
EECS-343 Operating Systems
Lecture 1:

Introduction
Steve Tarzia
Spring 2019

Today’s lecture
•What will you learn from this class?
•How will this course be operated?
•Are you ready to take this class?

•What is an Operating System?
•History of computers and their operating systems

Why study OS?
• You will probably never write a new OS (please don’t!)
• But you may need to modify an OS or write device drivers for new hardware.

•More importantly, to understand application software performance, you
must understand what the OS is doing behind the scenes.
• You’ll also get some good software engineering experience.
• This is likely the first class where you’ll have to modify a large, complex,

existing codebase.
• Get practice with C, Linux, and tools like git, gcc, gdb, make, etc.)

Important Topics
• Security
• How processes (apps) are isolated from each other when running together.
• Eg., how the recent Spectre and Meltdown attacks work

•Performance
• How virtual memory & paging affects read/write latency
• How processes compete for shared resources

•Concurrency
• Synchronization (how processes coordinate using locks, semaphores)
• Non-determinism (how race conditions can lead to weird bugs)

Course logistics
•We’ll use Canvas for assignments, announcements, lecture slides.
• I will try to post videos of all lectures
• Staff:
• Steve Tarzia, instructor
• Teaching Assistants:
• Yingyi Luo
• Xutong Chen
• Kaiyu Hou

• TA & PM office hours in Mudd 3303:
• Mondays 1-7pm, Wednesdays 1-4pm

• Ask all questions on Piazza (not by email)
• Final exam is Monday June 10th at 3pm. Midterm date TBA soon.

• Peer Mentors:
• Richie Lee
• Michael Hsu
• Peter Bi

• Rohit Rastogi
• Ziqin Xu
• Tianhao Zhang

Prerequisites
•Data Structures (EECS-214)
• Basic C/Unix programming (EECS-213)
• Basic assembly coding (EECS 213 or EECS-205)

• If you’re unsure, then start the first project ASAP
• If you’re going to drop, better to drop sooner than later

Collaboration & cheating policy
• Helping each other is OK, but you should not do anything that allows another

student skip the learning process.
• You may talk to other students about the homework and projects
• You may look at small parts of each other’s code (on the screen)
• You may not send a copy of your code to friends
• You may not post your code to a public git repository.
• If you copy code from the Internet, you must add a comment explaining the source.
• You must understand what your code does
• I will use MOSS to compare your code to everyone else’s code and prior years’ code.
• If you spent fewer than 6 hours on a project, then you probably cheated!
• I will notify the Dean of blatant cheating and you may be expelled from

Northwestern.
• If you’re unsure about this policy, please ask me.

Grading
• 50% -- 4 Projects
• C kernel development.
• The most difficult part of the course!

• 10% -- 4 Homework assignments
• Short written answers, based on reading & lectures

• 15% -- Midterm exam
• 25% -- Final exam (cumulative)
• Exams are similar to homework assignments

C language is good for building Operating Systems
• C can interact with hardware directly
• C code can include some assembly code, when necessary.
• Assembly code gives access to instructions for low-level stuff like:
• interrupts, CPU registers, changing CPU modes.

• C gives direct access to memory to create interrupt tables, etc.
• A C pointer is a number specifying a location in memory.

• C compiles directly to machine code
• It does not require any runtime translators and libraries
• Behavior is reasonably predictable (no weird garbage collection processes)
• Can inspect the resulting machine code to tweak performance

• C is very efficient

C was wonderful in the 1970s and 80s, but…
• 40 years later, it feels inconvenient and dangerous.
• Like shaving with a straight razor.

• Lacks standard dynamic collections (lists, dictionaries)
• Must manage memory yourself (malloc & free)
• Cannot easily write generic code
• Pretty strongly typed, and no inheritance

• Cannot throw/catch exceptions
• Must check function return status explicitly

• Function parameters often contain return values
• Have to pass pointer to pre-allocated buffer as a parameter, and choose buffer size

• No good, free IDE. You will use something like emacs, vim, or gedit +
make + gdb

C Python

Lab hours & Office hours
• TAs and Peer Mentors will hold office hours in Mudd 3303

(to help you with the projects)
• Mondays 1-7pm
• Wednesday 1-4pm

• Steve’s office hours in Mudd 3225:
• Mon 1-3pm, Tues 3:30-4:30pm,

Wed 3-5pm, Thurs 3:30-4:30pm

Required reading
• 666 page, “open” textbook
• Chapter PDFs are online
• $10 for one big PDF
• $22 softcover
• $38 hardcover

• Entertaining read
• Repeats & reinforces lectures
• For homework and exams
• Buy a hard copy because exams

are open book!

About Steve
• Second year teaching at Northwestern.
• PhD from Northwestern in 2011, BS from Columbia in 2005,

both in Computer Engineering
• Research expertise is acoustic sensing on mobile systems.
• Worked at a few Chicago area software startups

First as a software engineer, later as VP of Engineering
• Have published about ten iOS apps in the app store
• Fan of Linux, AWS, Java, Python, Objective-C
• Founded the National Gun Violence Memorial (GunMemorial.org).
• Enjoy competitive lap swimming, cooking, repairing things, opera, and

playing music (guitar, drums, trumpet).
• Married 14 years & have lived in Evanston for the past 8 years.

http://gunmemorial.org/

Operating Systems
•From the past:
• IBM OS/360, AT&T Unix, DOS, MacOS “classic”,

Windows 3.1, 95, XP, 2000
•And in the present:
•Windows 7, 8, 10
•MacOS X
• Linux
• BSD
• Android
• iOS

Unix
family
tree

xv6
• A small teaching Operating System, used for the course projects
• Less than 80,000 lines of code
• Instead of about ~15 million for Linux
• Very limited functionality
• It does really run on very basic PC-compatible hardware
•We’ll be running it on an emulated machine (Qemu)
• Xv6 lacks drivers for most real hardware accessories/peripherals

(can’t use network cards, most storage devices, graphics)

How is an OS different than a
software application?
Pair and share

Roles of an OS
•A user interface for humans to run programs
•A resource manager allowing multiple programs to share one

set of hardware.
•A programming interface (API) for programs to access the

hardware and other services.

Before operating systems

• User could only run one program at a time.
•Had to insert the program disk before

booting the machine.
• Program had to control the hardware

directly
• This is a nuisance because hardware is

complicated
• Program will only be compatible with one set

of hardware
• For example (at right) 1983 “King’s Quest”

game for IBM PC Jr.

OS sits between hardware and your apps

Hardware

Thunderbird Chrome

Powerpoint

Qemu

iTunesUser
processes

File
System

Process
Manager

NetworkVirtual
MemoryOperating

System
Device Drivers Interrupt Handlers Boot and Init

Hardware Abstraction Layer

Application Interface

What’s part of the OS? – hard to define!
Kernel – the only code without
security restrictions

• Process scheduling
(who uses CPU)
•Memory allocation

(who uses RAM)
• Accesses hardware devices
• Outputs graphics
• Reads/writes to network
• Read/write to disks
• Handles boot-up and power-down

OS distribution – the kernel +
lots of other useful stuff

•GUI / Window manager
• Command shell
• Software package manager
• “app store”, yum, apt, brew

• Common software libraries
• Useful apps:
• Text editor, compilers, web

browser, web server, SSH, anti-
virus, file-sharing, media libraries,

In the academic world,
when we say “OS,” we usually mean just the
OS kernel.

Ivory tower

Operating systems have evolved with hardware

• Sophisticated operating systems
first arose on mainframes.
•OS ideas migrated to smaller

machines as those machines
became more powerful.
• In 2019, a smart watch has

1gb RAM, 16gb SSD storage,
two CPU cores, and a real OS.

Early evolution of computing systems
• 1955: Batch systems
• Collect a bunch of program punch cards and write them all one matgetic tape.
• Run the tape through the mainframe to execute all the jobs in sequence.

• 1960s: Multiprogramming (IBM OS/360)
• Keep multiple runnable jobs in memory at once.
• Allows overlap I/O of one job with computing of another.
• Uses asynchronous I/O and interrupts or polling to detect I/O completion

• 1960s: Timesharing (MULTICS, Unix)
• Multiple user terminals connected to one machine
• Allows interactive use of machine to be efficient (because another user’s job can

run while you’re thinking).

Later evolution of computer systems
• 1970s: Parallel systems
• Processes must communicate to share information.
• Synchronization is difficult.

• 1980s-90s: Personal Computers (IBM PC, Macintosh)
• Graphical user interfaces were developed
• Mainframe OS concepts (like networking) were applied to PCs
• Magnetic disks become huge, but still slow

• 2000s-10s: Mobile and pervasive computing, Cloud Computing
• Slow hardware is once again common (phones & wearables)
• OS manages sensitive information like location and Internet behavior
• Fast flash storage is common.
• Server hardware is shared by many different cloud computing customers

Recap: OS is a resource manager
• A computer has many apps (processes) running
• All need access to:
• CPU (processor)
• RAM (memory)
• Storage (disk/filesystem)
• Other hardware like Network card, display, sound card.

•OS provides safe, fair sharing of the limited hardware resources.

Your first tasks
• Buy the book
• Find a project partner
• Start Project 1 – as soon as possible!
• Project 1 parts 0 and 1 are due on Monday!
• Email root@eecs.northwestern.edu if you have trouble with lab machines
• Part 2 (the difficult part) will be posted soon (tomorrow).

After that:
• Start reading chapters 1-6
•Watch old timesharing video (1963, Corbató @ MIT):

https://www.youtube.com/watch?v=Q07PhW5sCEk

https://www.youtube.com/watch?v=Q07PhW5sCEk

