CS-340 Introduction to Computer Networking Lecture 13: Medium Access Control

Steve Tarzia Fall 2020

Many diagrams adapted from those by J.F Kurose and K.W. Ross

1

Recap

- IP anycast: BGP trick to send traffic for one IP address to two hosts.
- Broadcasting is sending a single message to every host.
 - Multicast is sending a single message to many (but not all) hosts.
- **Controlled flooding**: add a sequence number to messages, and retransmit only if you have not seen the received sequence number.
- Spanning tree: a graph without cycles that reaches all nodes. Broadcast can be done by transmitting along a spanning tree.
 - Prim's algorithm constructs a minimum-cost spanning tree
 - Dijkstra's algorithm constructs a shortest-path-from-root spanning tree

Each layer solves a particular set of problems

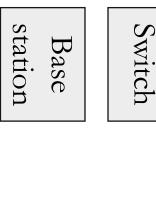
Ethernet Packet

MAC addresses, CRC, etc.

IP Packet *IP addresses, TTL, etc.*

TCP Packet

Port #, sequence #, ack #, etc.


HTTP Response

status code, content-type, etc.

<html><body><h1>My great page</h1>...

- Link layer: shares a physical channel among several transmitters/receivers
- Network layer: routes from source to destination, along many hops.
- Transport layer:
 - Multiplexing (>1 connection / machine)
 - Ordering, Acknowledgement, Pacing
- HTTP layer:
 - Resource urls, Response codes,
 - Caching, Content-types, Compression

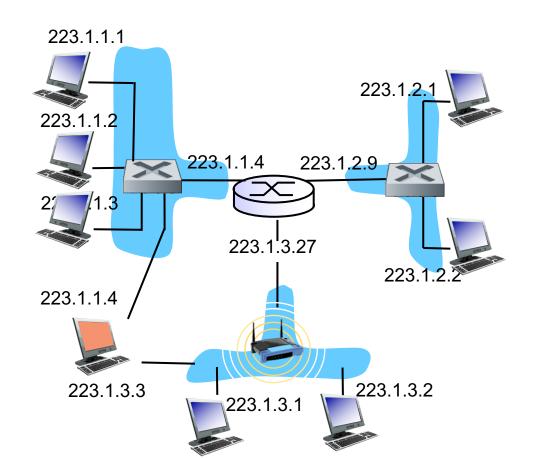
Who implements each layer?

R
u ou
lter

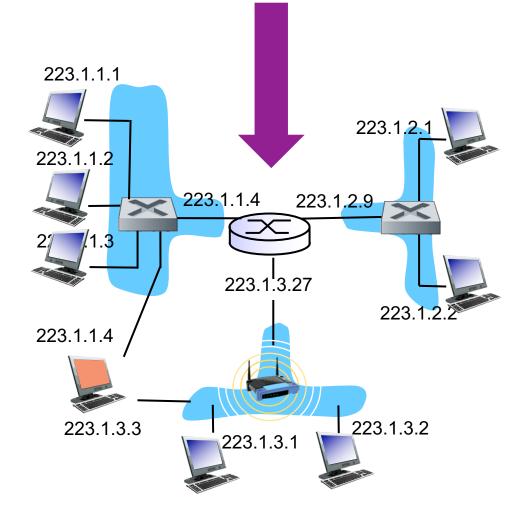
Hardware & driver					
Oper Syst	U				
Language /Libraries appl	User- level ication				

- Link layer: shares a physical channel among several transmitters/receivers
- Network layer: routes from source to destination, along many hops.
- Transport layer:
 - Multiplexing (>1 connection / machine)
 - Ordering, Acknowledgement, Pacing
- HTTP layer:
 - Resource urls, Response codes,
 - Caching,
 Content-types,
 Compression

Terminology


- *Nodes* are hosts and routers.
- *Links* are communication channels that connect adjacent nodes along communication path
 - wired links
 - wireless links
 - LANs
- Physical connectivity is called Layer 1.
- Link layer is called *Layer 2*.
- IP layer is *Layer 3*.
- Transport (TCP) layer is Layer 4.

cables connect two interfaces


5

switches connect multiple
Ethernet interfaces
base stations connect
multiple wireless interfaces.
routers connect subnets

Why does a router have multiple IP addresses?

- Nodes on a given subnet can all communicate via link-layer
- Router *routes* packets between subnets.
- So, it must have an IP address on each subnet it is participating in

Medium Access Control (MAC)

• Communication happens in some physical medium. (Plural is media.)

shared wire (e.g., cabled Ethernet)

shared RF (e.g., 802.11 WiFi)

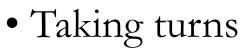
<u>(C</u>)

shared RF (satellite)

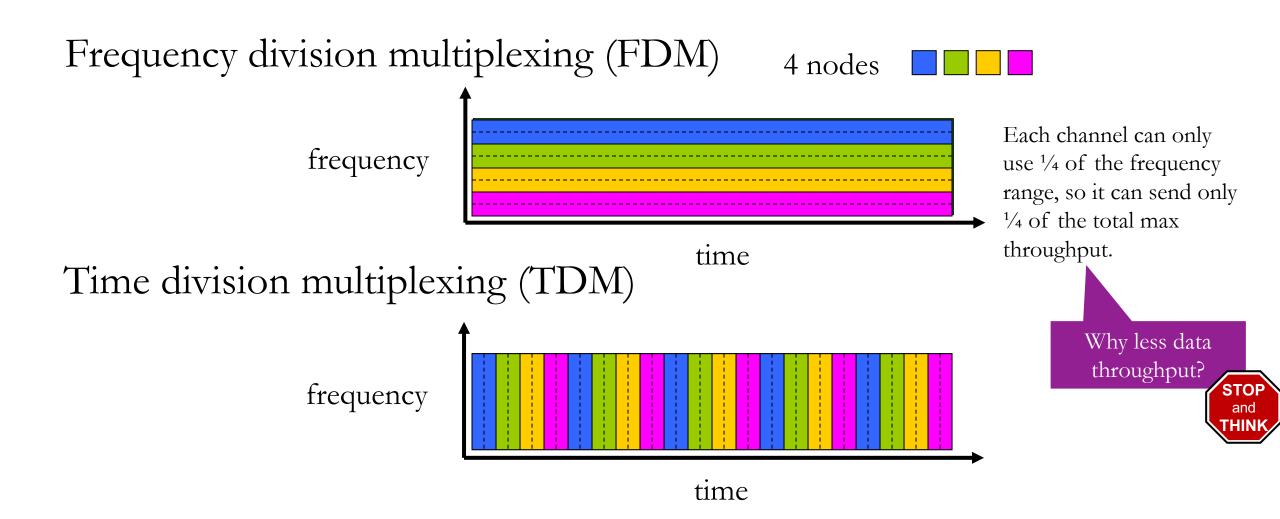
- Wireless communication occurs in open space, in some freq. band.
- Wired communication occurs on a wire.
 - Many nodes are often connected to the same wire, physically or logically.
- MAC is needed in **broadcast links**, where more than one node is *sharing* a single channel.
- MAC is unnecessary in **point-to-point** links.
 - Eg., a wired link with separate send and receive wires
 - such connections are only common over long distances.

Multiple Access Protocols

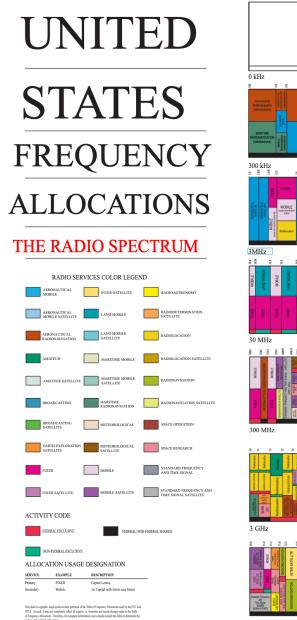
- Collision is the fundamental problem in broadcast links:
 - Multiple nodes try to communicate at the same time.
 - Simultaneous messages interfere with each other.
 - None of the colliding messages can be received.
 - Precious time and bandwidth is wasted.
 - Messages must be retransmitted.
- If we're too aggressive in sharing, many collisions will occur.
- If we're too polite about sharing, may waste time/bandwidth waiting.


Multiple Access Protocol Goals

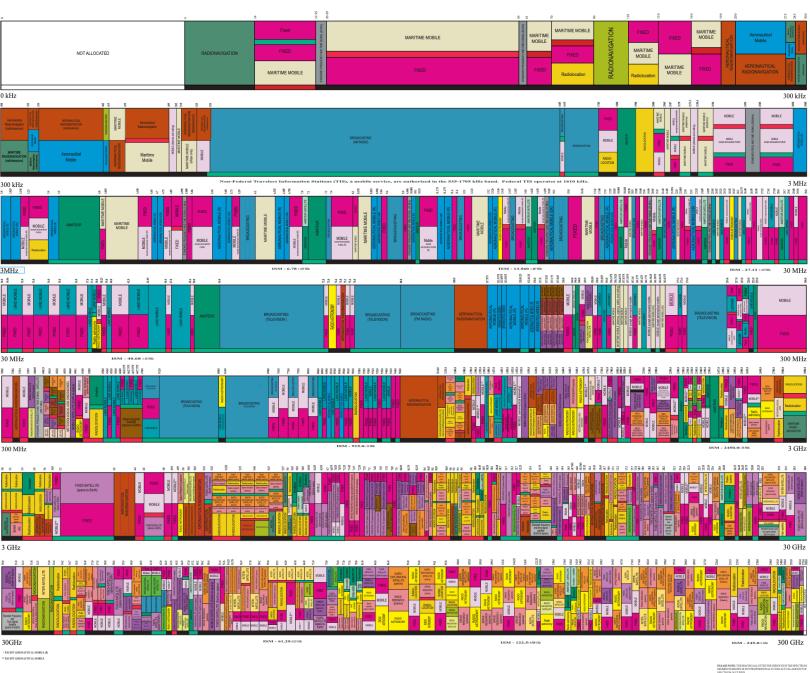
Assuming multiple nodes are sharing a link with throughput \boldsymbol{R} bps:

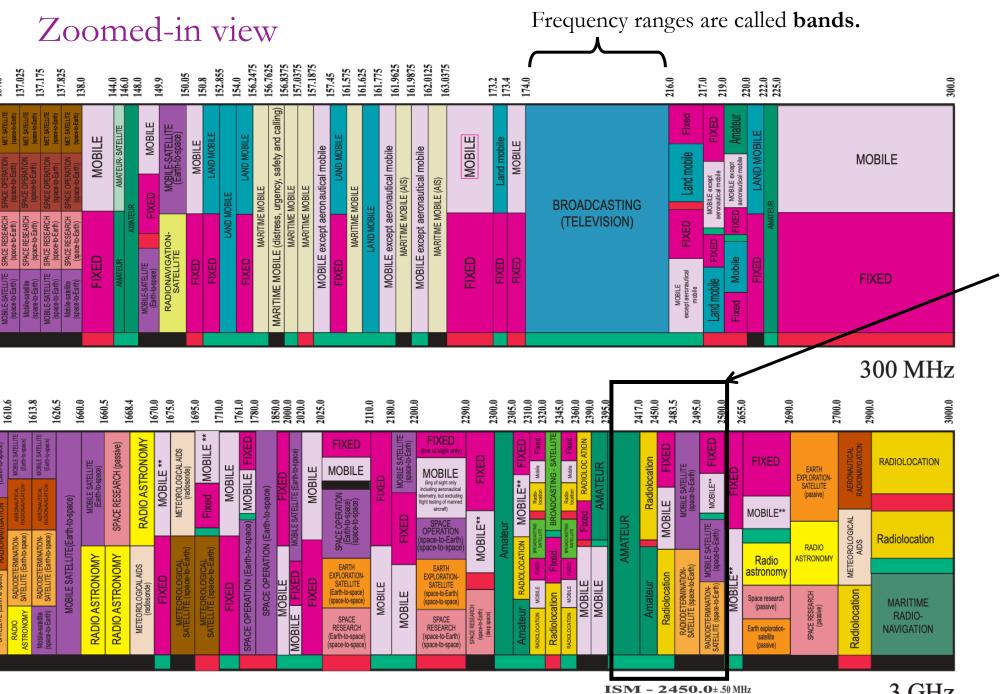

- If only one node is communicating, then it should get the full bandwidth (*R*).
- When *N* nodes have data to send, they should each get *R/N* bandwidth.
- Protocol should be decentralized, with no single point of failure.
- It should be simple and inexpensive to implement.

Three basic classes of multiple access protocols:


Channel partitioning
 Random access

Channel Partitioning Protocols


US radio spectrum (use of frequencies bands) is governed by the FCC


U.S. DEPARTMENT OF COMMERCE National Telecommunications and Information Ad

Office of Spectrum Managemen

JANUARY 2016

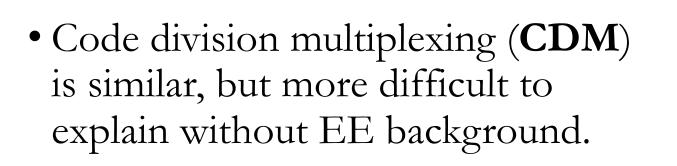
11

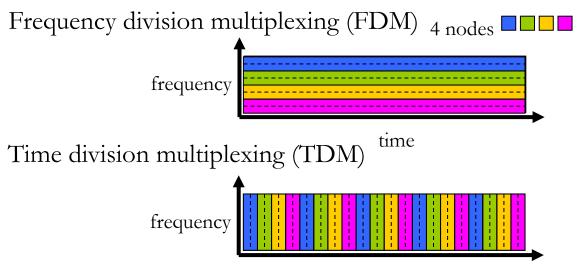
3 GHz

ISM band: Industrial, Scientific, and Medical bands are "unlicensed" & usable by random electronic devices. 2.4Ghz band is used by:

12

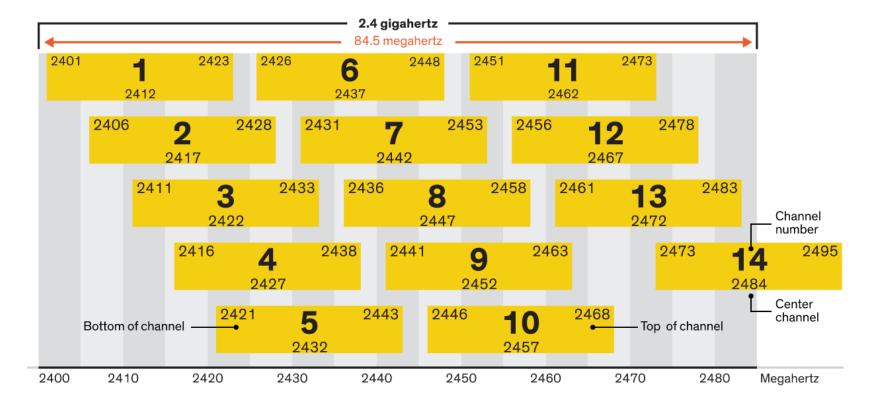
- Microwave ovens
- 802.11b/g/n/ax WiFi
- Cordless telephones
- Radio-controlled toys
- Whatever!

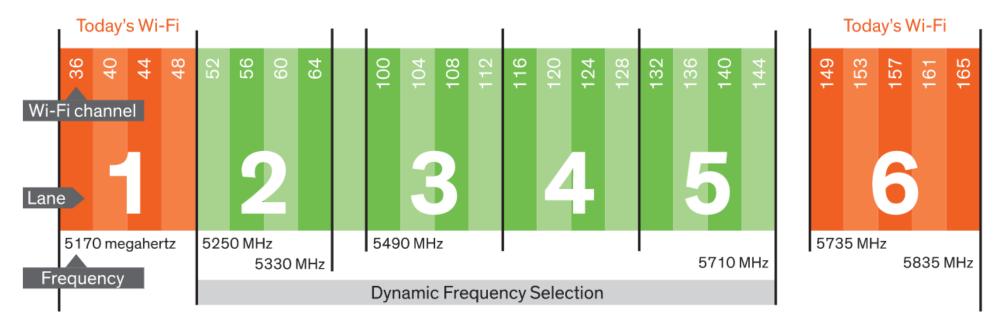



Channel Partitioning Protocols

"Bandwidth" literally means the **size of a frequency range** and is measured in hertz. The word's use as a synonym for **throughput** derives from FDM

13


- Each node gets a reserved "slice" of the bandwidth.
- FDM: each node uses a fraction of the spectrum, thus less bandwidth
- TDM: each node communicates a fraction of the time
- These are collision-free and fair, but inflexible:
 - Max throughput is R/N, even if only one node wants to communicate!


time

Wifi uses FDM to isolate different base stations

- 2.4Ghz WiFi technically support 14 channels, but the overlap means that it's best to use only three: channels 1, 6, and 11.
- If your neighbor uses channel 9, their traffic will interfere with channels 5-13, leaving just one free channel (1, 2, 3 or 4)

5Ghz WiFi adds another 9 to 25 channels

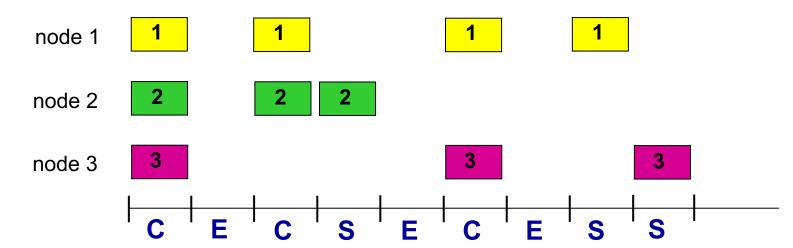
- In the 5Ghz band, 9 channels are dedicated to WiFi (red) and 16 more can be used during times when weather and military radar is not active (DFS/green).
- 802.11ac merges channels (perhaps all 9 red ones above) to get up to 1.3Gbps
- For more details, see: <u>https://spectrum.ieee.org/telecom/wireless/why-wifi-stinksand-how-to-fix-it</u>

Wi-Fi Scanner Tool Demo

- Option-click wifi icon in tray
- Open wireless diagnostics
- Window \rightarrow Scan

Random Access Protocols

- Abandons strict partitioning of so that individual sender can operate faster.
- Anyone can try sending immediately at full bitrate.
- In the event of collision, wait a random delay before retransmitting. Host 1: send (collision)send (success) Host 2: send (collision) send (success)
- Randomization will likely cause the two hosts to retry at different moments in the future:
 - What happens if we foolishly use a constant retransmission delay?
 Host 1: send (collision) send (collision) send (collision) send (collision)
 Host 2: send (collision) send (collision) send (collision) send (collision)

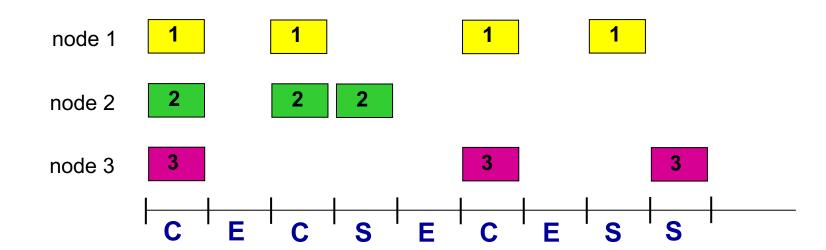


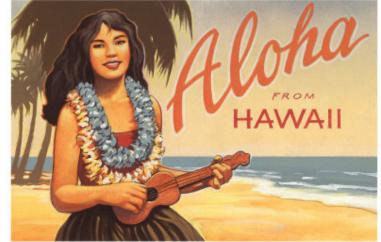
17

• But, how to choose the random delay?

ALOHA: an early random access protocol

- Invented in 1970, for radio communication between Hawaiian islands.
- Send immediately. If collision, retransmit the packet with probability *p* or wait (with probability *p-1*) for the time needed to send one packet.
- Keep trying until the packet is sent.
- Senders have no collision detection. Receiver uses checksum to drop corrupted packets. Retry if no ACK was received.
- Don't listen before broadcasting just assume channel is free



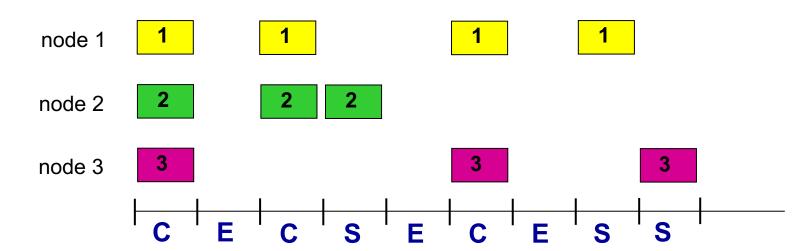


Mind of School Software Sectory (1) School Sectory (1) 2020 Sectory School Sectory Sectory

ALOHA: expected throughput

- Delay probability *p* should be tuned according to the expected number of concurrent senders. (Lower if channel is busier.)
- If the channel is busy, then on average we expect:
 - 18% of the peak throughput. (see book for formula derivation)
- Slotted ALOHA requires time synchronization among senders.
 - Achieves 37% of the peak throughput. (sent packet blocks one slot, not two)

Alliant of Balline's Surface (Market (Concession)) and All (Concession) and All (Concession) and All (Concession).


ALOHA


Pros

- One sender can use full bitrate
- Decentralized
- Simple

Cons

- Collisions are possible
- Link may be idle while waiting
- May interrupt another sender simply because didn't listen first.
- Poor throughput when busy

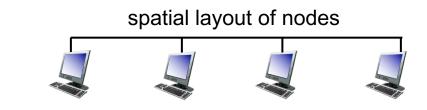
STOI and

THINK

Ideas for

improvement?

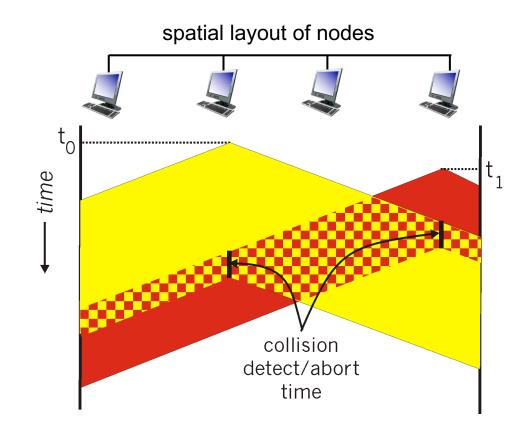
CSMA/CD


Carrier Sense Multiple Access with Collision Detection

- Carrier Sensing: listen to the channel before sending,
 - If it's busy, then wait. This anticipates and prevents collision.
- Collision Detection: listen while transmitting,
 - Stop transmission immediately if another transmission is heard.
 - This minimizes the channel-time wasted due to collision.
- Requires hardware that can detect signals on the transmission channel.
- Used by wired Ethernet (very effectively) and 802.11 WiFi (less effectively).

Collisions are unavoidable

- You might think that carrier sensing is enough to prevent collisions.
- However, *propagation delay* across the channel delays carrier sensing observations.
 - Also, there is a small delay between sensing and transmission.
- A node's knowledge of channel state is always slightly out-of-date.
- Longer propagation delay leads to more collision in CSMA.



t_o

time

Collision Detection

- Reduces the channel-time wasted by collisions.
- How?
 - Measure channel signal while sending.
 - If energy is greater than transmission energy, then there must be some added signal.
- Works well for wired channels.
- Received radio signals are much weaker than transmitted signals, so collision detection is difficult for wireless links.

CSMA/CD steps

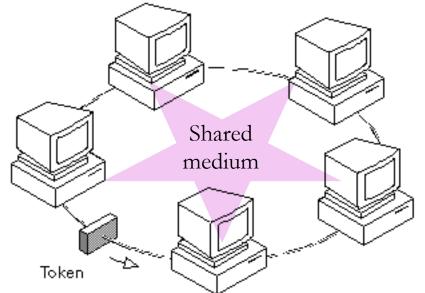
- Carrier Sensing: listen to the channel before sending,
 - If it's busy, then wait. Start sending when channel is free.
- Collision Detection: listen while transmitting,
 - Stop transmission immediately if another transmission is heard.

• Binary exponential backoff determines when transmission is retried.

- If packet has collided *n* times, choose a **random** delay between 0 and $C^*(2^n-1)$ For Ethernet, the constant C=512/bitrate, and *n* cannot grow past 10.
- Exponential backoff resets for each new packet.

Taking-Turns Protocols

- Random access protocols do not guarantee a fair share of bandwidth.
- Taking-Turns protocols are like TDM in the sense that time slots are reserved, but the reservations are dynamic, not pre-scheduled.
- *Bluetooth* is a type of taking-turns protocol called a **Polling Protocol**:
 - One node is designated the Leader.
 - Leader **polls** the nodes in a round-robin manner, sending a message to each node telling it to send up to *H* packets.
 - \bullet Polling messages add some coordination overhead (C*N) where C is a constant
- If leader sees that a node stopped sending packets early, it polls the next node. Assuming H=5: Leader observes silence


Leader polls A sends 5 packets Leader polls B sends 1 packet polls C polls C polls A sends 5 packets Leader polls B

. . .

Token-passing protocols

- Like a polling protocol, but without the special leader node.
- Nodes have a designated order 1...N.
- One nodes transmits up to some maximum number of packets, then sends a special message (a **token**) giving the next node a turn.
- Nodes only send packets while "holding" the token, so collisions are avoided.

• If token-holding node crashes, the entire network is crashed. (like crashing the leader node in a polling protocol).

Multiple access protocol summary

	Channel Partitioning		Random Access		Taking-Turns	
	FDM	TDM	ALOHA	CSMA/CD	Polling	Token-Passing
Single Sender throughput	R/N	R/N	R	R	$R - C^*N$	$R - C^*N$
Busy throughput	R	R	~37% R (slotted) or ~18% R	$\frac{R}{1+5d_{prop}/d_{trans}}$	$R - C^*N$	$R - C^*N$
Collisions			yes	unlikely		
Centralized	yes	yes			yes	
Crash-sensitive					yes	yes
Requires time synchronization		yes	optional			
Requires carrier sensing				yes	yes	

Recap

- Link-layer handles sharing a physical link/medium with multiple nodes.
- Medium Access Control / Multiple Access Protocol
 - Decide how to share the link.
 - Two nodes sending simultaneously is a collision. Packets are lost.

Three classes of sharing protocols:

- Channel Partitioning:
 - Frequency Division Multiplexing WiFi
 - Time Division Multiplexing
- Random Access:
 - ALOHA (simple historical example)
 - CSMA/CD (Carrier Sense Multiple Access/Collision Detection) Ethernet, Wifi

- Turn-Taking:
 - Polling Bluetooth
 - Token-passing