CS-340 Introduction to Computer Networking Lecture 8: IPv4 Addressing

Steve Tarzia

Many diagrams & slides are adapted from those by J.F Kurose and K.W. Ross

Last Lecture: TCP Congestion Control

- Congestion control is implemented with a dynamic *congestion window*, controlled by *heuristics*. Reno congestion control operate in phases:
 - *Slow start* exponential growth to find approximate network capacity.
 - Congestion avoidance linear growth, slowly trying to increase throughput.
 - *Fast recovery* If one packet is lost, then cut window in half.
- Additive Increase, Multiplicative Decrease ensures fair sharing.
- **CUBIC** and **BBR** are newer alternatives that work better in fast networks, particularly long fat pipes. (Read <u>this</u> for more info.)
- TCP behavior can be controlled with *socket options*:
 - Nagle's algorithm merges small packets to reduce *header overhead*.
 - TCP *keepalive* message can be periodically sent.

Congestion Control

- We covered *TCP Reno* congestion control in detail.
- Many alternative algorithms have been proposed and implemented.
- Most real TCP implementations are similar to Reno, but not identical.

Variant 🗢	Feedback +	Required changes \$	Benefits +	Fairness +
(New)Reno	Loss	-	-	Delay
Vegas	Delay	Sender	Less loss	Proportional
High Speed	Loss	Sender	High bandwidth	
BIC	Loss	Sender	High bandwidth	
CUBIC	Loss	Sender	High bandwidth	
H-TCP	Loss	Sender	High bandwidth	
FAST	Delay	Sender	High bandwidth	Proportional
Compound TCP	Loss/Delay	Sender	High bandwidth	Proportional
Westwood	Loss/Delay	Sender	L	
Jersey	Loss/Delay	Sender	L	
BBR ^[11]	Delay	Sender	BLVC, Bufferbloat	
CLAMP	Multi-bit signal	Receiver, Routers	V	Max-min
TFRC	Loss	Sender, Receiver	No Retransmission	Minimum delay
XCP	Multi-bit signal	Sender, Receiver, Router	BLFC	Max-min
VCP	2-bit signal	Sender, Receiver, Router	BLF	Proportional
MaxNet	Multi-bit signal	Sender, Receiver, Router	BLFSC	Max-min
JetMax	Multi-bit signal	Sender, Receiver, Router	High bandwidth	Max-min
RED	Loss	Router	Smaller delay	
ECN	Single-bit signal	Sender, Receiver, Router	Less loss	

TCP in practice: HTTP POST a small file on Ethernet

Sequence Numbers (Stevens) for 129.105.5.25:53189 → 128.119.245.12:80

4

Thunderbolt Ethernet: en4

TCP in practice: HTTP POST a small file on WiFi

Sequence Numbers (Stevens) for 10.105.86.107:53235 → 128.119.245.12:80

5

TCP in practice: SCP a large file to Seattle

Sequence Numbers (Stevens) for 129.105.5.25:53526 → 54.245.121.172:22

6

Thunderbolt Ethernet: en4

TCP in practice: SCP a large file on campus

Sequence Numbers (Stevens) for 129.105.5.25:53364 → 129.105.7.26:22

Thunderbolt Ethernet: en4

Next topic: IP/Forwarding

a.k.a "The Data Plane" of the Network Layer. Covered in Chapter 4 of Kurose & Ross.

Each layer solves a particular set of problems

Ethernet Packet

MAC addresses, CRC, etc.

IP Packet *IP addresses, TTL, etc.*

TCP Packet

Port #, sequence #, ack #, etc.

HTTP Response

status code, content-type, etc.

<html><body><h1>My great page</h1>...

- Link layer: shares a physical channel among several transmitters/receivers
- Network layer: routes from source to destination, along many hops.
- Transport layer:
 - Multiplexing (>1 connection / machine)
 - Ordering, Acknowledgement, Pacing
- HTTP layer:
 - Resource urls, Response codes,
 - Caching, Content-types, Compression

Internet Protocol (IP) delivers packets (datagrams)

- Each datagram has receiver and sender *IP addresses*.
- Maximum Transmission Unit (MTU) limits datagram size.

10

• *Best effort delivery* (may drop packets)

But how do packets reach their intended destination?

Routing

- *Routing* is the process of guiding packets to their destination.
 - Done by *routers* in the network core.
- Operates in two parts:
 - *Control plane* monitors traffic over the long-term and coordinates with other routers to **decide** forwarding rules. (Chapter 5)
 - *Data plane* implements the forwarding rules for each arriving packet. (Chapter 4)

- Each router in network core is ignorant of end-to-end behavior.
 - Does not establish connections or reserve capacity (unlike circuit-switching)
- Just forwards packets in its neighborhood an elegant design

• A device with multiple network connections that is dedicated to forwarding packets (and deciding forwarding rules).

An *edge* router has just one connection to the Internet

Routers usually are expandable to connect different types of physical media/cables (cat5, fiber, etc.)

Core routers can handle up to 160 TBps

IPv4 addressing

- *Interface* is a connection between host/router and a link.
- Every interface has an *IP address* (32 bits long in IP version 4)
- Routers usually have multiple interfaces (for multiple links)
- Hosts usually have one or two interfaces (WiFi + wired).

223.1.1.1 = 11011111 00000001 0000001 00000001 223 1 1 1 1

Interface connections

- We'll cover this later when discussing Link and Physical layers.
- For now, assume that multiple interfaces can somehow be connected.

cables connect two interfaces

switches connect multiple wired ethernet interfaces *base stations* connect multiple wireless interfaces.

Operate below IP layer

Preview of MAC addresses

- Previously, we assumed that links were *point-to-point*, but...
- Links are often shared channels.
 - Radio is an obvious example: When you broadcast, anyone nearby can hear.
 - Ethernet also uses shared channels called "subnets":
- MAC addresses are factorycoded addresses that identify the different interfaces on a shared communication channel.
- More details are coming later in Chapter 6 on the Link Layer.

An ethernet subnet with four interconnected hosts/interfaces:

IP subnets

- Subnets are chunks of IP addresses in that can communicate *directly*, without traveling through a router.
 - Three subnets are shown \rightarrow
- Routers send packets between subnets.
- *Subnet mask* indicates bit position where subnet is split:

223.1.1.3/24

/24 means that the high 24 bits identify the subnet, and remaining 8 low bits identify the host.

• Subnet can also be expressed as a bitmask: 255.255.255.0 (equivalent to /24)

What are subnets used for?

- Informally, host must decide where to "send" the packet:
 - if destination IP is in the same subnet, packet can be sent directly to the receiver.
 - 2. Otherwise, must give the packet to the the gateway router for relay.
- A solid answer requires knowledge of Link Layer, Chapter 6.
 - Specifically, we are choosing to address the packet with either the MAC address of the gateway or the final destination.

How many subnets?

• Count the groups of interfaces that can communicate without passing through a router.

• There are six subnets

IPv4 addressing

- ICANN distributes chunks of IP addresses
- Early scheme: class A, B, C subnets (/8, /16, /24-bit subnets)
 - However, this only allowed block of 256, 65.5k, 17M addresses. Very wasteful!
- *Nowadays:* Classless InterDomain Routing (**CIDR**) allows blocks to be distributed with any power of 2 subnet size (2^x)

Forwarding rules

- Stored in each router in its local **forwarding table**
- Rules decide which link a packet should be sent out on, depending on the packet's destination IP address.
- Billions of IP addresses are possible, so rules apply to *ranges* of addresses.

21

Forwarding tables in IP use longest prefix matching

- IP address ranges are expressed in an unusual way by prefix.
 - This can only express ranges of size 2^n and whose starting address is a multiple of 2^n (it must have *n* zeros in the least-significant bits).
- Router looks for a rule that matches the high bits of the address.
 - IPv4 addresses are 32 bits (up to 4 billion possible addresses)

Equanding Table

• If more than one rule matches, choose the most specific one. In other words, choose the rule with *longest prefix*.

22

How is the last address in the range computed?

rorwarding Table	Kange Meaning			
Destination Address Range	Link	First address	Last address	CIDR notation
11001000 00010111 00010*** ******	1	200.23.16.0	200.23.23.255	200.23.16.0/21
11001000 00010111 00011000 ******	3	200.23.24.0	200.23.24.255	200.23.24.0/24
11001000 00010111 00011*** ******	2	200.23.24.0	200.23.31.255	200.23.24.0/21
****** ******* ****** *****	3	0.0.0.0	255.255.255.255	0.0.0.0/0

Paper Maning

IPv4 fragmentation

- Links in network may have different maximum transmission unit (MTU)
 - Usually MTU=1500 bytes
- Large IP datagrams may be fragmented anywhere, and *reassembled* at final destination.
- Much simpler than TCP stream reassembly:
 - No ACKs or retransmissions

IPv4 fragmentation & reassembly example

♦ 4000 byte datagram ID offset length fragflag ✤ MTU = 1500 bytes =13=4000 =0 $\equiv 0$ one large datagram becomes several smaller datagrams 1480 bytes in data field ID fragflag length offset =1500 =13=1 $\equiv 0$ length ID fragflag offset offset ==1500 =131480/8=185 =1length ID fragflag offset =1040=13=370 $\equiv 0$

Intermission

IP network configuration

- For a host to operate on the Internet it must know:
 - Its own IP address to set the source address in outbound messages.
 - The **subnet mask** to identify which IP address can be reached locally, using link-layer MAC address. (Who are my neighbors?)
 - The gateway IP address the router to which it will send messages destined for IP addresses outside of the subnet.
 - The **DNS server IP address** to get IP addresses for hostnames.
- In total, four 32-bit numbers are needed.
 - Can be statically (manually) configured.
 - Or, use dynamic host configuration protocol (DHCP) to request these parameters.
- DHCP allows machines to be *mobile*: connect to new network and get new network configuration automatically.

DHCP, greatly simplified

- DHCP server usually runs on a nearby router (*the* router in home networks):
- But how do we communicate at all if we don't have an IP address?
 - Send local broadcasts messages that are received by everyone in the subnet.
 - We'll come back to DHCP when we discuss the Ethernet layer.

Hierarchical addressing

• Routing tables are much simplified (due to *route aggregation*) if addresses are distributed *hierarchically*, corresponding to physical connections:

Longest-prefix matching, again

- 200.23.16.0/20 and 200.23.18.0/23 IP ranges overlap!
- But IPSs-R-Us is advertising a more specific route (longer prefix), so it will receive the traffic for 200.23.18.0/23

200.23.16.0/20 = 11001000 00010111 0001**** 200.23.18.0/23 = 11001000 00010111 0001001** * * *

Recap

- IP routing gets packets to their destination on the net.
- Each router has a forwarding table mapping addresses \rightarrow outbound links.
 - The forwarding action of routers is called the *data plane* in IP networking.
 - Later we will learn how forwarding tables are determined (the *control plane*).
- IPv4 fragments packets larger than MTU. Are reassembled at the destination.
- IP subnets define ranges of address that can communicate directly
 - CIDR notation (123.100.16.0/28) specifies a range of addresses
 - Used both for specifying subnets and for routing rules.
 - /28 or 255.255.255.240 is called a **subnet mask**.
- Host's IP configuration is: address, subnet mask, gateway, and DNS server
 - Gateway is IP address of the router who will route packets outside the subnet
 - **DHCP** allows newly-arriving machines to request an IP configuration.