.

Linux’s entry.S in both x86 and arm for context switch

- /

* %eax: prev task
* %edx: next task
*/
ENTRY(__switch_to_asm)
/*
* Save callee-saved registers

* This must match the order in struct inactive_task_frame

*/

pushl %ebp
pushl %ebx
pushl %edi
pushl %esi

/* switch stack */
movl %esp, TASK_threadsp(%eax)
movl TASK_threadsp(%edx), %esp

/* restore callee-saved registers */

popl %esi
popl %edi
popl %ebx
popl %ebp
jmp __switch_to

ND(__switch_to_asm)

N\

* Register switch for AArch64. The callee-saved registers need to be saved

* and restored. On entry:

* x@ = previous task_struct (must be preserved across the switch)

* x1 = next task_struct

* Previous and next are guaranteed not to be the same.

*

*/

ENTRY(cpu_switch_to)

mov
add
mov
stp
stp
stp
stp
stp
stp
str
add
1dp
1dp
1dp
1dp
1dp
1dp
ldr
mov
msr

ret

x10, #THREAD_CPU_CONTEXT

X8, x0, x10

X9, sp

x19,
x21,
x23,
x25,
x27,
x29,

x21,
X23,
x25,
x27,

X209,
x22,
xX24,
X26,
x28,

[x8],
[x8],
[x8],
[x8],
[x8],

#16
#16
#16
#16
#16

x9, [x8], #16
1r, [x8]
x8, x1, x10

x19, x20, [x8],

X22,
X24,
X26,
X28,

[x8],
[x8],
[x8],
[x8],

#16
#16
#16
#16
#16

x29, x9, [x8], #16
1r, [x8]

sp,

x9
sp_elo, x1

ENDPROC(cpu_switch_to)

// store callee-saved registers

// restore callee-saved registers

Context switch x86 assembly code
Linux xv0

/* # Context switch
* %eax: prev task #
* %adx: next task # void swtch(struct context **old, struct context *new);
*/ #
ENTRY(__switch_to_asm) # Save current register context in old
and then load register context from new.

/*

* Save callee-saved registers
.globl swtch
* This must match the order in struct inactive_task_frame

swtch:
N :
/ movl 4(%esp), %eax Difference #1: xv6 passes
pushl %ebp
Movl 8(%esp), Nedx parameters on stack
pushl %ebx
pushl %edi # Save old callee-save registers
pushl %esi pushl %ebp
pushl %ebx))
/* switch stack */ pushl %esi } Difference #2: %oest & %oedi
movl %esp, TASK_threadsp(%eax) pushl Xedi registers are in different order

movl TASK_threadsp(%edx), %esp
Switch stacks

movl %es %eax
/* restore callee-saved registers */ P> {)

movl %edx, %esp

popl %esi
popl %edi # Load new callee-save registers
popl %ebx popl %edi
popl %ebp popl %esi
popl %ebx
jmp __switch_to popl %ebp

END(__switch_to_asm) ret

Process creation in Unix

* Uses a combination of forkand exec syscalls

* Fork creates an exact duplicate of the current process, except
* Has a new process id
* Parent/child processes are different
* Return code of fork() command 1s different (...you’ll see what I mean)

* Exec overwrites the code of the current process with that in a file

* [t looks like a strange design, but it makes the command-line shell
implementation clean.

Fork syscall

int main(int argc, char *argv[]) {

printf("hello world (pid:¥d\n", (int) getpid(); * The new (child) process
int rc = forkQ); .
if (rc < @) { // fork failed; exit continues where the parent
fprintf(stderr, "fork failed\n");
exit(l); lﬁft Off
} else if (rc = 0) { // child (new process) .
printf("hello, I am child (pid:%d)\n", (int) getpid()); It does not start from the
} else { // parent goes down this path (main) . . .
printf("hello, I am parent of %d (pid:%d)\n", begmnmg of malﬂo
, rc, (int) getpid()); e fork returns:
, et 0 * 0 to the child process
* the child pid to the parent
OQutput * Two processes share the
hello world (pid:29146) same stdin, stdout, & stderr

hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)

Nondeterminism
* At the end of the fork syscall, the
OS has two runnable processes.
int mainCint argc, char *argv[]) { * We cannot predict whether the OS
printf("hello world (pid:%d)\n", (int) getpid()); will schedule the parent or child

int rc = forkQ);
if (rc < 0) { // fork failed; exit process to tun Next.

fprintf(stderr, "fork failed\n"); ° Dep@pds on the rqntime situatipn
exit(1); and hidden kernel implementation
} else if (rc = @) { // child (new process) details.
printf("hello, I am child (pid:%d)\n", (int) getpid()); > >
} else { // parent goes down this path (main) * Thus the .p'ro.gram S OutPFltS called
printf("hello, I am parent of %d (pid:%d)\n", nondeterministic or indeterminate.
rc, (int) getpid(); * Meaning it can exhibit different
¥ behavior on different runs.
return 0; ey eqe .
} * There are two output possibilities:
Output possibility 1: Output possibility 2:
hello world (pid:29146) hello world (pid:29146)

hello, I am parent of 29147 (pid:29146) hello, I am child (pid:29147)
hello, I am child (pi1d:29147) xhello, I am parent of 29147 (pid:29146)

Nondeterminism

* Can arise when a concurrent program has a race condition, meaning:
* Two or more things are happening at the same time,
* It’s not clear which will finish first, and

* The output will be different depending on which finishes first.

* In the fork example, the two competing tasks were:

* The parent process waiting to run and print
* The child process waiting to run and print

* Race conditions can lead to difficult software bugs

* 99% of the time it behaves one way, but sometimes it behaves another way
* Hezsenbugs — bugs that disappear when testing (in this case due to timing)

Can you spot the tricky bug here?

int main(){ e . ..
// open a file * This code 1s nondeterministic

int fd = open(filename, O_RDWR);
if (fd == -1) { /* Handle error */ } e Hither parent or child will pl’lﬂt

first character of file

char c;

pid_t pid = fork(Q); . .

if (pid == -1) { /* Handle error */ } * However, this code will also
// child : .

if (pid = @) { crash 1n very rare scenarlos.

read(fd, &c, 1);
printf("child:%c\n",c);

}

// parent

else {
read(fd, &c, 1);
printf("parent:%c\n",c);
do_some_work();
// close the file
close(fd);

}

return 0;

A race condition between child’s read and parent’s close

int main(){
// open a file
int fd = open(filename, O_RDWR);
if (fd == -1) { /* Handle error */ }

char c;

pid_t pid = fork(Q);

if (pid == -1) { /* Handle error */ }

// child

if (pid = 0) {
read(fd, &c, 1);
printf("child:%c\n",c);

}

// parent

else {
read(fd, &c, 1);
printf("parent:%c\n",c);
do_some_work();
// close the file
close(fd);

}

return 0;

M

I'he child’s read can happen after
the file was closed by the parent.

* Normally, ¢/ose will happen well
after both reads, because
do_some work will be slow.

* But this 1s not guaranteed!

Recall that CPU exceptions are a type of interrupt

* Often caused by arithmetic errors (divide by zero), and memory
violations (eg;, dereferencing a null or invalid pointer)

* When user code causes an exception:
* Kernel interrupt handler runs, and will likely kill the user process.

* What happens when kernel code causes an exception?
* Interrupt handler will still run, but it’s not clear what can be done in response.
* On Windows, the famous “blue screen of death”
* On Linux, a “kernel panic”
* This is commonly seen by kernel developers, but hopefully not users.
* This is different than the machine just freezing,
* Kernel knows there is a problem, but doesn’t know how to react.

On Windows (old & new)

| Windous

An error has occurred. To continue:

Press Enter to return to Windows, or

Press CTRL+ALT+DEL to restart your computer. If you do this,
you will lose any unsaved information in all open applications.

Error: OE : 016F : BFF9B3D4
®

Press any key to continue _

Your PC ran into a problem and needs to restart. We're just
collecting some error info, and then we'll restart for you. (0%
complete)

If you'd like to know more, you can search online later for this error: HAL INITIALIZATION FAILED

On older Macs

You need to restart your computer. Hold down the Power
button for several seconds or press the Restart button.

Veuillez redémarrer votre ordinateur. Maintenez la touche
de démarrage enfoncéee pendant plusieurs secondes ou bien
appuyez sur le bouton de réinitialisation.

Sie mussen lhren Computer neu starten. Halten Sie dazu
die Einschalttaste einige Sekunden gedruckt oder drucken
Sie die Neustart-Taste.

AVE2—72BENT IUNENHDET, INT—RT V%
BB URIT AN VEYRRYOEBLTLEZV,

[Kffffffff813dB59%a>]1 ? Bxffffffff813d859a
[Kffffffff813d155b>1 ? Bxffffffff813d155b
[Kffffffff813d21ea>]1 ? Bxffffffff813d21ea
[Kffffffff82317c2d>1 ? Bxffffffff82317c2d
[Kffffffff81888296>1 ? Bxffffffff81888296
[Kffffffff81084a19f>1 ? Bxffffffff8184a19f
[Kffffffff822e5e81>1 ? Bxffffffff822e5e81
[Kffffffff822e5647>1 ? Bxffffffff822e5647
[Kffffffff81a8e853>]1 ? Bxffffffff81a8e853
[Kffffffff81a8e859>]1 ? Bxffffffff81a8e859
[Kffffffff81a9d198>1 ? Bxffffffff81a9d198

[Kffffffff81a8e853>1 ? Bxffffffff81a8e853

Code: 18 db6 ff ff 8b 92 B8 b6 BB BB 89 d2 48 8b 8f 18 db ff ff 8b 89 8B4 bbb B8 8H
48 c1 el 28 48 89 d1 31 d2 49 89 c8 49 29 cB 4c 89 cB 49> f7 f1 48 89 c8 48 85
d2 75 85 4d 39 d8 76 85 ff ce 75 be c3

RIP [Kffffffff817484bf>]1 Bxffffffff817484bf

RSP <ffff880814c8ffc98>

———[end trace c384d3e911dbalbb 1-—-

Rernel panic - not syncing: Attempted to kill init! exitcode=Bx88888808b

Rernel Offset: Bx8 from Bxffffffff8188888BA (relocation range: Bxffffffff88BBBLBAAG
-Bxffffffff9ffefefer)
———[end Rermnel panic - not syncing: Attempted to kill init?! exitcode=8xB888888DL

Intermission recap

* xv6 OS code is written for the Intel x86 CPU architecture, but...
* Linux supports 31 different CPU architectures

e Low-level wechanisms are different on each arch.
* High-level po/icies are the same for all.

* Fork syscall: run once, exits twicel!
* Nondeterminism 1s when a program’s output is unpredictable

* OS process scheduler can create race conditions in programs that rely on
an interaction of multiple processes.

* These are tricky to debug, because they are sensitive to timing ([Hezsenbngs).

* Kernel panic occurs when OS causes an exception and can’t recover

Starting a process

1{,‘\

\J\{\w\\ Mewory

“Clobal Deta

(z)é.”,

D)

| |

C W Q\Qj]d’(—rj

eox L 1

ebx E —l em‘
ecx [1| et
edx [_1

. —]) dalm

210r|;_,,__—i } gbin‘\'tl' S
ebel] 54’:3: fﬁ:ﬁ
esp [_1 stack peinter

llllllllllllllllllllllllllllllllllll

= e | E
/‘:/ cointer E
asssssssssssssssssssssssnananannns’

Requires just a few steps:

* Copy machine code and initial
data into memory

* In other words, copy the program’s
executable file into memory

* Set Instruction pointer register to
address of code start

* In other words, jump to code start

Code will use the registers and

memory as necessary to perform
it’s work.

What’s this stack we always talk about?

addresses

i zadls

B |

C W Q\Qj]d'(—rj
eox L 1
eh)‘ E —S em‘
ecx [1| e
edx []
) daty
est F
edi L_,___l } gm\'\tl‘s
A “K eeane,
| - ebe | 54’\,:}0 fxwet
esp [1 stack pointer
eve | 1 wstrudtion
cointer

* a.k.a: execution stack, machine
stack, call stack, control stack

* It’s just a convenience for the
assembly programmer/compiler.

* Allows program to call subroutines
and manage local variables with
just a few instructions.

* Stack pointer (%€Sp) is used &
automatically adjusted by:

* push, pop
*call, ret (return)

Using the stack tor

subroutines
%esp
Stack Pointer > top of stack \
Locals of
%ebp DrawlLine stack frame
for
Frame Pointer > .
Return Address . DrawLine
subroutine
Parameters for
DrawlLine)
(Locals of
stack frame DrawSquare 3
for J |_Return Address 2y
DrawSquare P
subroutine Parameters for | &
DrawSquare
.

* Greatly simplifies machine code
generation for C-style functions

e Current function’s local variables
are on top ot the stack

* To return,

* restore callet’s stack frame by
restoring %€Sp, %ebp

* Place function’s return value in %e ax

* Drawl.ine code can always find it’s
Dparameters and local variables

* Regardless of when/where the function
was called, variables can be found
relative to %ebp, the frame pointer

* In other words, the stack allows
subroutines to be mutually zso/ated.

Heap memory

\igkoal Mewory CRW Registers
- Z eox] 1
// obx E A juem‘
Kerne\ 771 exTC | e
cesesvell Z/ edx [1
| esil — } ;\.?:i:rs
hfStac.\& § el _——
. L grows \e\,ﬂ | Stack o
Parss 4 N—espC 1 simok peinter
Heap Data § eie | 7 instracion
(ma\ 0‘) cointer
Clobal D “
§ When is hewwry £llea®
Codo | B Loatin
| B Run_time
‘I:E‘:j”é —— % B Vever

* Heap 1s just where C’s wzalloc
function dynamically allocates
Memory.

* The CPU has no notion of a
spectal heap region.
* Organizing memory into stack and
heap is just a convention.

* Stack and Heap grow toward each
other, eating free space between.

“Heap” memory has nothing to do
with the “heap” self-balancing
priority queue data structure.

Context Switch to change process

\J'\f)NA\ Mewory

Code

Data

C R\ &Qgisk.t;
eaX‘ ‘l
oo E 1\ ecal
ecx [3 | et
edx []
esil —! } s
vintel
edif ——— 1) ¢ g
54‘a¢\< Frome
ebe| base pointer
esp [1 staok peinter
eve [1 instradion
goiv\‘ltr

Context switch 1s when CPU switches

from running one process to running
another.

* Want context switches to be fast, to
otve user the illusion that processes
are running simultaneously

* Need to swap out all process state

* Registers are small & fast, so they
can be saved and restored

* But how to deal with memory?
* It’s big]
* Would be too slow to copy all
memory elsewhere (to disk?)

Linux process virtual memory address regions

. Memory
* Top of the memory range is comewrmomary | 1 misbie o
user code
reserved for the kernel. User stack
(created at run time)

* This is actually mapped to the

same physical memory for every _
Memory mapped region for | ,ip £ function
PIrOCCESS. shared libraries

* On the PC, low memory range 1s
reserved for I/O Run-time heap

(created at run time by malloc)

e Shared libraries are not used in Read/wite data
XV6, but they GXiSt lﬂ mOderﬂ Read-only code and data

0x08048000 (32)_ _

OSGS hke LiﬂuX 0x00400000 (64)

Loaded from the
hello executable file

Operating systems vary in the details

Linux process memory layou

Memory
invisible to
user code

Kernel virtual memory

User stack
(created at run time)

OxCOOOOO0O

Memory mapped region for printf function
shared libraries

Run-time heap

xv6 process memory layout

OXFFFFFFFF

free memory

text and data

0x80100000

BIOS

80000000

(created at run time by malloc)

Read/write data
Loaded from the

hello executable file

Read-only code and data

heap

user stack

0x08048000 (32)_
0x00400000 (64)

Issues with
xv6 layout?

user text
and data

kernel

user

Final recap

* fork + exec runs a program.

* fork duplicates the current process

* exec copies code and global data
from an executable file, and creates
a new empty stack.

* Stack grows from high addresses
down to lower.

* Grows larger when a function is

called.

e Shrinks when a function returns.

* Heap is a block of memory
managed by C’s malloc & free.

,LQ‘\

\J'\C koal (Newory CRW Begidters
- // eox]]
% ov [X [qenesal
Yeme\ 77| oxC ([ewrtese
7
cesesvell 7| >C —
// esil — } O\a:i:rs
. . gbi
FSEA(.\‘. § el ——
| ""3%“ \e\:ﬂ | 54’\?3\: f"r':m
'Lgmi “ esp _ 1 stack pointer
N\
Ht op Da}(\ \ eve | —1 wstracdion
’ (maWoc) § (cointer
| Clobal Dt S
o \\\ l/J\‘\Qv\ s memory £llea
A | Load -dim
{ od.o ‘§ E Do - Time
) N)
‘?‘}\{\ . Run —time
T o = B Never
| T°0 reserved 7

