BEECS-343 Operating Systems

Lecture 2:
Processes & System Calls

Steve Tarzia

Spring 2019

N OrthweStern Covers Chapter 4 and 5 in Three Easy Pieces

Announcements

* Midterm 1s on Thursday, May 20d.

* First two parts ot project 1 are due on Monday.
* Project part 2 (the big part) was posted, due the tollowing Monday.

* TA and Peer Mentor office hours will be in the Wilkinson ILab
(Tech M338)

* Another open OS book that will help you greatly:

* “xv0: a simple, Unix-like teaching operating system’ by Cox et al.
* Google “xv6 book rev11”

* Don’t forget to read the book! This lecture covers chapters 4-5.

https://pdos.csail.mit.edu/6.828/2018/xv6/book-rev11.pdf

Operating systems roles

* A user interface tor humans to run programs
* A resonrce manager allowing multiple programs to share one set of

hardware.
* A programming interface (API) for programs to access the hardware and

other services.

In this lecture we’ll start talking about how OS provides programs with
the illusion that they have the entire CPU and Memory to themselves.

Operating systems run processes

* A process 1s a program in execution

* On Linux/Mac run “ps” or “top” to see the active processes
* On Windows use the Task Manager

* OS assigns each new process a numeric process id.

Fach process has it own private view of the computer:

* CPU register values, including

* General purpose registers (eax, ebx, ecx, edx), index registers (edi, est)
* Stack pointer (esp, ebp), used to locate local variables, function return address, etc.

* Instruction Pointer, indicating the next instruction that will execute

* Virtual memory address space
* We will explore virtual memory in detail in a couple of weeks.

A program’s view of the computer

\Jigkval Mawory

Code

Data

C R\ &Qgisk.t;

eaX‘ ‘l

ebx E 1\ ecal

ecx [3 | et

edx [_ _1

esil ! } s

vintel

9 — 1 L e
54‘a¢\< Q_w\’.

ebe| | 7 base pointer

esp [C 1 ghaek pointer

eve [] instraction
cointer

* Machine code (after compilation) is
a sequence of simple instructions

understood by the CPU circuitry.

* Arithmetic, copy to/from memory,
and conditional jumps

* Operates on a few fast registers, and
a large block of memory.

* You may have heard of CPU caches.
There are optional and hidden trom
the program.

* Values stored in registers and in
memory represent a program’s state
(We’re 1gnoring the OS for a moment)

* Hach program has its own view like

this. The OS and CPU together

create this z//usion.

Let’s think at the assembly level for a moment

C Language: x86 assembly:

void functionl() { functionl:
int A = 10 m— pushl %ebp #
’ movl %esp, %ebp #,
A += 66; subl $4, %esp #,
) movl $10, -4(%ebp) #, A
leal -4(%ebp), %eax #,
addl $66, (%eax) #, A
movl %ebp, %esp
popl %ebp
ret

Example is from http://www.hep.wisc.edu/~pinghc/x86AssmTutorial.htm

“Limited direct execution’

* This 1s how the OS supports multi-tasking (concurrent execution)

* (In this class we usually assume a machine has one CPU core)

* et a process run for a while with exclusive use of the CPU
* Can use all the CPU registers

* Eventually, the OS pauses that process to let another process run
* Then #hat process will use CPU for a while ...

* This is a context switch: the OS/kernel has changed the active
process.

Multitasking

|
Process A | Process B

Time .
‘L | User code
read ---> —
\ Kernel code b Context
: | switch
. ! User code
sk interrupt--- - ' | Kernel cod oniaxt
Retun ! © J switch
from read !
! + . User code

Diagram from Bryant & O’Hallaron book

Processes don’t run all the time

* OS schedules processes

* Decides which of many competing

processes to run.
escheduled]
@ * A blocked process 1s not ready to run.
Scheduled
* [/O means input/output — anything

I/O: |n|t|a I/O done other than comp ut.lng. o .
* For example, reading/writing disk

sending net\x,fork packet, waiting f(;r
Slocked keystroke, updating display:
* While waiting for results, the process

often cannot do anything, so it blocks,
telling the OS to let someone else run.

Process execution 1s lwited

* User processes execute with CPU 1n “user mode”

* Can only execute basic arithmetic, branching, and memory read/write
instructions (within a specific range/segment).
* CPU will not execute certain privileged instructions when in user mode..

* OS kernel runs with the CPU in “privileged/kernel mode”

* Allows all instructions, including:

* Changing registers that control which memory is accessible
* Performing I/O, switching CPU mode.

* Farly CPUs lacked multiple modes, so could not support a real OS,
* For example, the first IBM PC had an Intel 8088 CPU lacking this feature,
so PC DOS was a very limited OS.

* Intel 386 processor in 1985 enabled a true OS for PCs (OS/2 and Windows).

Things a program cannot do itself

* Print “hello wotld”

* because the display is a shared resource.
* Download a web page

* Decause the network card is a shared resource.
* Save or read a file

* because the filesystem is a shared resonrce and the OS wants to check file permissions first.

* Launch another program
* because processes are managed by the OS

* Send data to another program

* because each program runs in isolation, one at a time

Break time

“It must be you. The computer, it s0 happens, is user-friendly.”

Interrupts

A way for the CPU to be, well, znterrupted.

* CPU switches to privileged mode (kernel activates)
* Now any instruction can be executed, including privileged ones.

* Execution jumps to a predefined location

* (specified in the CPU’s interrupt vector table)
* This ensures that the kernel code starts running.

* Interrupts are the only way the kernel is activated (after boot-up)

* Used to support asynchronous I/0O
* Lets a hardware device tell the CPU that some data is ready
* Remember that a disk operation 1s millions of times slower than an add.

* CPU has an electrical pin for hardware interrupts.

* There 1s also an instruction for soffware interrupts.

Interrupts numbers in xv6 (traps.h)

[~

mmgmuuuwgwr—'l—;ul—ﬂt—"c—nu_
« W) b 2 e W o e W A W NN @@

// Processor-defined:
#define T_DIVIDE
Sdefine T_DEBUG
Sdefine T_NMI
#define T_BRKPT
#define T_OFLOM
#define T_BOUND
#define T_ILLOP
#define T_DEVICE
#define T_DBLFLT
// 8define T_COPROC
#define T_TSS
#define T_SEGNP
sdefine T_STACK
#define T_GPFLT
#define T_PGFLT
// 8define T_RES
#define T_FPERR
#define T_ALIGN
#define T_MOHK
#define T_SIMDERR

RN GGEREERERvevavaEwNnNmeS

// divide error

// debug exception

// non-maskable interrupt

// breakpoint

// overflow

// bounds check

// illegal opcode

// device not available

// double fault

// reserved (not used since 486)
// invalid task switch segment
// segment not present

// stack exception

// general protection fault

// page fault

// reserved

// floating point error

// aligment check

// machine check

// SIMD floating point error

// These are arbitrarily chosen, but with care not to overlap
// processor defined exceptions or interrupt vectors.

#define T_SYSCALL 64 // system call
#define T_DEFAULT 500 // catchall
#define T_IRQO 32 // IRQ @ corresponds to int T_IRQ

#define IRQ ERROR
#define IRQ SPURIOUS

#define IRQ TIMER 2]
#define IRQ KBD 1 .
edefine INQ COML . External hardware:
Sdofine LIS " * Keyboard

19

n

e [IDE disk

CPU exceptions trigger interrupts, eg.:
* arithmetic overtlow
* 1nvalid memory access

(general protection fault)

System Calls (syscalls)

...are the way that processes ask the OS to do things for them.

* Run a Software Interrupt (a.k.a. trap) instruction (1Nt on x806)

* Syscall number and parameters are loaded into pre-defined registers
* Kernel takes over during the interrupt handler routine

* A regular function call into a library would be insufficient because it
would run in the same process, in user mode.

Syscalls 1n xv6

e user . h defines function
prototypes for syscalls:

* User processes can call these
functions in C code

* But these are not regular

functions!

* They’re just wrappers that trigger
software interrupts.

// system calls

int fork(void);

int exit(void) __attribute__((noreturn));
int wait(void);

int pipe(int*);

int write(int, void*, int);

int read(int, void*, int);

int close(int);

int kill(int);

int exec(char®*, char**);

int open(char®*, int);

int mknod(char*, short, short);
int unlink(char*);

int fstat(int fd, struct stat*);
int link(char*, char*);

int mkdir(char*);

int chdir(char*);

int dup(int);

int getpid(void);

char* sbrk(int);

int sleep(int);

int uptime(void);

Implementation of syscall user functions 1s in assembly

4

#define SYSCALL(name) \
.globl name; \
name: \
movl $SYS_## name, Xeax; \
int $T_SYSCALL; \

ret

SYSCALL(fork)
SYSCALL(exit)
SYSCALL(wait)
SYSCALL(pipe)
SYSCALL(read)
SYSCALL(write)
SYSCALL(close)
SYSCALL(kill)
SYSCALL(exec)

*USYS.S

* There’s some funky C-preprocessor
syntax here.

* Will generate this code for K111 (1nt):

.globl kill
kill: movl $SYS kill, %eax

int $T SYSCALL
ret

* “globl” makes the symbol visible to the
linker, so 1t’s like writing a C function.

Syscall numbers are defined in syscall.h

// Systeam call numbers
#define SYS_fork
#define SYS_exit
#define SYS_wait
#define SYS_pipe
#define SYS_write
#define SYS_read
#define SYS_close
#define SYS_kill
#define SYS_exec

O 0 N OV A WN e

#define SYS_unlink 12
#define SYS_fstat 13
#define SYS_link 14
#define SYS_mkdir 15
#define SYS_chdir 16
#define SYS_dup 17
#define SYS_getpid 18
#define SYS_sbrk 19
#define SYS_sleep 20
#define SYS_uptime 21

P URBBERESBLHELURNERB oo vowa

fd
W

Syscall table is defined in syscall.c

83

// array of function pointers to handlers for all the syscalls
static int (=syscalls[])(void) = {

[SYS_chdir]
[SYS_close]
(SYS_dup)
[SYS_exec]
[SYS_exit]
[SYS_fork)
[SYS_fstat)

[SYS_getpid)

[SYS_kill)
[SYS_link]
[SYS_mkdir)
[SYS_mknod)
[SYS_open]
[SYS_pipel
[SYS_read)
[SYS_sbrk]
[SYS_sleep]

[SYS_unlink]

[SYS wait]

[SYS_write]

[SYS_uptime)

}

sys_chdir,
sys_close,
sys_dup,
sys_exec,
sys_exit,
sys_fork,
sys_fstat,

sys_getpid,

sys_kill,
sys_link,
sys_mkdir,
sys_mknod,
sys_open,
sys_pipe,
sys_read,
sys_sbrk,
sys_sleep,

sys_unlink,

sys_wait,
sys_write,

sys_uptime,

* There 1s one software interrupt
handler function in the kernel,
but it looks at the @eaXx register

value to determine which of
many syscalls was intended.

* This table tells the kernel which
kernel function to call (sys_*) for
each numbered syscall (SYS_*)

How syscall 1s handled 1n xv6

This C code in a user program:

kill(43);
Will compile to something like:
push 43
call kill $SYS_k111 = 8 is the
| syscall number for “kill”
Kill: movl 8 MSeax $T SYSCALL = 64 isthe

;QE o ('___' interrupt number chosen by xv6

for syscalls

The 1nt(errupt) command switches control to the OS

Having just received an interrupt, the CPU will:
* Switch to privileged (kernel) mode

* Get the interrupt handler address by checking the interrupt vector
table (in this case using the 64th entry)

* Check the %€aXx register for the syscall number (8 in this case)

* Call the appropriate syscall handler function
* In this case, the 8" handler gives Sys K111 ()

* The kernel function Sys K111l () gets the parameter left by the user
process on the stack (“43”) and handles it accordingly.

* When the syscall handler is done, we switch back to user mode and
resume execution of the user process (using iret instruction).

Interrupts trigger context switches

* How are context switches implemented?

* Somehow we have to move processes on and oft and on the CPU.

|
Process A | Process B

Time l
; : User code
read---> l
\ Kernel code Co.ntext
: - _ switch
Disk interrupt | * User code
isk interrupt --- | | |
Ret P / Kernel code Context
read : switch
from read |
' ‘ + | User code
A :

Diagram from Bryant & O’Hallaron book

Inactive process state

* OS has a process list in
kernel memory to store

the CPU state of

processes that are not
currently running.

e Context switches read and
write this process state.

* In xv0’s proc.h:

struct context {
uint edi;
uint esi;
uint ebx;
uint ebp;
uint eip;

};

// Per-process state
struct proc {

uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table

char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state

volatile int pid; // Process ID

struct proc *parent; // Parent process

struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files

struct inode *cwd; // Current directory

char name[16]; // Process name (debugging)

3

...and 1n x86.h:

148 // Layout of the trap frame built on the stack by the
// hardware and by trapasm.S, and passed to trap().
0 struct trapframe {

. >

151 // registers as pushed by pusha

152 uint edi;

153 uint esi;

154 uint ebp;

155 uint oesp; // useless & ignored

156 uvint ebx;

157 uint edx;

158 uint ecx;

159 uint eax; 172 // below here defined by x86 hardware
160 173 uint err;

161 // rest of trap frame 4 uint eip;

162 ushort gs; 175 ushort cs;

163 ushort paddingl; 176 ushort paddings;

164 ushort fs; 177 uint eflags;

165 ushort padding2; 178

166 ushort es; 179 // below here only when crossing rings, such as from user to kernel
167 ushort padding3; 180 uint esp;

168 ushort ds; 181 ushort ss;

169 ushort padding4; 182 ushort paddingé;

170 uint trapno; 18 };

CPU’s state 1s switched during context switch

U'\{\'\M\\ N\Q.W\Ofy _ C W &Qﬂisk.rj
ar eox{ |
x - migues Stored on the top of
oex[] (ewrtose the process’ stack
edx [1
L —]) data
\ zit] } gbii\‘\tf S
5"’a¢\< -Fr_o-"\t
ebep | 7 base pointer
x e_sp r | g,]-“d(eoin-\-e.r St I’“UCt Context {
uint edi;
eve | 1 instrucion . .
gointer uint esi;
uint ebx;
uint ebp;
We'll see later that it’s };
o L— very easy to switch.

Stop and think

* So far, we’ve seen the kernel’s mechanism for switching processes and
these are called context switches.

* We’ve seen than the kernel gets control after the CPU gets an interrupt
* Hardware interrupts can be triggered by I/O devices

* Software interrupts are created by programs making system calls to ask the
OS to do something that the user program is not privileged to do.

* After an interrupt, the kernel can choose to do a context switch, and
thus schedule another process.

* But what’s to prevent a program from hogging the CPU forever?
* What is the program never does any 1/O or systems calls?

* No interrupts will happen and the kernel will never run! ... right???

Solution: programmable timer interrupt

* The programmable timer is another hardware feature for the OS.

* Timer is a hardware device that can be programmed to generate an
interrupt after a certain amount of time.
* Perhaps after 1 to 10 milliseconds

* Before context switching to a user process, the kernel sets the timer.
* Timer interrupt ensures that the kernel gets an opportunity to act.

* Recall that kernel only runs in response to interrupts
* Timer 1s necessary to implement process scheduling policies

(Gtve another process a chance to run)

* Prevents a user process from getting stuck in an infinite loop

Aside: Watchdog Timer

* PC’s timer generates a periodic

things.

e [eft: Mars |

interrupt to let the OS check on

* Similarly, embedded systems
often have a watchdog timer:

* A running countdown to reboot

* Software 1s supposed to reset it
periodically:.

* If software/hardware is hung,

watchdog timer will expire and
reboot the CPU.

“xploration Rover

What about memory?

* We have shown how each process gets it’s own

copy of CPU registers.

* However registers only store a little data

* Fach process also has its own virtual memory
* Virtual memory gives the illusions that:

* Fach process has exclusive use ot the memory

* Processes have “infinite” memory available

* OS and CPU handle virtual memory mapping
using page tables.

* This 1s a complex topic that we will discuss
starting in Lecture 6 or 7.

Virtual memory Physical
(per process) memory

Recap

* Process 1s a program in execution

* Limited direct execution 1s a strategy whereby a process usually
operates as if it has tull use of the CPU & memory.

* CPUs have user and kernel modes to prevent user processes from
running privileged instructions, thus Z»zting execution.

* Interrupts are events that cause the kernel to run

* System Calls (or traps) are software interrupts called by a user
program to ask the OS to do something on its behalf.

* Timer Interrupt ensures that the kernel eventually runs.

* Next time: process creation and process memory layout.

