
1

EECS-340 Introduction to
Computer Networking

Lecture 7: TCP Congestion
Control

Steve Tarzia

Many diagrams & slides are adapted from those by J.F Kurose and K.W. RossMany diagrams & slides are adapted from those by J.F Kurose and K.W. Ross

https://www.youtube.com/watch?v=yITr127KZtQ

https://www.youtube.com/watch?v=yITr127KZtQ

2Last Lecture: TCP
• Uses cumulative ACKs. • Any data segment can carry an ACK.
• Receivers buffer out-of-order (early) segments for later reassembly.
• ACK timeout can be appropriately set with Exponentially-Weighted

Moving Average (EWMA) of recent RTT and recent jitter.
• # in-flight packets (thus throughput) is determined by window size.
• TCP throughput should be regulated so as not to overwhelm:
• the receiver -- Flow control is implemented with explicit Receive Window.
• the network – Congestion control (today's topic).

• Connection setup requires a 3-way handshake.
• Sets initial sequence numbers and receive windows in both directions.
• Teardown requires sending and acknowledging FIN messages.

3Congestion Control
• Congestion is when the network is overloaded
• Router queues are full, so packets are dropped
• or length of queues leads to long nodal queuing delay, causing timer to expire.

•Dropped packets lead to inefficiency and can compound the problem:
• Congestion → Packet loss → Retransmission → More congestion! → More loss!

•Goal is to prevent the self-destructive feedback cycle above.
• Better to wait than to send a packet likely to be dropped before

reaching its destination.
•We have end-to-end observations of network performance, but the

precise internal cause of a network problem is difficult to know.
• State of routers along path is unknown – end hosts know only their state.

4

🐇
High-bitrate link 🐢 Low-bitrate link

• Problems arise even in a simple network with just one connection/flow:
• If links have different bitrates, and hosts send as fast as possible, packet loss will occur:

• Very large buffers would be needed, with many gaps for lost packets.
• Cumulative ACKs (as in TCP) would not be efficient:
• “Early” segments would be common, and these would all be retransmitted.

What would happen without congestion control?

5Shared congestion causes more inefficiency
It’s wasteful to drop packets dropped halfway through their trip.
• Below, assume all links have a capacity of 10.
• E cannot communicate with C simply because B is wasting bandwidth on the

middle diagonal link. Half of the B to D packets are dropped anyway.

6Two general types of congestion control
End-to-end (TCP)

•No explicit feedback from
routers.
• Congestion is inferred from

observed packet loss.

Network assisted

• Routers signal congestion:
• Sets a certain bits in TCP (or IP)

header (called ECN)
• List precise bitrate desired for

sender.
• This has become popular within

cloud/datacenter networks.
• Requires routers to be properly

configured and trusted.

7Observing congestion
• Recall that flow control (receive window) prevents loss at receiver.
• If packets are dropped (timers expire before ACK), two possibilities:
• Timer interval is too small (EWMA will adjust itself), or
• The network is congested, and packets are being dropped by routers.

Basic idea of TCP congestion control:
• Sender tries to estimate an appropriate congestion window (cwnd)
• # in-flight packets ≤ MIN(cwnd, rwnd) ← rwdn is flow control's "receive window"

• Larger cwnd→ greater throughput, greater load on network
•When senders observes packet loss, decrease cwnd.
Precise details are open to debate, RFCs make recommendations.

Key
Challenge:

sender’s choice
of congestion
window size

8TCP "Reno"
(C

on
ge

st
io

n
w

in
do

w
 si

ze
)

9TCP Reno congestion control operates in phases
1. Slow start: initially, network capacity is unknown, so start with

cwnd=MSS (maximum segment size ~= 1460 bytes), send 1 packet.
• Double cwnd each time an ACK is received (every RTT).

This leads to exponential growth in cwnd.
• Loss by timeout → ssthresh = cwnd/2
• If cwnd > ssthresh, move to Congestion Avoidance mode.

2. In Congestion Avoidance mode:
• ACK received → cwnd += MSS

There is linear growth in cwnd.
• Loss by timeout → reset cwnd = MSS, and move back to slow start mode

Timeout indicates a serious network problem
• On loss by triple-duplicate ACK, move to third phase:

3. Fast Recovery Mode:
• Some packets are still getting through, so don’t over-react. Cut cwnd in half.
• cwnd = cwnd/2
• ACK received → move to congestion avoidance mode

10Congestion control states
• Previous slide is

missing some
details.

timeout
ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0
retransmit missing segment

L
cwnd > ssthresh

congestion
avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0
transmit new segment(s), as allowed

new ACK.

dupACKcount++
duplicate ACK

fast
recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout
ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0
retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow
start

timeout
ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0
retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++
duplicate ACK

L
cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

11TCP Reno throughput
• Slow start, then congestion

avoidance:

What’s Reno’s steady-state throughput?
• In congestion avoidance steady

state, throughput is
approximately ¾ of the max.
• Throughput increases linearly

until congestion occurs, and it’s
halved.

W

W/2

STOP
and

THINK

12Steve’s Haircut Algorithm
A TCP congestion control analogy

time

ha
ir

le
ng

th

Hair grows at
constant rate

When too long,
tell barber to
“take off half ”

What’s my
average hair

length?

13Incentive to follow TCP rules?
Following the rules benefits everyone, but also benefits yourself.
• If I don’t throttle myself during congestion, then I will have poor

performance in cases when I am the only host causing the congestion.
• This is is often the case when the first or last hop is the “bottleneck.”

•Hosts cannot observe the network directly, just observe packet losses.
• I cannot tell whether others’ traffic is contributing to congestion or whether

it’s just my own traffic causing the congestion (and thus packet loss).
• Thus, everyone will reduce throughput when congestion occurs, just in

case they are solely responsible for the congestion.

• Also, there are only a few TCP implementations, supplied by operating
systems, so they generally follow an RFC’s recommendations.

STOP
and

THINK

14TCP Reno congestion control iteration
•How does the throughput of

connections 1 and 2 evolve over time?

• Remember that the two connections
follow the TCP rules independently.
• Each controls its own throughput

(congestion window size), but is
unaware that the other connection.
• Don’t know other connection’s cwnd.
• Don’t even know other connection exists!

• Initially 1 is faster than 2,
how does this change?
• Where does the point move?Connection 2 throughput

C
on

ne
ct

io
n

1
th

ro
ug

hp
ut Max combined throughput

Starting
point

STOP
and

THINK

The diagram shows two connections
sharing a link/path with limited capacity:

15Reno eventually leads to equal share of bandwidth
•During congestion, packets are

dropped and bandwidth (window
sizes) are cut in half.
• Connection with more bandwidth

share always loses more when
window is cut in half.
• Move halfway toward the origin in

the plot.
•During congestion avoidance,

bandwidth of both connections
increases at the same rate,
moving at 45° angle up-right.

Shaded
triangle is
uncongested

What happens if
there are three
connections?

16

Intermission

17Driving past Reno
• TCP congestion control in the Linux kernel can use many algorithms.
• They can be dynamically switched by the user. For example:
$ echo "cubic" > /proc/sys/net/ipv4/tcp_congestion_control

• TCP congestion algorithm in open source OSes has evolved like so:
• Tahoe: BSD 4.3 Tahoe (1988)
• Reno: BSD 4.3 Reno (1990)
• New Reno with SAC: Linux 2.4?–2.6.17 (2001?–2004)
• BIC: Linux 2.6.8–2.6.18 (2004–2006)
• CUBIC: Linux 2.6.19–3.2 (2006–2012)
• PRR: Linux 3.2–4.9 (2012–2016)
• BBR: Linux 4.9–present (2016–present)

https://tools.ietf.org/html/rfc6582

18Problems with TCP Reno
• In congestion avoidance, linear

increase is too slow on fast, high
latency links (long fat pipes)
• Consider a 10Gbps link with 30ms

RTT.
• Increasing window linearly (1500

bytes per RTT) would require 3.5
hours to move from 5 to 10 Gbps.
• This is especially bad if we lose

packets due to bit corruptions:
• In 3.5 hours 100 trillion bits will be sent!
• Perfect reliability on that scale is unlikely.

• Solution: grow faster!

• Binary Increase (BIC) and CUBIC
congestion control use a kind of
binary search to exponentially grow
the window:

19Packet loss means full queues and wasted time!
• Reno and CUBIC both rely on

packet loss to detect congestion.
• They keep the links busy by

moving between states 2 and 3:
• Bufferbloat is the unnecessary

delay added to RTT because
router buffers are too large.
• It would be better to operate

between states 1 and 2.
• Throughput would still be high,

but without queueing delays.

• There is no packet loss until we
get to state 3, so what else can we
monitor to detect state 2? STOP

and
THINK

20Vegas and BBR Congestion Control
• The RTT of packets can give information about queue states.
• TCP Vegas introduced the idea of looking for increases in RTT

(instead of packet loss) as a signal of congestion.
• If we're below the max throughput, RTT should be fixed.
• When we send above the max throughput, queues start to fill and RTT rises.
• Vegas achieves throughput near the maximum while keeping router buffers

nearly empty. RTT is optimized, not just throughput.
• Unfortunately, Vegas flows do not get a fair share of capacity when

competing with Reno and CUBIC flows.
• BBR (Bottleneck Bandwidth and Round-trip propagation time) fixes

this shortcoming and seems to be the best approach so far.
• We will not cover its details. It was published by Google in 2016.

https://queue.acm.org/detail.cfm?id=3022184

21BBR in action

22

A few final tweaks for TCP

23Nagle’s algorithm merges small packets
• An application may write a series of small message to a TCP stream.
• Eg: write(“OK\n”); write(“READY\n”); write(“GO\n”);

• A simple implementation of TCP would send segments for each write.
• But each TCP packet has 40 bytes of header overhead.
• Merging small packets into one larger packet would reduce network load:

(40+3) + (40+6) + (40+3) → (40+12)
132 → 52 bytes

•Wait until segment is full before sending, unless there are no un-ACK’ed
segments outstanding (eg., send first segment immediately).

Total size includes three
headers before merging:

After merge:

24Interactive applications
• Interactive apps and bulk-transfer apps prefer different TCP behavior.
• Socket options give applications some control of the underlying TCP:
• TCP_NODELAY socket option disables Nagle’s algorithm.
• Every write→ segment(s) are sent immediately (if allowed by window).
• Nagle’s algorithm adds extra latency which may hurt performance of

applications that send small, time-sensitive data. (eg., GUI events).
• TCP_NOPUSH is even more aggressive than standard Nagle.
• Wait until send buffer is full before sending segment(s).
• Also, don’t set PSH bit (to maximize buffering on the receiver’s side as well).

• Usually the PSH bit will be set on the last segment in a write call.
• PSH tells the receiving TCP implementation to alert the receiving process that

that data is ready.

25TCP Keepalive
• An idle TCP connection involves no data exchange.
•Optionally, a TCP host may occasionally send an empty data segment,

called a keepalive message, just to test whether an ACK will return.
• Keepalive has SEQ # one less than expected, to trigger an ACK response.
• Low frequency, ~once per minute.

•Keepalives are disabled by default and only used in special situations:
• SSH clients give the option to enable TCP keepalives.
• This forces NAT routers to keep the port mapping alive.

• Some application-level protocols have their own keepalive msgs.

26TCP Recap
• Congestion control is implemented with a dynamic congestion window,

controlled by heuristics. Reno congestion control operate in phases:
• Slow start – exponential growth to find approximate network capacity.
• Congestion avoidance – linear growth, slowly trying to increase throughput.
• Fast recovery – If one packet is lost, then cut window in half.

• Additive Increase, Multiplicative Decrease ensures fair sharing.
• CUBIC and BBR are newer alternatives that work better in fast

networks, particularly long fat pipes. (Read this for more info.)
• TCP behavior can be controlled with socket options:
• Nagle’s algorithm merges small packets to reduce header overhead.
• TCP keepalive message can be periodically sent.

https://blog.apnic.net/2017/05/09/bbr-new-kid-tcp-block/

