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Many diagrams & slides are adapted from those by J.F Kurose and K.W. RossMany diagrams & slides are adapted from those by J.F Kurose and K.W. Ross

https://www.youtube.com/watch?v=yITr127KZtQ

https://www.youtube.com/watch?v=yITr127KZtQ


2Last Lecture: TCP
• Uses cumulative ACKs.   • Any data segment can carry an ACK.
• Receivers buffer out-of-order (early) segments for later reassembly.
• ACK timeout can be appropriately set with Exponentially-Weighted 

Moving Average (EWMA) of  recent RTT and recent jitter.
• # in-flight packets (thus throughput) is determined by window size.
• TCP throughput should be regulated so as not to overwhelm:
• the receiver -- Flow control is implemented with explicit Receive Window.
• the network – Congestion control (today's topic).

• Connection setup requires a 3-way handshake.
• Sets initial sequence numbers and receive windows in both directions.
• Teardown requires sending and acknowledging FIN messages.



3Congestion Control
• Congestion is when the network is overloaded
• Router queues are full, so packets are dropped
• or length of  queues leads to long nodal queuing delay, causing timer to expire.

•Dropped packets lead to inefficiency and can compound the problem:
• Congestion → Packet loss → Retransmission → More congestion! → More loss!

•Goal is to prevent the self-destructive feedback cycle above.
• Better to wait than to send a packet likely to be dropped before 

reaching its destination.
•We have end-to-end observations of  network performance, but the 

precise internal cause of  a network problem is difficult to know.
• State of  routers along path is unknown – end hosts know only their state.
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🐇
High-bitrate link 🐢 Low-bitrate link

• Problems arise even in a simple network with just one connection/flow:
• If  links have different bitrates, and hosts send as fast as possible, packet loss will occur:

• Very large buffers would be needed, with many gaps for lost packets.
• Cumulative ACKs (as in TCP) would not be efficient:
• “Early” segments would be common, and these would all be retransmitted.

What would happen without congestion control?



5Shared congestion causes more inefficiency
It’s wasteful to drop packets dropped halfway through their trip.
• Below, assume all links have a capacity of  10.
• E cannot communicate with C simply because B is wasting bandwidth on the 

middle diagonal link.  Half  of  the B to D packets are dropped anyway.



6Two general types of  congestion control
End-to-end (TCP)

•No explicit feedback from 
routers.
• Congestion is inferred from 

observed packet loss.

Network assisted

• Routers signal congestion:
• Sets a certain bits in TCP (or IP) 

header (called ECN)
• List precise bitrate desired for 

sender.
• This has become popular within 

cloud/datacenter networks.
• Requires routers to be properly 

configured and trusted.



7Observing congestion
• Recall that flow control (receive window) prevents loss at receiver.
• If  packets are dropped (timers expire before ACK), two possibilities:
• Timer interval is too small (EWMA will adjust itself), or
• The network is congested, and packets are being dropped by routers.

Basic idea of  TCP congestion control:
• Sender tries to estimate an appropriate congestion window (cwnd)
• # in-flight packets ≤ MIN(cwnd, rwnd)   ← rwdn is flow control's "receive window"

• Larger cwnd→ greater throughput, greater load on network
•When senders observes packet loss, decrease cwnd.
Precise details are open to debate, RFCs make recommendations.

Key 
Challenge: 

sender’s choice 
of  congestion 
window size 
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9TCP Reno congestion control operates in phases
1. Slow start: initially, network capacity is unknown, so start with 

cwnd=MSS (maximum segment size ~= 1460 bytes), send 1 packet.
• Double cwnd each time an ACK is received (every RTT).

This leads to exponential growth in cwnd.
• Loss by timeout → ssthresh = cwnd/2
• If  cwnd > ssthresh, move to Congestion Avoidance mode.

2. In Congestion Avoidance mode:
• ACK received → cwnd += MSS

There is linear growth in cwnd.
• Loss by timeout → reset cwnd = MSS, and move back to slow start mode

Timeout indicates a serious network problem
• On loss by triple-duplicate ACK, move to third phase:

3. Fast Recovery Mode:
• Some packets are still getting through, so don’t over-react.  Cut cwnd in half.
• cwnd = cwnd/2
• ACK received → move to congestion avoidance mode



10Congestion control states
• Previous slide is 

missing some 
details.

timeout
ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0
retransmit missing segment

L
cwnd > ssthresh

congestion
avoidance 

cwnd = cwnd + MSS    (MSS/cwnd)
dupACKcount = 0
transmit new segment(s), as allowed

new ACK.

dupACKcount++
duplicate ACK

fast
recovery 

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout
ssthresh = cwnd/2
cwnd = 1 
dupACKcount = 0
retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow 
start

timeout
ssthresh = cwnd/2 
cwnd = 1 MSS
dupACKcount = 0
retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++
duplicate ACK

L
cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!



11TCP Reno throughput
• Slow start, then congestion 

avoidance:

What’s Reno’s steady-state throughput?
• In congestion avoidance steady 

state, throughput is 
approximately ¾ of  the max.
• Throughput increases linearly 

until congestion occurs, and it’s 
halved.

W

W/2

STOP
and

THINK



12Steve’s Haircut Algorithm
A TCP congestion control analogy
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Hair grows at 
constant rate

When too long, 
tell barber to 
“take off  half ”

What’s my 
average hair 

length?



13Incentive to follow TCP rules?
Following the rules benefits everyone, but also benefits yourself.
• If  I don’t throttle myself  during congestion, then I will have poor 

performance in cases when I am the only host causing the congestion.
• This is is often the case when the first or last hop is the “bottleneck.”

•Hosts cannot observe the network directly, just observe packet losses.
• I cannot tell whether others’ traffic is contributing to congestion or whether 

it’s just my own traffic causing the congestion (and thus packet loss).
• Thus, everyone will reduce throughput when congestion occurs, just in 

case they are solely responsible for the congestion.

• Also, there are only a few TCP implementations, supplied by operating 
systems, so they generally follow an RFC’s recommendations.

STOP
and

THINK



14TCP Reno congestion control iteration
•How does the throughput of  

connections 1 and 2 evolve over time?

• Remember that the two connections 
follow the TCP rules independently.
• Each controls its own throughput 

(congestion window size), but is 
unaware that the other connection.
• Don’t know other connection’s cwnd.
• Don’t even know other connection exists!

• Initially 1 is faster than 2,
how does this change?
• Where does the point move?Connection 2 throughput
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Starting 
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STOP
and

THINK

The diagram shows two connections 
sharing a link/path with limited capacity:



15Reno eventually leads to equal share of  bandwidth
•During congestion, packets are 

dropped and bandwidth (window 
sizes) are cut in half.
• Connection with more bandwidth 

share always loses more when 
window is cut in half.
• Move halfway toward the origin in 

the plot.
•During congestion avoidance, 

bandwidth of  both connections 
increases at the same rate, 
moving at 45° angle up-right.

Shaded 
triangle is 
uncongested

What happens if  
there are three 
connections?
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Intermission



17Driving past Reno
• TCP congestion control in the Linux kernel can use many algorithms.
• They can be dynamically switched by the user.  For example:
$ echo "cubic" > /proc/sys/net/ipv4/tcp_congestion_control

• TCP congestion algorithm in open source OSes has evolved like so:
• Tahoe: BSD 4.3 Tahoe (1988)
• Reno: BSD 4.3 Reno (1990)
• New Reno with SAC: Linux 2.4?–2.6.17 (2001?–2004)
• BIC: Linux 2.6.8–2.6.18 (2004–2006)
• CUBIC: Linux 2.6.19–3.2 (2006–2012)
• PRR: Linux 3.2–4.9 (2012–2016)
• BBR: Linux 4.9–present (2016–present)

https://tools.ietf.org/html/rfc6582


18Problems with TCP Reno
• In congestion avoidance, linear 

increase is too slow on fast, high 
latency links (long fat pipes)
• Consider a 10Gbps link with 30ms 

RTT.
• Increasing window linearly (1500 

bytes per RTT) would require 3.5 
hours to move from 5 to 10 Gbps.
• This is especially bad if  we lose 

packets due to bit corruptions:
• In 3.5 hours 100 trillion bits will be sent!
• Perfect reliability on that scale is unlikely.

• Solution: grow faster!

• Binary Increase (BIC) and CUBIC
congestion control use a kind of  
binary search to exponentially grow 
the window:



19Packet loss means full queues and wasted time!
• Reno and CUBIC both rely on 

packet loss to detect congestion.
• They keep the links busy by 

moving between states 2 and 3:
• Bufferbloat is the unnecessary 

delay added to RTT because 
router buffers are too large.
• It would be better to operate 

between states 1 and 2.
• Throughput would still be high, 

but without queueing delays.

• There is no packet loss until we 
get to state 3, so what else can we 
monitor to detect state 2? STOP

and
THINK



20Vegas and BBR Congestion Control
• The RTT of packets can give information about queue states.
• TCP Vegas introduced the idea of  looking for increases in RTT 

(instead of  packet loss) as a signal of  congestion.
• If  we're below the max throughput, RTT should be fixed.
• When we send above the max throughput, queues start to fill and RTT rises.
• Vegas achieves throughput near the maximum while keeping router buffers 

nearly empty.  RTT is optimized, not just throughput.
• Unfortunately, Vegas flows do not get a fair share of  capacity when 

competing with Reno and CUBIC flows. 
• BBR (Bottleneck Bandwidth and Round-trip propagation time) fixes 

this shortcoming and seems to be the best approach so far.
• We will not cover its details.  It was published by Google in 2016.

https://queue.acm.org/detail.cfm?id=3022184


21BBR in action
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A few final tweaks for TCP



23Nagle’s algorithm merges small packets
• An application may write a series of  small message to a TCP stream.
• Eg:  write(“OK\n”); write(“READY\n”); write(“GO\n”);

• A simple implementation of  TCP would send segments for each write.
• But each TCP packet has 40 bytes of  header overhead.
• Merging small packets into one larger packet would reduce network load:

(40+3) + (40+6) + (40+3) → (40+12)
132 → 52 bytes

•Wait until segment is full before sending, unless there are no un-ACK’ed
segments outstanding (eg., send first segment immediately).

Total size includes three 
headers before merging:

After merge:



24Interactive applications
• Interactive apps and bulk-transfer apps prefer different TCP behavior.
• Socket options give applications some control of  the underlying TCP:
• TCP_NODELAY socket option disables Nagle’s algorithm.
• Every write→ segment(s) are sent immediately (if  allowed by window).
• Nagle’s algorithm adds extra latency which may hurt performance of  

applications that send small, time-sensitive data.  (eg., GUI events).
• TCP_NOPUSH is even more aggressive than standard Nagle.
• Wait until send buffer is full before sending segment(s).
• Also, don’t set PSH bit (to maximize buffering on the receiver’s side as well).

• Usually the PSH bit will be set on the last segment in a write call.
• PSH tells the receiving TCP implementation to alert the receiving process that 

that data is ready.



25TCP Keepalive
• An idle TCP connection involves no data exchange.
•Optionally, a TCP host may occasionally send an empty data segment, 

called a keepalive message, just to test whether an ACK will return.
• Keepalive has SEQ # one less than expected, to trigger an ACK response.
• Low frequency, ~once per minute.

•Keepalives are disabled by default and only used in special situations:
• SSH clients give the option to enable TCP keepalives.
• This forces NAT routers to keep the port mapping alive.

• Some application-level protocols have their own keepalive msgs.



26TCP Recap
• Congestion control is implemented with a dynamic congestion window, 

controlled by heuristics. Reno congestion control operate in phases:
• Slow start – exponential growth to find approximate network capacity.
• Congestion avoidance – linear growth, slowly trying to increase throughput.
• Fast recovery – If  one packet is lost, then cut window in half.

• Additive Increase, Multiplicative Decrease ensures fair sharing.
• CUBIC and BBR are newer alternatives that work better in fast 

networks, particularly long fat pipes.  (Read this for more info.)
• TCP behavior can be controlled with socket options:
• Nagle’s algorithm merges small packets to reduce header overhead.
• TCP keepalive message can be periodically sent.

https://blog.apnic.net/2017/05/09/bbr-new-kid-tcp-block/

