
EECS-343 Operating Systems
Lecture 3:

Process Creation and
Memory Layout

Steve Tarzia
Spring 2019

Announcements
• Project 1 due on Monday!

Last Lecture
• Process is a program in execution
• Limited direct execution is a strategy whereby a process usually

operates as if it has full use of the CPU & memory.
• CPUs have user and kernel modes to prevent user processes from

running privileged instructions, thus limiting execution.
• Interrupts are events that cause the kernel to run
• System Calls (or traps) are software interrupts called by a user

program to ask the OS to do something on its behalf.
• Timer Interrupt ensures that the kernel eventually runs.

Readings
• So far, we’ve covered Chapters 1-

4 and 6 (Chapter 5 is today).
• Please read the Scheduling

chapters next (Chapters 7-9)
• In the future, just try to follow

along on your own.
• The syllabus says which chapters

we’re skipping.

Example Unix syscalls (process-related)
• exit – terminate the current process
• fork – duplicate the current process
• wait – wait for a process to terminate
• exec – run a program (in the current process)
• time/stime – get/set current time (in seconds)
• brk – change the process “break,” meaning max memory address
• getpid – get current process’s id
• pause – wait for a signal from another process
• kill – send a signal to another process (named after one signal type)
• getuid/setuid – get/set the effective user id of the current process

Example Unix syscalls (file-related)
• read/write – read/write data from a file descriptor
• open – open/create a file
• close – close a file descriptor
• chdir – change working directory
•mknod – create a filesystem folder
• chmod – change permissions of a file
• chown – change ownership of a file
• seek – change r/w offset in a file
• utime – change modification time of a file/folder
•mount/umount – mount or unmount a filesystem

“Hello world” with syscalls (in Linux)
C code:

int main() {
write(1, “Hello, world\n”, 13);
exit(0);

}

• Notice that we are not using printf
• printf is a libc function
• libc’s implementation of printf will

use write, which is a syscall.

(Bryant and O’Hallaron, Figure 8.11) à

Last time: Arrows on this slide were wrong

Stored on the top of
the process’ stack

Memory is “virtual.”
We’ll see later that it’s
very easy to switch.

xv6 stores register values are stored in three places
1. In struct context (proc->context):

ebx, esi, edi, ebp, eip
and esp is the address of the struct.

2. In the user process’ stack:
eax, ecx, edx
(by the x86 calling convention)

3. In struct trapframe (proc->tf):
esp, and also copies of
edi, esi, ebp, eax, ebx, ecx, edx
• These are automatically written by the CPU

hardware when an interrupt occurs.
•Why store duplicates? …idk

2

1

2

2

1

1

1

3

1

proc.h

Pushed on “top”

When kernel takes over during the interrupt handler, it
copies register values from the trap frame to a new struct
context that’s pushed on the user process’ stack.

…and in x86.h:

The OS Coder’s Curse
•Not only do we have to use C…
•We also have to understand the

Intel x86 processor architecture
• x86 is messy because it carries
• 40 years of incremental updates

and backward compatibility
• but it’s the architecture most

relevant to SW Eng. practice
•We’ll gloss over some of the low-

level details
• Read the xv6 book & code when

you really need to know.
Photo from http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

Interrupt handling involves
both hardware and software
In response to interrupt, the
CPU hardware:
• Saves main registers to trap frame

on the kernel stack (each process has
two stacks)
• Switches to kernel mode
• Jumps to interrupt handler code

Then kernel software takes over to
handle the interrupt and when
finished can switch to a different
process if desired.

Instruction set architectures vary
• Low-level OS code for Intel x86 looks very different than that for

ARM, PowerPC, SPARC, etc.
• Linux supports all of the above architectures and it requires different

assembly code to handle context switches and interrupts on each.
• So, let’s try not to get hung up on the machine-dependent details.

An OS can support multiple CPU architectures
• Linux supports x86 plus 30 other architectures, and growing!
• See https://github.com/torvalds/linux/tree/master/arch

•How? Different low-level code is used for different builds.
• Includes some C and Assembly code
• This is just a small fraction of the overall Linux codebase
• But it would probably be close to half of xv6, since it’s such a simple OS.

• “Ports” of the Linux OS tend to be managed by different groups
• Eg., much of the ARM source code bears the following comment:

Copyright (C) 2012 ARM Ltd.
Authors: Will Deacon <will.deacon@arm.com>
Catalin Marinas <catalin.marinas@arm.com>

https://github.com/torvalds/linux/tree/master/arch

Writing an OS for multiple CPU architectures
What’s different?
• All the assembly code + some C
• Boot code
•Mechanisms for
• Interrupt handling
• Context switching
• Memory management

• Device drivers (to control peripheral
hardware)
• Etc.

What’s the same? … most C code:
• Filesystems
• Process scheduler
• Inter-process communication
• Networking
• Security / user management
• Policies for
• Context switching
• Memory management

Linux’s entry.S in both x86 and arm for context switch

Context switch x86 assembly code
Linux xv6

Difference #1: xv6 passes
parameters on stack

Difference #2: %esi & %edi
registers are in different order

Process creation in Unix
• Uses a combination of fork and exec syscalls
• Fork creates an exact duplicate of the current process, except
• Has a new process id
• Parent/child processes are different
• Return code of fork() command is different (…you’ll see what I mean)

• Exec overwrites the code of the current process with that in a file
• It looks like a strange design, but it makes the command-line shell

implementation clean.

Fork syscall

• The new (child) process
continues where the parent
left off.
• It does not start from the

beginning of main()
• fork returns:
• 0 to the child process
• the child pid to the parent

• Two processes share the
same stdin, stdout, & stderr

Output:

hello world (pid:29146)
hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)

Nondeterminism
• At the end of the fork syscall, the

OS has two runnable processes.
• We cannot predict whether the OS

will schedule the parent or child
process to run next.
• Depends on the runtime situation

and hidden kernel implementation
details.

• Thus the program’s output’s called
nondeterministic or indeterminate.
• Meaning it can exhibit different

behavior on different runs.
• There are two output possibilities:

Output possibility 1:

hello world (pid:29146)
hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)

Output possibility 2:

hello world (pid:29146)
hello, I am child (pid:29147)
hello, I am parent of 29147 (pid:29146)

Nondeterminism
• Can arise when a concurrent program has a race condition, meaning:
• Two or more things are happening at the same time,
• It’s not clear which will finish first, and
• The output will be different depending on which finishes first.

• In the fork example, the two competing tasks were:
• The parent process waiting to run and print
• The child process waiting to run and print

• Race conditions can lead to difficult software bugs
• 99% of the time it behaves one way, but sometimes it behaves another way
• Heisenbugs – bugs that disappear when testing (in this case due to timing)

Can you spot the tricky bug here?
• This code is nondeterministic
• Either parent or child will print

first character of file
•However, this code will also
crash in very rare scenarios.

A race condition between child’s read and parent’s close
The child’s read can happen after
the file was closed by the parent.

•Normally, close will happen well
after both reads, because
do_some_work will be slow.
• But this is not guaranteed!

Recall that CPU exceptions are a type of interrupt
•Often caused by arithmetic errors (divide by zero), and memory

violations (eg., dereferencing a null or invalid pointer)
•When user code causes an exception:
• Kernel interrupt handler runs, and will likely kill the user process.

•What happens when kernel code causes an exception?
• Interrupt handler will still run, but it’s not clear what can be done in response.
• On Windows, the famous “blue screen of death”
• On Linux, a “kernel panic”
• This is commonly seen by kernel developers, but hopefully not users.
• This is different than the machine just freezing.
• Kernel knows there is a problem, but doesn’t know how to react.

On Windows (old & new)

On older Macs

On Linux

Intermission recap
• xv6 OS code is written for the Intel x86 CPU architecture, but…
• Linux supports 31 different CPU architectures
• Low-level mechanisms are different on each arch.
• High-level policies are the same for all.

• Fork syscall: run once, exits twice!
•Nondeterminism is when a program’s output is unpredictable
•OS process scheduler can create race conditions in programs that rely on

an interaction of multiple processes.
• These are tricky to debug, because they are sensitive to timing (Heisenbugs).

• Kernel panic occurs when OS causes an exception and can’t recover

Starting a process
Requires just a few steps:
• Copy machine code and initial

data into memory
• In other words, copy the program’s

executable file into memory
• Set instruction pointer register to

address of code start
• In other words, jump to code start

Code will use the registers and
memory as necessary to perform
it’s work.

What’s this stack we always talk about?
• a.k.a: execution stack, machine

stack, call stack, control stack
• It’s just a convenience for the

assembly programmer/compiler.
• Allows program to call subroutines

and manage local variables with
just a few instructions.

• Stack pointer (%esp) is used &
automatically adjusted by:
• push, pop
• call, ret (return)

ad
dr

es
se

s

Using the stack for
subroutines

• Greatly simplifies machine code
generation for C-style functions
• Current function’s local variables

are on top of the stack
• To return,
• restore caller’s stack frame by

restoring %esp, %ebp
• Place function’s return value in %eax

• DrawLine code can always find it’s
parameters and local variables
• Regardless of when/where the function

was called, variables can be found
relative to %ebp, the frame pointer

• In other words, the stack allows
subroutines to be mutually isolated.

%esp

%ebp

addresses

Heap memory
• Heap is just where C’s malloc

function dynamically allocates
memory.
• The CPU has no notion of a

special heap region.
• Organizing memory into stack and

heap is just a convention.
• Stack and Heap grow toward each

other, eating free space between.

“Heap” memory has nothing to do
with the “heap” self-balancing
priority queue data structure.

Context Switch to change process
Context switch is when CPU switches
from running one process to running
another.
•Want context switches to be fast, to

give user the illusion that processes
are running simultaneously
• Need to swap out all process state
• Registers are small & fast, so they

can be saved and restored
• But how to deal with memory?
• It’s big!
• Would be too slow to copy all

memory elsewhere (to disk?)

Code
&

Data

Linux process virtual memory address regions
• Top of the memory range is

reserved for the kernel.
• This is actually mapped to the

same physical memory for every
process.

•On the PC, low memory range is
reserved for I/O
• Shared libraries are not used in

xv6, but they exist in modern
OSes like Linux

Operating systems vary in the details
Linux process memory layout xv6 process memory layout

0xC0000000

Issues with
xv6 layout?

Final recap
• fork + exec runs a program.
• fork duplicates the current process
• exec copies code and global data

from an executable file, and creates
a new empty stack.

• Stack grows from high addresses
down to lower.
• Grows larger when a function is

called.
• Shrinks when a function returns.

•Heap is a block of memory
managed by C’s malloc & free.

