
1

CS-340 Introduction to Computer
Networking

Lecture 10: Router Internals &
Routing Algorithms

Steve Tarzia

Many diagrams & slides are adapted from those by J.F Kurose and K.W. RossMany diagrams & slides are adapted from those by J.F Kurose and K.W. Ross

2Last lecture: NAT & IPv6
• Private networks are isolated from the public Internet, but usually

connected through a Network Address Translator (NAT).
• Port mapping makes multiple machines on the private subnet look like

multiple sockets (processes) on one big machine.
• NAT requires no awareness or cooperation from hosts on either side.
• NAT is also one way to implement a load balancer.
• Besides NATs, middleboxes include firewalls and other security appliances.

• IPv6 uses 128-bit addresses for practically unlimited public addresses.
• IPv6 adds 20 bytes of header overhead.
• Not directly compatible with IPv4. Adopted by ~30% of end hosts.
• Dual-stack hosts have both IPv4 and IPv6 addresses to reach entire Internet.
• Interoperates with IPv4 via tunneling: send IPv6 packet inside IPv4 packet.

3Routing Review
• Each packet has an IP header listing

the source & destination IP addresses
and the TTL.
• Routers use forwarding tables to direct

IP packets to the next hop
• Forwarding rules associate ranges of

addresses with the outbound links.
• Ranges are defined in CIDR notation:
• 234.30.0.0/16

1

23

routing algorithm

local forwarding table
dest. address output link

address-range 1
address-range 2
address-range 3
address-range 4

3
2
2
1

4Input and output "ports" on routers
• The word port is overloaded in networking:
• At the physical layer, the wired connections on on routers are called ports.
• At the transport layer (TCP/UDP), ports numbers create logical connections.

•Most wired links are bidirectional, and we can think about each
direction separately:

Schematic view: In more detail:

input
ports

output
ports

Abstractly:

queue

Physical view:

5Simple router model

high-speed
interconnect

input ports output ports

More realistic model

input
ports

output
ports

• A queue for each port• One queue

6First generation routers
•General-purpose computers with several network cards.
• Routing software implements the forwarding logic.
• Eg., iptables command configures Linux kernel’s handling of packets

•However, memory and bus bandwidth become bottlenecks.
• General-purpose computers are optimized for computing, not I/O

input
port
(e.g.,

Ethernet)
memory

output
port
(e.g.,

Ethernet)

system bus

7Modern router architecture
• Control plane: run routing algorithms (RIP, OSPF, BGP)
•Data plane: forward packets from incoming to outgoing links

high-speed
switching

fabric

routing
processor

router input ports router output ports

forwarding data
plane (hardware)

routing, management
control plane (software)

forwarding tables computed,
pushed to input ports

8Input ports process packets in parallel

line
termination

link
layer

protocol
(receive)

lookup,
forwarding

queueing

decentralized processing:
• each input port has its own processor and memory
• given a packet destination, look up output port using a

copy of forwarding table in input port memory
• goal: complete input port processing at “line speed”
• queue packets if they arrive faster than forwarding rate

into switch fabric

physical layer:
bit-level reception

data link layer:
e.g., Ethernet

switch
fabric

9Switching fabric – connects input and output ports
• Switching rate – the maximum rate of data transfer from all input

ports to all output ports. (A very important spec. for a router/switch.)
• Ideally = # inputs × input line rate • In practice, switching rate is smaller.

• Two basic types of switching fabric:
• Bus: simplest design. Can only

be used by one in/out pair.
Bus should be much faster than
individual input line rate.
• Crossbar: advanced design for

core routers. Allows multiple
simultaneous flows by opening
and closing (switching) connections appropriately.

bus crossbar

inputs inputsoutputs

outputs

10Crossbar switch
•Open circle means no connection between

horizontal and vertical paths (input &
output).
• Closed circle connects a vertical and a

horizontal path, connecting an input to an
output.
• Crossbar connections are changed as

needed.

• Expensive to build, compared to bus:
• For n inputs and outputs,

requires n2 switch points in the crossbar.

inputs

outputs

11Road analogy for switching fabrics
Bus is like a roundabout Crossbar is like a stack exchange

12Output ports

• Buffering is required because switch fabric may be faster than physical
output link, link may be congested.
•Queued packet can be scheduled if desired.
• Give higher priority to certain types of packets
• Give higher priority to certain orgins/destination

•Net neutrality is the policy debate about whether ISPs can do this.

line
termination

link
layer

protocol
(send)

switch
fabric

datagram
buffer

queueing

data link layer:
e.g., Ethernet

physical layer:
bit-level transmission

13Queues and packet loss
• Packets can be dropped by router if any of the queues are full
• Switching fabric may be overloaded, filling up the input queues
• Output ports may be overloaded, filling up the output queues

• Routers silently drop packets when a queue is full.

high-speed
switching

fabric

router input ports router output ports

If this output line is
too slow, what will

happen?

STOP
and

THINK

14Weighted fair queuing (WFQ)

• A discriminative alternative to FIFO packet scheduling policy
• Some traffic gets higher priority. We have multiple queues instead of just one.

• Administrator creates rules to classify packets, based on header fields:
• Src./dest. IP address • Port number (service) • TCP vs UDP • QoS

• Each class is allocated a certain fraction of link capacity (wi/∑w)
• Spend wi time sending packets from queue i, then move to next queue.

15

Next Topic:
IP Control Plane
How to decide forwarding rules
at each router?
(Chapter 5)

1

23

routing algorithm

local forwarding table
dest. address output link

address-range 1
address-range 2
address-range 3
address-range 4

3
2
2
1

16Centralized versus Distributed algorithms
• Centralized/Global routing:
• Algorithm has full knowledge of the entire network.
• Makes decisions that affect all routers
• In routing, we call these link state algorithms.
• Used within an organization (autonomous system) (eg., OSPF)

•Distributed/Local routing:
• Each router must decide its own routing table using local observations.
• Operates iteratively.
• Routers continually share information with neighbors
• Global information is gradually propagated across the network.
• Used within and between autonomous systems (eg., RIP & BGP, respectively)

•Distributed algorithms are more difficult to design correctly.

17Graph abstraction of computer networks
• A graph is a set of vertexes and edges

G = (V, E)
• Vertexes represents routers:

V = set of routers = {x, a, b, c, d, y}
• Edges represent links:

E = set of edges = {(x,a), (x,b), (x,c), (a,b),
(a,c), (b,c), (b,d), (c,d), (c,y), (d,y)}

• Edge labels/weights represent distance or
cost to communicate:

C : E → {0, 1, 2, 3, …} C maps edges to costs
c(x,a) = 2, c(a,c) = 3, c(x,b) = 1, …
c(x,y) = ∞ because the two vertices are not connected

For now, cost = delay.
We’ll ignore the limited

capacity of links.

x

db

ca

y
2

2
1

3

1

1

2

5
3

5

18

x

db

ca

y
2

2
1

3

1

1

2

5
3

5

Shortest Path problem
•What edges should I choose to construct a

path from x → y with minimal total cost
(delay)?
• You are given:
• An edge-weighted graph
• A starting vertex
• A destination vertex

•Must output:
• The path (a sequence of edges)
• The total cost

Shortest path has cost 1+1+2=4

Greedy path is disastrous

19Shortest path insight
• Break down the problem into subproblems
• Let d(x,y) represent the cost of the shortest

path between x and y. It must be true that:
d(x,y) = min{d(x,c) + c(c,y),

d(x,d) + c(d,y)}

• Shortest path to y must pass through a neighbor, either vertex c or d.
• The cost of the shortest (x,y) path with c as the final stop is the cost of

the shortest (x,c) path plus the edge cost of the final step from c to y.
• Just choose the option with minimum total cost.

x

db

ca

y
2

2
1

3

1

1

2

5
3

5

Cost of path that almost gets there. Cost of the final step.

20Bellman-Ford equation
• The equation works for any pair in the graph
• Let d(x,y) represent the cost of the shortest

path between x and y. It must be true that:
d(x,y) = 0 if x=y

minv{d(x,v) + c(v,y)} if x≠y
• In other words,

Except in the trivial case when x and y refer to the same vertex,
the shortest path between x and y must pass through some vertex v that is
adjacent to y before finally arriving at y.
• The sub-path leading from x to v must be the shortest path from x to v.
• If we know the shortest path distances to all the vertices adjacent to y, then

we can easily choose which one of these creates the shortest path to y.

x

db

ca

y
2

2
1

3

1

1

2

5
3

5

21Bellman-Ford recursion
d(x,y) = 0 if x=y

minv{d(x,v) + c(v,y)} if x≠y

• When calculating d(x,y), consider every possible v we could pass through.
• We know that one of those v’s is the right choice; the path has to pass

through some other vertex before arriving at the finish.
• Assume we have already computed the minimum cost path to every vertex

except y. This assumption leads to a recursive solution.
• Implement the recursive solution efficiently using dynamic programing.

• d(x,y) is the shortest path
distance from x to y.

• c(v,y) is the cost of the edge
directly connecting v and y.

Minimum taken over all neighbors v

22Bellman-Ford algorithm
function BellmanFord(list vertices, list edges, vertex source)

// Initialization
for each vertex v in vertices:

dist[v] := INFINITY // Initially, vertices have infinite weight
prev[v] := NULL // and a null predecessor.

dist[source] := 0 // Distance from source to itself is zero

// Relax edges repeatedly.
for i from 1 to size(vertices)-1:

for each edge (u,v):
alt := dist[u] + (u,v).cost()
if alt < dist[v]:

dist[v] := alt
prev[v] := u

// outputs are distance and predecessor arrays
return dist[], prev[]

Invariant:
At round i, distance[j] is the
shortest path from source to j
having at most i hops.
Runtime complexity:

Θ(|V|·|E|)

23

Bellman-Ford demo
https://www-m9.ma.tum.de/graph-algorithms/spp-bellman-ford/index_en.html

https://www-m9.ma.tum.de/graph-algorithms/spp-bellman-ford/index_en.html

24Dijkstra’s algorithm
function Dijkstra(list vertices, list edges, source):

// Initialization
for each vertex v in Graph:

dist[v] := INFINITY // Unknown distance from source to v.
prev[v] := NULL // Previous node in optimal path from source.

dist[source] := 0 // Distance from source to itself is zero.
Q := vertices.copy() // The list of the “unvisited” vertices.

// “visit” the closest unvisited vertex, u
while Q.size() > 0:

u := vertex in Q with minimum dist[u]
Q.remove(u)
// try using u to make shorter paths
for each neighbor v of u:

alt := dist[u] + (u,v).cost()
if alt < dist[v]:

dist[v] := alt
prev[v] := u

// outputs are distance and predecessor arrays
return dist[], prev[]

Invariant:
distance[j] is shortest path if j
was visited, otherwise it’s
shortest using visited nodes
only.Runtime complexity:

Θ(|V|2) or
Θ(|E|+|V|log|V|)

The faster version uses a priority queue.

25

26

Dijkstra’s algorithm demo
https://www-m9.ma.tum.de/graph-algorithms/spp-dijkstra/index_en.html

https://www-m9.ma.tum.de/graph-algorithms/spp-dijkstra/index_en.html

27

Dijkstra’s shortest path example

28Bellman-Ford
• Very simple
• Slower: Θ(|V|·|E|)
•Detects negative cycles

• Can be adapted to a distributed
implementation in the Distance-
Vector algorithm (used by BGP).

• Slightly more complicated
• Faster: Θ(|E|+|V|log|V|)
• Cannot handle negative cycles

• Best choice for a centralized
implementation.
• Book calls it the Link-State (LS)

algorithm.
• Used by OSPF.

Dijkstravs

29Distance-Vector algorithm
Each vertex/node/router x:
•Maintains a distance vector (DV):
• dx(y) = estimate of shortest path from x (myself) to y.
• Dx is the distance vector at node x: Dx = [dx(y) : ∀y] = [dx(0), dx(1), …]

•Knows the cost to reach each neighbor v:
• cost(x,v) = the cost of the link between x and y (infinity if no link exists).

• Initially sends its DV to all neighbors
•Keeps a copy of the latest DV received from all neighbors.
• After receiving a DV from a neighbor, recalculate its own DV
• If its own DV has changed, send the updated DV to neighbors.

• Eventually, the algorithm converges and each node knows the shortest
path to every other node.

iterate

30DV is recalculated using Bellman-Ford equation
• Initially, dx(y) = cost(x,y), or infinity if no direct (x,y) link exists.
• After receiving an updated Du from neighbor u, or if we observe a

change in local link costs, update Dx:
dx(y) ← minv{cost(x,v) + dv(y)} for each node y ∊ N

Each node:
•Waits for changes to local link costs or updated DV from a neighbor.
• Recalculates estimates (DV).
•Notifies neighbors if DV has changed.

Note: the book’s description of the DV
algorithm is over-complicated. Please

just learn DV from my two slides.

31

DV algorithm example

32Recap
• Weighted Fair Queueing can prioritize classes of packets in router queue.
• Routing algorithms determine each router’s forwarding table. It’s a a shortest

path problem on the weighted graph graph representing the network.
• May be centralized/global or distributed.

• Dijkstra’s Algorithm is a fast centralized (LS) algorithm for shortest path.
• Used by Open Shortest Path First (OSPF) protocol within an AS.
• Routers initially flood/broadcast local link information to entire network.
• Each router then solves shortest path from itself to all other routers.

• Distance Vector (DV) algorithm is a distributed shortest path algorithm
• Used by the Border Gateway Protocol (BGP) to route between AS’s.
• Initially, routers only knows distance to neighbors – broadcast to neighbors.
• When receive a neighbor’s DV, update own DV, & broadcast if DV changed.

