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Announcements
•Midterm is on Thursday, May 2nd.
• First two parts of  project 1 are due on Monday.
• Project part 2 (the big part) was posted, due the following Monday.
• TA and Peer Mentor office hours will be in the Wilkinson Lab

(Tech M338) 
•Another open OS book that will help you greatly:
• “xv6: a simple, Unix-like teaching operating system” by Cox et al.
• Google “xv6 book rev11”

•Don’t forget to read the book!  This lecture covers chapters 4-5.

https://pdos.csail.mit.edu/6.828/2018/xv6/book-rev11.pdf


Operating systems roles
•A user interface for humans to run programs
•A resource manager allowing multiple programs to share one set of  

hardware.
•A programming interface (API) for programs to access the hardware and 

other services.

In this lecture we’ll start talking about how OS provides programs with 
the illusion that they have the entire CPU and Memory to themselves.



Operating systems run processes
•A process is a program in execution
• On Linux/Mac run “ps” or “top” to see the active processes
• On Windows use the Task Manager

•OS assigns each new process a numeric process id.
•Each process has it own private view of  the computer:
• CPU register values, including
• General purpose registers (eax, ebx, ecx, edx), index registers (edi, esi)
• Stack pointer (esp, ebp), used to locate local variables, function return address, etc.
• Instruction Pointer, indicating the next instruction that will execute

• Virtual memory address space
• We will explore virtual memory in detail in a couple of  weeks.



A program’s view of  the computer
• Machine code (after compilation) is 

a sequence of  simple instructions 
understood by the CPU circuitry.
• Arithmetic, copy to/from memory, 

and conditional jumps
• Operates on a few fast registers, and 

a large block of  memory.
• You may have heard of  CPU caches. 

There are optional and hidden from 
the program.

• Values stored in registers and in 
memory represent a program’s state

(We’re ignoring the OS for a moment)
• Each program has its own view like 

this.  The OS and CPU together 
create this illusion.
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&
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Let’s think at the assembly level for a moment
C Language:
void function1() {
int A = 10;
A += 66;

}

x86 assembly:
function1:

pushl %ebp #
movl %esp, %ebp #,
subl $4, %esp #,
movl $10, -4(%ebp) #, A
leal -4(%ebp), %eax #, 
addl $66, (%eax) #, A
movl %ebp, %esp
popl %ebp
ret

Example is from http://www.hep.wisc.edu/~pinghc/x86AssmTutorial.htm



“Limited direct execution”
• This is how the OS supports multi-tasking (concurrent execution)
• (In this class we usually assume a machine has one CPU core)
• Let a process run for a while with exclusive use of  the CPU
• Can use all the CPU registers

•Eventually, the OS pauses that process to let another process run
• Then that process will use CPU for a while …

• This is a context switch: the OS/kernel has changed the active 
process.



Multitasking

Diagram from Bryant & O’Hallaron book



Processes don’t run all the time
•OS schedules processes
• Decides which of  many competing 

processes to run.
•A blocked process is not ready to run.
• I/O means input/output – anything 

other than computing.
• For example, reading/writing disk, 

sending network packet, waiting for 
keystroke, updating display.
• While waiting for results, the process 

often cannot do anything, so it blocks, 
telling the OS to let someone else run.

The three basic process states:



Process execution is limited
•User processes execute with CPU in “user mode”
• Can only execute basic arithmetic, branching, and memory read/write 

instructions (within a specific range/segment).
• CPU will not execute certain privileged instructions when in user mode..

•OS kernel runs with the CPU in “privileged/kernel mode”
• Allows all instructions, including:
• Changing registers that control which memory is accessible
• Performing I/O,   switching CPU mode.

•Early CPUs lacked multiple modes, so could not support a real OS.
• For example, the first IBM PC had an Intel 8088 CPU lacking this feature,

so PC DOS was a very limited OS.
• Intel 386 processor in 1985 enabled a true OS for PCs (OS/2 and Windows).



Things a program cannot do itself
• Print “hello world”
• because the display is a shared resource.

•Download a web page
• because the network card is a shared resource.

• Save or read a file
• because the filesystem is a shared resource and the OS wants to check file permissions first.

• Launch another program
• because processes are managed by the OS

• Send data to another program
• because each program runs in isolation, one at a time



Break time



Interrupts
A way for the CPU to be, well, interrupted.
•CPU switches to privileged mode (kernel activates)
• Now any instruction can be executed, including privileged ones.

•Execution jumps to a predefined location
• (specified in the CPU’s interrupt vector table)
• This ensures that the kernel code starts running.
• Interrupts are the only way the kernel is activated (after boot-up)

•Used to support asynchronous I/O
• Lets a hardware device tell the CPU that some data is ready
• Remember that a disk operation is millions of  times slower than an add.

•CPU has an electrical pin for hardware interrupts.
• There is also an instruction for software interrupts.



Interrupts numbers in xv6 (traps.h)

External hardware:
• Keyboard
• IDE disk

CPU exceptions trigger interrupts, eg.:
• arithmetic overflow
• invalid memory access

(general protection fault)



System Calls (syscalls)
…are the way that processes ask the OS to do things for them.

• Run a Software Interrupt (a.k.a. trap) instruction (int on x86)
• Syscall number and parameters are loaded into pre-defined registers
•Kernel takes over during the interrupt handler routine

•A regular function call into a library would be insufficient because it 
would run in the same process, in user mode.



Syscalls in xv6
• user.h defines function 

prototypes for syscalls:
•User processes can call these 

functions in C code
• But these are not regular 

functions!
• They’re just wrappers that trigger 

software interrupts.



Implementation of  syscall user functions is in assembly

• usys.S
• There’s some funky C-preprocessor 

syntax here.
•Will generate this code for kill(int):

.globl kill
kill: movl $SYS_kill, %eax

int $T_SYSCALL
ret

• “.globl” makes the symbol visible to the 
linker, so it’s like writing a C function.



Syscall numbers are defined in syscall.h



Syscall table is defined in syscall.c

• There is one software interrupt 
handler function in the kernel, 
but it looks at the @eax register 
value to determine which of  
many syscalls was intended.

• This table tells the kernel which 
kernel function to call (sys_*) for 
each numbered syscall (SYS_*)



How syscall is handled in xv6
This C code in a user program:
kill(43);

Will compile to something like:

push 43
call kill
…

kill: movl 8, %eax
int 64
ret

$SYS_kill = 8 is the 
syscall number for “kill”
$T_SYSCALL = 64 is the 
interrupt number chosen by xv6 
for syscalls



The int(errupt) command switches control to the OS
Having just received an interrupt, the CPU will:
• Switch to privileged (kernel) mode
•Get the interrupt handler address by checking the interrupt vector 

table (in this case using the 64th entry)
•Check the %eax register for the syscall number (8 in this case)
•Call the appropriate syscall handler function
• In this case, the 8th handler gives sys_kill()

• The kernel function sys_kill() gets the parameter left by the user 
process on the stack (“43” ) and handles it accordingly.
•When the syscall handler is done, we switch back to user mode and 

resume execution of  the user process (using iret instruction).



Interrupts trigger context switches
•How are context switches implemented?
• Somehow we have to move processes on and off  and on the CPU.

Diagram from Bryant & O’Hallaron book



Inactive process state
•OS has a process list in 

kernel memory to store 
the CPU state of  
processes that are not 
currently running.
•Context switches read and 

write this process state.
• In xv6’s proc.h:



…and in x86.h:



CPU’s state is switched during context switch

Stored on the top of  
the process’ stack

Memory is “virtual.”  
We’ll see later that it’s 
very easy to switch. 



Stop and think
• So far, we’ve seen the kernel’s mechanism for switching processes and 

these are called context switches.
•We’ve seen than the kernel gets control after the CPU gets an interrupt
• Hardware interrupts can be triggered by I/O devices
• Software interrupts are created by programs making system calls to ask the 

OS to do something that the user program is not privileged to do.
•After an interrupt, the kernel can choose to do a context switch, and 

thus schedule another process.
• But what’s to prevent a program from hogging the CPU forever?
•What is the program never does any I/O or systems calls?
•No interrupts will happen and the kernel will never run! … right???



Solution: programmable timer interrupt
• The programmable timer is another hardware feature for the OS.
• Timer is a hardware device that can be programmed to generate an 

interrupt after a certain amount of  time.
• Perhaps after 1 to 10 milliseconds

• Before context switching to a user process, the kernel sets the timer.
• Timer interrupt ensures that the kernel gets an opportunity to act.
• Recall that kernel only runs in response to interrupts
• Timer is necessary to implement process scheduling policies

(Give another process a chance to run)

• Prevents a user process from getting stuck in an infinite loop



Aside: Watchdog Timer
• PC’s timer generates a periodic 

interrupt to let the OS check on 
things.
• Similarly, embedded systems 

often have a watchdog timer:
• A running countdown to reboot
• Software is supposed to reset it 

periodically.
• If  software/hardware is hung, 

watchdog timer will expire and 
reboot the CPU.

• Left: Mars Exploration Rover



What about memory?
•We have shown how each process gets it’s own 

copy of  CPU registers.
• However registers only store a little data

•Each process also has its own virtual memory
•Virtual memory gives the illusions that:
• Each process has exclusive use of  the memory
• Processes have “infinite” memory available

•OS and CPU handle virtual memory mapping 
using page tables.
• This is a complex topic that we will discuss 

starting in Lecture 6 or 7.



Recap
• Process is a program in execution
•Limited direct execution is a strategy whereby a process usually 

operates as if  it has full use of  the CPU & memory.
•CPUs have user and kernel modes to prevent user processes from 

running privileged instructions, thus limiting execution.
• Interrupts are events that cause the kernel to run
• System Calls (or traps) are software interrupts called by a user 

program to ask the OS to do something on its behalf.
•Timer Interrupt ensures that the kernel eventually runs.
•Next time: process creation and process memory layout.


