CS-340 Introduction to Computer
Networking

Lecture 10: Router Internals &
Routing Algorithms

Steve Tarzia

Many diagrams & slides are adapted from those by |.& Kurose and K.W. Ross

Last lecture: NAT & IPv6

* Private networks are isolated from the public Internet, but usually
connected through a Network Address Translator (NAT).

* Port mapping makes multiple machines on the private subnet look like
multiple sockets (processes) on one big machine.

* NAT requires no awareness or cooperation from hosts on either side.
* NAT is also one way to implement a load balancer.
* Besides NATs, middleboxes include frrewalls and other security appliances.

* IPv6 uses 128-bit addresses for practically unlimited public addresses.
* [Pv6 adds 20 bytes of header overhead.
* Not directly compatible with IPv4. Adopted by ~30% of end hosts.
* Dual-stack hosts have both IPv4 and IPv6 addresses to reach entire Internet.
* Interoperates with IPv4 via tunneling: send IPv6 packet inside IPv4 packet.

Routing Review

routing algorithm

«.

* Each packet has an IP header listing

the source & destination [P addresses local forwarding table
dest. address joutput link
and the TTL address-range 1 3

address-range 2

2
. 1- address-range 3 2
¢ ROutefS useﬁWdVdZﬂg fﬂb/@f tO airect address-range 4 1

IP packets to the next hop

* Forwarding rules associate ranges of
addresses with the outbound links.

!

* Ranges are defined in CIDR notation: 3
e 234.30.0.0/16

Input and output "ports" on routers

* The word portis overloaded in networking:

* At the physical layer, the wired connections on on routers are called ports.
* At the transport layer (TCP/UDP), ports numbers create logical connections.

* Most wired links are bidirectional, and we can think about each
direction separately:

Physical view: Schematic view: In more detail: Abstractly:

' — —

o~ ==
input output
ports IHC ports

Simple router model

e One queue il

ﬁﬂ
— AR
—— AR
ﬁﬂ

More realistic model

* A queue llll for each port

high-speed

interconnect

input ports

output ports

First generation routers

* General-purpose computers with several network cards.

* Routing software implements the forwarding logic.

* Bg., iptables command configures Linux kernel’s handling of packets

* However, memory and bus bandwidth become bottlenecks.

* General-purpose computers are optimized for computing, not I/O

| - input output I

100 Mb | 10|TU|D‘
G‘j ¢|> port port Gl Wa)
memory

(C-g., (C.g., [TITTIT]
UL Ethernet) Ethernet) s‘ 7777777

_;;L system bus

Modern router architecture

* Control plane: run routing algorithms (RIP, OSPEF, BGP)

* Data plane: forward packets from incoming to outgoing links

Jforwarding tables computed, routing ,
pushed to input ports processot routing, management
control plane (software)
forwarding data
> plane (hardware)
o . o
® high-speed ®
® switching 0
® fabric °

router input ports router output potrts

Input ports process packets in parallel

link lookup,
| line J layer | forwarding] | switch
|termination PfOthC01 I“""" fabric
/ (receive) queueing
/ / -
physical layer: decentralized processing:

bit-level reception * cach input port has its own processor and memory

* oiven a packet destination, look up output port using a

data link layer: copy of forwarding table in input port memory

e.o.. Ethernet
g b ° / 1 . . cch b))
goal: complete input port processing at “line speed

* queue packets if they arrive faster than forwarding rate
into switch fabric

9

Switching fabric — connects input and output ports

* Switching rate — the maximum rate of data transfer from all input
ports to all output ports. (A very important spec. for a router/switch.)

* Ideally = # inputs X input line rate * In practice, switching rate is smaller.

* Two basic types of switching fabric:

* Bus: simplest design. Can only
be used by one in/out pair.
Bus should be much faster than
individual input line rate. I
* Crossbar: advanced design for | pi==
core routers. Allows multiple e oupHE
simultaneous flows by opening
and closing (switching) connections appropriately.

bus crossbar

outputs

10

Crossbar switch ,]
* Open circle means no connection between

horizontal and vertical paths (input &
output).

* Closed circle connects a vertical and a
horizontal path, connecting an input to an
output.

* Crossbar connections are changed as
needed.

* Expensive to build, compared to bus:

* For ninputs and outputs,
requires #° switch points in the crossbar.

outputs

Road analogy for switching fabrics

Bus is like a roundabout Crossbatr is like a stack exchange

12

OUIPUI PO £ts data link layer: physical layer:

e.g., Ethernet bit-level transmission
/ /
/ /
, datagram link
SWlt(.:h buffer i line
fabric R) layer L] ne
] I I I I I I I I I protocol termination
queueing (send)

* Buffering 1s required because switch fabric may be faster than physical
output link, link may be congested.

* Queued packet can be scheduled it desired.
* Give higher priority to certain types of packets
* Give higher priority to certain orgins/destination

* Net neutrality is the policy debate about whether ISPs can do this.

13

Queues and packet loss

* Packets can be dropped by router if any of the queues are full
* Switching fabric may be overloaded, filling up the wmput guenes |
* Qutput ports may be overloaded, filling up the output queues |

* Routers silently drop packets when a queue 1s full.

»
»

o . ® If this output line is
® hlglr.l—sp.eed ® too slow, what will
® switching o b S
® fabric ® appeix:

»
»

router input ports router output ports

Weighted tair queuing (WEFQ)

' /

Classify N
Arrivals Departures
. 4 W, ——cp
+ —>

— —> .
—

—>
w. |
/ﬂ Link
—>

* A discriminative alternative to FIFO packet scheduling policy

* Some tratfic gets higher priority. We have multiple queues instead of just one.
* Administrator creates rules to classify packets, based on header fields:

* Src./dest. IP address © Port number (service) * TCP vs UDP ¢ QoS

* Each class is allocated a certain fraction of link capacity (w,;/> w)
* Spend w; time sending packets from queue z then move to next queue.

14

15

routing algorithm

2

local forwarding table

dest. address joutput link
address-range 1 3
address-range 2 2
address-range 3 2
address-range 4 1

Next Topic: B
IP Control Plane —

How to decide forwarding rules
at each router?

(Chapter 5)

Centralized versus Distributed algorithms

* Centralized /Global routing:
* Algorithm has full knowledge of the entire network.
* Makes decisions that affect all routers
* In routing, we call these link state algorithms.
* Used within an organization (autonomous system) (eg,, OSPF)

* Distributed/Local routing:
* Each router must decide its own routing table using local observations.
* Operates teratively.
* Routers continually share information with neighbors
* Global information is gradually propagated across the network.
* Used within and between autonomous systems (eg., RIP & BGP, respectively)

* Distributed algorithms are more difficult to design correctly.

16

17

Graph abstraction of computer networks

* A graph is a set of verfexes and edoes
G = (V,E)

* Vertexes represents routers:
V = set of routers = {x, a, b, ¢, d, y}

* Edges represent links:
E = set of edges = {(x,2), (x,b), (x,0), (a,b),
<a’c>’ (b,C), <b9d>’ <C3d>’ (C’Y>’ (d’Y)}
* Edge labels/weights represent distance or
cosf tO communicate: For now, cost = delay.

C:E—{0,1,2 3,...} We’ll ignore the limited
C(X,EI) — 2) C(Zl,C) — 33 C(X>b> — 1’

c(x,y) = o

capacity ot links.

18

Shortest Path pr oblem Greedy path is disastrous

* What edges should I choose to construct a
path from x — y with minimal total cost

(delay)?
* You are given:
* An edge-weighted graph

e A starting vertex

* A destinatt t
cstination vertex Shortest path has cost 1+1+2=4

* Must output:
* The path (a sequence of edges)
* The total cost

19

Shortest path insight

* Break down the problem into subproblems
* Let d(x,y) represent the cost of the shortest
path between x and y. It must be true that:
d(x,y) = min{d(x,c) + e(c,y),

d(x,d) + e(d,y)}

Cost of path that a/most gets there. Cost of the final step.

* Shortest path to y must pass through a neighbor, either vertex c or d.

* The cost ot the shortest (x,y) path wizh ¢ as the final stop 1s the cost ot
the shortest (x,c) path plus the edge cost of the final step from c to y.

* Just choose the option with minimum total cost.

20

Bellman-Ford equation

* The equation works for any pair in the graph

* Let d(x,y) represent the cost of the shortest
path between x and y. It must be true that:

d(x,y) :JLO if x=y
min {d(x,v) + c(wy)} xFy

* In other words,

Except in the trivial case when x and y refer to the same vertex,

the shortest path between x and y must pass through soze vertex v that 1s
adjacent to y before finally arriving at y.

* The sub-path leading from x to v must be the shortest path from x to .

* It we know the shortest path distances to all the vertices adjacent to y; then
we can easily choose which one of these creates the shortest path to y-

21

Bellman-Ford recursion

d(X,Y) :JL 0 ij X—=Y * d(x,y) 1s the shortest path
: : distance from x to y.
mlnv{d<X>V> T C<V>Y>} ij X#Y * c(vy) 1s the cost of the edge
! directly connecting v and y.

Minimum taken over all neighbors v

* When calculating d(x,y), consider every possible v we could pass through.

* We know that one of those v’s is the right choice; the path has to pass
through some other vertex before arriving at the finish.

* Assume we have already computed the minimum cost path to every vertex
except y. This assumption leads to a recursive solution.

* Implement the recursive solution etficiently using dynamic programing.

22

Bellman-Ford algorithm

function BellmanFord(list vertices, list edges, vertex source)

for each vertex v in vertices:
dist[v] := INFINITY
prev[v] := NULL
dist[source] := 0

for i from 1 to size(vertices)-1:

for each edge (u,v): Invariant:
alt := dist[u] + (u,v).cost() At round 7, distancefj] 1s the
if alt < dist[v]: h hf :
dist[v] := alt shortest pat rom soxurce tO]
prev[v] := u having at most ihOPS.

Runtime complexity:
return dist[], prev]] ()(|X7|‘|IE|)

Bellman-Ford demo

https://www-m9.ma.tum.de/graph-algorithms/spp-bellman-ford /index en.html

23

https://www-m9.ma.tum.de/graph-algorithms/spp-bellman-ford/index_en.html

Dijkstra’s algorithm

function Dijkstra(list vertices, list edges,

for each vertex v in Graph:
dist[v] := INFINITY
prev[v] := NULL

dist[source] := 0

Q := vertices.copy()

while Q.size() > O0:
u := vertex in Q with minimum dist[u]
Q.remove(u)

for each neighbor v of u:
alt := dist[u] + (u,v).cost()
if alt < dist[v]:
dist[v] := alt
prev[v] = u

return dist[], prev]]

source):

24

Invariant:

distance[j] 1s shortest path if
was visited, otherwise it’s
shortest using visited nodes

Runtime complexity:
O(|V]? or
O E|+|V]log| V)

The faster version uses a priority queue.

25

Dijkstra’s algorithm demo

https://www-m9.ma.tum.de/graph-algorithms/spp-dijkstra/index en.html

26

https://www-m9.ma.tum.de/graph-algorithms/spp-dijkstra/index_en.html

Diyjkstra’s shortest path example

Bellman-Ford n

* Very simple
* Slower: O(|V|-|E]|)

* Detects negative cycles

* Can be adapted to a distributed
implementation in the Distance-

[Vector algorithm (used by BGP).

Dijkstra

* Slightly more complicated
* Faster: O(|E|+|V]|log|V|)

* Cannot handle negative cycles

* Best choice for a centralized
implementation.

* Book calls it the [znk-State (1.5)
algorithm.

* Used by OSPFE.

28

29

Distance-Vector algorithm

Fach vertex/node/router x:

* Maintains a distance vector (DV):

* d,(y) = estimate of shortest path from x (myself) to y.
* D, 1s the distance vector at node x: D, = [d,(y) : Vy | = [d,(0), d . (1), ...]

* Knows the cost to reach each neighbor v:
* cost(x,v) = the cost of the link between x and y (infinity if no link exists).

* Initially sends its DV to all neighbors
* Keeps a copy of the latest DV received from all neighbors.

* After recerving a DV from a neighbor, recalcnlate its own DV D Cerate
* If its own DV has changed, send the updated DV to neighbors.

* Eventually, the algorithm converges and each node knows the shortest
path to every other node.

. . . 30
DV is recalculated using Bellman-Ford equation
* Initially, d (y) = cost(X,y), or wufmnzty it no direct (X,y) link exists.

* After recetving an updated D, from neighbor #, or if we observe a
change 1n local link costs, update D_:

d (y) <= min_{cost(x,v) + d (y)} for each nodey € N

Each node:

* Waits tor changes to local link costs or updated DV from a neighbor.
* Recalenlates estimates (DV).

* Notifies neighbors 7/ DV has changed.

Note: the book’s description of the DV

algorithm is over-complicated. Please

just learn DV from my two slides.

DV algorithm example

32

Recap

* Weighted Fair Oneneing can prioritize classes of packets in router queue.

* Routing algorithms determine each router’s forwarding table. It’s a a shortest
path problem on the weighted graph graph representing the network.
* May be centralized/ global ot distributed.

* Diykstra’s Algorithm 1s a tast centralized (LS) algorithm for shortest path.
* Used by Open Shortest Path First (OSPF) protocol within an AS.
* Routers initially flood/ broadeast 1ocal link information to entire network.
* Hach router then solves shortest path from itself to all other routers.

* Distance VVector (D17) algorithm 1s a distributed shortest path algorithm
* Used by the Border Gateway Protocol (BGP) to route between AS’s.
* Initially, routers only knows distance to neighbors — broadcast to neighbors.
* When recetve a neighbot’s DV, update own DV, & broadcast if DV changed.

