
1

CS-340 Introduction to
Computer Networking

Lecture 16: Authentication

Steve Tarzia

2Last Lecture: Encryption and Anonymity
•Network security goals are:
• Confidentiality, Reliability, Integrity, Authentication & Anonymity

• Routers and other participants on the network cannot be trusted.
• AES is a the standard symmetric-key encryption algorithm. Must

somehow establish a shared session key, used by both parties.
• Public Key cryptography (RSA, ECC) uses a pair of related keys.
• Public key is openly advertised and is used for encryption
• Private key is secret and is used for decryption.

•Onion-routing/mix networks create routing overlays on the Internet.
• Sender encrypts data many times. Relays decrypt one layer each.
• This enables anonymous web browsing and even anonymous services.

3Authentication definition
• Verifying the identity of the person/host I’m communicating with.

Why does confidentiality (keeping messages secret) require
authentication?
• There are many ways in which Internet messages can be read by

untrusted 3rd parties.
• In order to start encryption, we have to verify that we are exchanging

public keys with the intended party, not a “man in the middle.”

STOP
and

THINK

4Man-in-the-middle (MITM) attack
• A major flaw remains in this communication scheme.
•We cannot be sure that the machine we contacted is actually who we

intended to contact – messages may not be authentic.
• A malicious intermediate router may establish two different encrypted

sessions between the communicating parties and relay messages.
• MITM advertises a false public key (its own) to the sender
• MITM is then able to decrypt sender’s message and re-encrypt message with

the receiver’s true key before delivery.
•Messages can be viewed and altered before delivery.
•MITM can violate confidentiality, integrity, and authentication.

5MITM Attack
A

(🔑A,🔓A) (🔑G,🔓G)

Let’s talk securely!
Here’s my public key

OK. Here’s my public key 🔓G

G

(🔑M,🔓M)

OK. Here’s my public key 🔓M

4903c2…
“I feel pretty”

5933c0…

11290a…
“Do you?
Rewrite to

“So do I!”
0943e2…

Let’s talk securely!
Here’s my public key🔓M

🔓A

An evil router

MITM can read and alter messages!

6How to avoid MITM attacks?
• Simple, but impractical, solution is to avoid public-key cryptography.

Instead just use symmetric encryption with pre-shared key.
• To use public key cryptography, we must be sure that the public key we

receive really belongs to the endpoint, and not some MITM.
• If so, we can be assured that only the endpoint has the private key.

• Real-world solutions involve using digital signatures to verify public
keys (certificates).

7Why digital signatures?
•Want to produce a public document (not encrypted) that:
• Makes some claim (or has a message, in general).
• Anyone can verify the author of the document/message.
• In other words, it’s not possible that someone else forged the document.

• The existence of the signature on the document proves something.
• We don’t care who gave us a copy.
• Unlike real-world ink signatures, an attacker cannot copy a signature from one

document to another. Signature is somehow unique to the document.

•Notice this is a case when we need authentication and integrity, but
not confidentiality.

8Digital Signatures

• A digital signature is a short bit-sequence generated from a digital
document and a private key, with the following properties:

• Like a hash function, it always produces the same result (for given data).
• It produces different results for different documents and keys.
• The document cannot be signed without a private key.
• The signature can be verified using only the corresponding public key.

• Closely related to public key encryption: can use the same RSA keys.
• Changing a signed document will make the former signature invalid.

9

If hashes are equal, the
signature is valid

Name of signer,
Public key 🔓

Certificate 🔓

🔑

Signing: The signer
uses the RSA private
to encrypt the message
hash, creating a
signature.

Verification: Anyone
looking at the
certificate can use the
public key to try to
decrypt the signature.
If this leads to the true
message hash, then the
signature must have
been generated using
the true private key.

Meg
likes
beets

Meg
likes
beets

Meg
likes
beets

Meg
likes
beets

10

If hashes are equal, the
signature is valid

Name of signer,
Public key 🔓

Certificate 🔓

🔑

Signing: The signer
uses the RSA private
to encrypt the message
hash, creating a
signature.

Verification: Anyone
looking at the
certificate can use the
public key to try to
decrypt the signature.
If this leads to the true
message hash, then the
signature must have
been generated using
the true private key.

Meg
likes
beets

Meg
likes
beets

Meg
likes
beets

Meg
likes
beets

For confidentiality, we
encrypt with public
keys, but here we use
private key. Why?

STOP
and

THINK

11The meaning of signatures
• If I download a document with a statement (“Meg likes beets”) and

that document contains a valid digital signature for public key 🔓M,
I know that:
• Someone with access to the private key 🔑M saw the document and chose to

run the signing algorithm to compute the corresponding signature.
• We know that only someone holding the private key would have any

reasonable chance of computing the correct signature for that ⟨document,
public-key⟩ pair.

• Therefore, if I already know that Meg’s public key is 🔓M then I can
trust that she is the author of the statement “Meg likes beets”.
•Meg cannot claim that she does not like beets (non-repudiation).

• But, how do I know 🔓M is really her public key? transitive trust…

12But what is the “signature” itself ?
• Signing is generating and publishing a number (signature).
• The number is associated with a message (document), and a public key.
• The number is computationally infeasible to calculate without knowing

the private key.
•Hence, the fact that the number is known by anyone implies that the

holder of the private key chose to generate it.
• Anyone can verify that the number is correct using the document and

the public key.

13Digital signatures can provide transitive trust
• Let’s say I want to browse the web and securely visit thousands of

websites over the lifetime of the computer.
• It’s impractical to get a pre-shared key ahead of time from these

thousands of websites, yet I still wish to communicate securely.
•However, I can easily get just a few trusted public keys:
• These are called root authorities.

• Root authority can sign a certificate identifying another trustworthy
certificate authority.
•Website operator must get their HTTPS public keys (certificates)

signed by a certificate authority
• Certificate authority does some kind of check that the person asking for the

certificate really represents the domain & organization listed on the cert.
• Website then advertises that certificate, proving that their public key is legit.

14

Demo of SSL chain of trust
https://northwestern.edu

https://northwestern.edu/

15Public Key Infrastructure (PKI)
• PKI creates, distributes, and verifies stranger’s claims (certificates).
• A distributed and scalable way to verify public keys.
• At first, client does not trust server, however server provides two

certificates which are sufficient to earn the customer’s trust:
• Chain of trust links the advertised public key to an already-trusted key.

Root certificate
Crosby corporation
Public key: 0c92…

Root certificate
Baker corporation
Public key: 0c92…

Root certificate
Actalis Inc.
Public key: 493a…

Root certificate
AAA corporation
Public key: 0c92…

Server certificate
www.shopping.com
Public key: e231…

Signed by: Webbycorp
Public key: 904e…
Signature: 3902…

Intermediate certificate
Webbycorp
Certificate authority
Public key: 904e…

Signed by: AAA corp.
Public key: 0c92…
Signature: 0032…

Customer

www.shopping.com

16Getting a certificate
• Pay a fee to a certificate authority and send them a

certificate signing request (CSR):
“Common name: northwestern.edu; Public key: 3a203c…”

• Certificate authority (CA) somehow verifies the claim in the certificate:
• Email the registrant listed in the WHOIS database.
• Look up the phone number of the requester and call them.
• Send a letter to the requester and wait for a reply.
• Visit the requester’s office and verify the public key in-person.
• Challenge the requester to post a random number/document on their

webpage or in a DNS record.
• If the CA is satisfied, it will compute a digital signature certifying the

claims in the CSR, and send you the certificate (CSR + signature).

How to verify
requester's
identity?

STOP
and

THINK

17Mac OS comes with 170 root certificates

18Root certificate components
• Expiration date
• Subject’s name
• Issuer name
• Issuer’s signature algorithm
• Public key of subject
• Issuer’s signature

Root certificates are self-issued and
self-signed. The user must have
some outside reason to trust it.

19Intermediate certificate
•Has same basic components as

root certificate.
•Must be signed by a trusted issuer.
• This certificate was issued by a

root authority at the same
company:

“thawte SHA256 SSL CA”
is signed by

“thawte Primary Root CA - G3”

20

21

22

23User can add and remove root certificates
• This controls which organizations (and public keys) are trusted to

vouch for others.
•What would happen if you removed lots of these root certificates?
• Many HTTPS websites (and other SSL connections) would stop working.

•What would happened if you added a “bad” root certificate?
• Your web browser would trust public keys that may be invalid, making you

vulnerable to a man-in-the-middle or other impersonation attack.

STOP
and

THINK

STOP
and

THINK

24MITM Attack Revisited
A

(🔑A,🔓A) (🔑G,🔓G)

Let’s talk securely!
Here’s my public key

OK. Here’s my public key 🔓G

and my signed certificate 📄G

G

(🔑M,🔓M)

OK. Here’s my public key 🔓M
and (an invalid) certificate 📄M

Let’s talk securely!
Here’s my public key🔓M

🔓A

Server does not notice the attack
because it doesn’t expect a
signed certificate from client.
Instead, passwords are usually
used to authenticate clients.

gadgets.com

Client notices that certificate is fake
or missing. A real certificate
authority would not have signed a
certificate listing 🔓M as the public
key for gadgets.com.
Client drops the connection.

📄M must have one of
these problems:
• Domain name is not

“gadgets.com”
• Signature is invalid.
• Issuer is not trusted.

Why?

STOP
and

THINK

25Sketchy root certificates allow MITM attacks
• Some corporate and campus networks require machines to install a

new root certificate to connect to networked services.
• By installing a single malicious root certificate, all of client’s encrypted

network traffic can be read and modified.
• This technique is also used by some legitimate debugging tools (eg.

Charles Proxy) to sniff HTTPS traffic.
• Normally, Wireshark cannot view HTTPS traffic because it’s encrypted at the

application layer.
• Charles Proxy is a MITM running on your machine that shows decrypted

HTTPS streams.

https://www.charlesproxy.com/

26Successful MITM Attack
A

(🔑A,🔓A) (🔑G,🔓G)

Let’s talk securely!
Here’s my public key

OK. Here’s my public key 🔓G

and my certificate 📄G

(signed by a legitimate authority)

G

(🔑M,🔓M)
(🔑B,🔓B)

OK. Here’s my public key 🔓M
and my certificate 📄M

(signed by “Big Brother”).

Let’s talk securely!
Here’s my public key🔓M

🔓A
gadgets.com

Client accepts the connection
because Big Brother has been
installed as a trusted root authority.

Root certificate
Big Brother
Pub key: 🔓B

MITM creates a new certificate 📄M for gadgets.com
and signs it using Big Brother’s private key 🔑B

PKI failed because the client installed a root
certificate from a malicious party who is willing to
sign fake certificates.

27Certificate Revocation Lists (CRLs)
• Private keys are supposed to be kept private, but mistakes happen.
• What happens if someone steals the private key on the

www.mccormick.northwestern.edu webserver?
• A trusted certificate authority has already issued a certificate saying the

corresponding public key is valid for that domain until February 4, 2022.
• Using the private key and a copy of the certificate, the attacker can run a webserver

impersonating www.mccormick.northwestern.edu.
• Certificate authorities maintain Certificate Revocation Lists (CRLs) listing

revoked (but unexpired) certificates. CRL web address is listed in CA cert.
• Client may consult CRL before trusting a certificate, but this is slow.
• PKI’s scalability (through transitive trust) is lost if you always double-check

with a central authority, so CRLs are usually not checked.
• In practice, losing a private key can have serious security implications.

http://www.mccormick.northwestern.edu/
http://www.mccormick.northwestern.edu/

282011 Comodo Hack
• Comodo is a root certificate authority, but in 2011 its certificate-

signing server was hacked.
• Attacker got a username/password for a system that Comodo had

built to allow their trusted affiliates to request digital signatures.
• Allowed attacker to generate new certificates for popular services like

Gmail, Yahoo Mail, and Hotmail.
• https://www.csoonline.com/article/2623707/hacking/the-real-security-issue-behind-the-comodo-hack.html

• Bogus certificates were revoked and some browsers considered
dropping the Comodo root certificate.
• This would have required all their past customers to buy new certificates from

another vendor!

https://www.csoonline.com/article/2623707/hacking/the-real-security-issue-behind-the-comodo-hack.html

29Hashing before signing
•Notice that the digital signature algorithm

encrypts a hash of the document’s data.
• RSA can only encrypt integers m < n.
• Plaintext must be less than 1024 or 2048 bits.

•Hashing maps a large document to a fixed
integer range, small enough to RSA-encrypt.
• But hashing must be done carefully!
• By signing a hash, we are actually signing an

infinite set of documents that map to that hash.
•We must be confident that the other documents

are random, not useful to attackers.

Name of signer,
Public key 🔓

Certificate

🔑

30Hashing example
• If the hash is 256 bits, it can take 2256 different values.
•HTTPS certificates are about 2000 bits long: 22000 possible certs.
•We expect 22000/2256 ≅ 21744 such documents to share each hash value.

Name: gadgets.com
Public key: 930a…

128-bit hash function

Name: shop.com
Public key: 201e…

Name: 3kjD|Sj3;…
Public key: a329…

Name: \(we(CC1…
Public key: 44a0…

…

940294a9bc9233eb5829848ecb9e2482

940294a9bc9233eb5829848ecb9e2482

940294a9bc9233eb5829848ecb9e2482

45b798e10349ae8750cd45209809ec94

Hash collisions

31Cryptographic Hash functions
If H(x) is a cryptographic hash function, it should be computationally infeasible to:
• Map backwards from hash output to input: find x given H(x)
• Find two inputs x and y that map to the same hashed value: H(x) = H(y)

• We know that there is an infinite set of such (x,y) pairs, but the hash function
is designed to make them nearly impossible to find.
• In particular, if we know x, we should not be able to find y in polynomial time

such that H(x) = H(y)
• Like a good symmetric encryption algorithm, a cryptographic hash must have

good confusion and diffusion. It must behave very randomly.
• If input is called the message, the output is sometimes called the message digest.

• SHA-1 and MD5 are examples of cryptographic hash functions.

32Back to digital signatures
• If I sign a SHA-1 hash of a document and publish that signature, it

will be difficult for an attacker to construct a second document with
the same SHA-1 hash as the original document that I signed.
• Thus, it’s difficult for that signature to be used to falsely verify other

documents that I have not seen and signed.
• If I used a dumb hash function, like “the sum of all bytes,” forgery

would be easy:
• SUM(“fun and cats”) == SUM(“gun and bats”)
• The change f+1→g is cancelled by the change c-1→b
• Using this really bad hash function, the signature of “fun and cats”

would also be valid for “gun and bats”

33Hash-based Message Authentication Code (HMAC)
• Public-key cryptography & digital signatures are computationally expensive.
• HMAC provides a more efficient way to authenticate public messages:
• HMAC steps:
• Assume sender and receiver have a shared secret: 🗝 ⟵ a new requirement :(
• MAC = hash(message +🗝)
• Send ⟨message, MAC⟩
• Anyone can read the message.
• Receiver with 🗝 can also compute the MAC to verify the received MAC.

• Again, we must use a strong cryptographic hash, like SHA-1
• We could have used 🗝 to encrypt with AES, but this is slower than a SHA-

1 hash (and maybe we want 3rd parties to see the message).
• HMAC is often used to authenticate API calls (eg., AWS REST API).

34SSL/TLS
• Transport Layer Security (TLS) is

the Internet standard for encrypted
communication, formerly called
Secure Sockets Layer (SSL).
• A real-world implementation of

public-key encryption and auth.
• It’s built on top of TCP, sitting

below the application layer.
• TLS payload is encrypted. Eg., this

could be an encrypted segment of
an HTML document.
•Defined in RFC 5246.

Ethernet Packet
MAC addresses, CRC, etc.

Ethernet payload
IP Packet

IP addresses, TTL, etc.

IP payload
TCP Packet

Port #, sequence #, ack #, etc.

TCP payload TLS Record
Sequence #, length, MAC

TLS payload HTTP Response
status code, content-type, etc.

<html><body><h1>My
great page</h1><p>…🔒

https://tools.ietf.org/html/rfc5246

35TLS handshake (after TCP handshake)
Sender and receiver must
agree on:
• encryption algorithms

eg., RSA+AES
• Shared keys. TLS

actually uses four
different keys
(sender, receiver)×(encryption, MAC)

•Other random values:
• Initialization Vector

used by AES
• Nonce

36Packet replay attack
• Attacker cannot decrypt packets, but it can intercept and replay any

packet.
• Receiver might think that it’s valid, since it decrypts just fine.
• Solution: TLS records include sequence numbers.
• Replayed packet would be dropped

How to protect
against packet

replay?STOP
and

THINK

37Connection
replay attack A

🔑=private key
🔓=public key

(🔑A,🔓A) (🔑G,🔓G)

Generate key pair Generate key pair

Let’s talk securely!
Here’s my public key 🔓A

OK. Here’s my public key 🔓G

“I would like to
buy 10 widgets.”

🔓G

RSAe 92b102…
92b102…

92b102…

🔑 G

RSAd
“I would like to
buy 10 widgets.”

“OK, it’s
shipped.”

🔓 A

RSAe 5773ae…
5773ae…

5773ae…

🔑 A

RSAd “OK, it’s
shipped.”

Network observer only sees public keys and encrypted messages. 🔑A & 🔑G are never seen.

G
I’m listening!

38The replay 🔑=private key
🔓=public key

I don’t have the private key 🔑A,
but I can still cause trouble! (🔑G,🔓G)

Generate key pair

Let’s talk securely!
Here’s my public key 🔓A

OK. Here’s my public key 🔓G

92b102…
92b102…

🔑 G

RSAd
“I would like to
buy 10 widgets.”

“OK, it’s
shipped.”

🔓 A

RSAe 5773ae…
5773ae…

G

I don’t know what the previous messages
said, but I’ll just blindly repeat them

(within a new TCP connection).

I’ll just replay the encrypted
messages I observed before.

Hmm, I don’t know what
happened, but hopefully it

was something bad!

Let’s do it again! Let’s talk securely!
Here’s my public key 🔓A

The attacker made the
customer pay for

another order!

39Connection replay attack
• Attacker can observe entire client-server interaction and replay it.
• Solution: receiver sends a random nonce in handshake message.
• Sender must include encrypted nonce in the next message.
• This requires each connection’s data to be at least slightly different.
• Replay will not work because original connection had a different

nonce.

How to prevent
this?STOP

and
THINK

40Add a Nonce to prevent replay 🔑=private key
🔓=public key

I don’t have the private key 🔑A,
but I’ll still try to cause trouble!

(🔑G,🔓G)
Generate key pair

Let’s talk securely!
Here’s my public key 🔓A

OK. Here’s my public key 🔓G

Please repeat the Nonce 8903

92b102…
92b102…

🔑 G

RSAd

“The Nonce is
7344. I would
like to buy 10
widgets.”

G

I’ll just replay the encrypted
messages I observed before.

The server rejects this connection because
the returned Nonce is wrong (because it
came from replaying a prior connection).

Generate a new random Nonce: 8903

41Fundamental network security lessons
• Secure communication involves many considerations.
• Encryption primitives are not enough, they must be used carefully.
• TLS must be carefully designed to avoid all kinds of clever attacks, like

replay attacks (and many others!)
• Authentication is still not a fully-solved problem,

(Public Key Infrastructure has many drawbacks).
• Learn more in CS-396 Cryptography

Lessons for the software/network engineer:
•Don’t try to build your own encryption scheme from scratch.
• Just use the latest version of TLS.
•Know the meaning of PKI/certificates, and keep private keys safe!

42Recap
•Digital signatures are special bit sequences attached to documents

that can only be computed by the holder of a private key.
• Signatures are used to establish transitive trust and verify new public keys,

thus preventing Man In The Middle and other attacks.
• Certificate authorities verify public keys with digitally signed certificates.
• MITM with root authority’s private key can forge arbitrary certificates.

• Cryptographic hash functions are irreversible and unpredictable.
• Used to create a small summary of a document than can be signed with RSA.
• Also used in Message Authenticate Codes (HMAC) to verify that sender

has a shared secret: MAC = hash(message +🗝)
• Transport Layer Security (TLS) encrypts a TCP stream.
• Details are complex, to allow many different systems to interoperate and to

mitigate a variety of attacks: Eg., packet replay, connection replay.

