
1

CS-340 Introduction to
Computer Networking

Lecture 6: TCP

Steve Tarzia

Many diagrams & slides are adapted from those by J.F Kurose and K.W. Ross
Many TCP flow diagrams from Stevens’ “TCP/IP Illustrated Vol. 1” 1st ed.

2Last Lecture
• Apps can send individual packets w/UDP; delivery is not guaranteed.
• Adds a port number and checksum to packets.

But most apps want reliable, stream-oriented transport (eg., TCP):
•Delivery confirmation & ordering is possible by sending ACKs
• After a timeout, resend packet that was not ACK’ed.

• Pipelining packets allow much better use of link capacity.
• Parallelizes ACK’ed communication
• Window size determines the number of allowed in-flight packets

• Go Back N is a simple pipelining protocol that uses cumulative ACKs.
• Selective Repeat adds buffering to the receiver to avoid unnecessary

repetition.

3TCP is practical reliable transport
•Has evolved from 1970s through today.
• Uses positive ACKS. Combines ideas from go-back-N and selective repeat.
• Also manages connection pacing (flow & congestion control)
• Unlike UDP, TCP requires that two hosts setup a connection before

exchanging data. Why?
• Exchange initial sequence numbers for both directions of the connection.

• Choose a random initial sequence number for two reasons:
• So new packets are not confused with retransmission from prior connection.
• So an attacker cannot easily inject fake packets in the data stream.

4TCP packet structure
source port # dest port #

32 bits

application data
(variable length,
as indicated in

IP header)

sequence number
acknowledgement number

receive window
urgent data ptrchecksum

FSRPAUhead
len

not
used

options (variable length)

URG: urgent data
(generally not used)

ACK: ACK # is valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection establishment

(setup, teardown commands)

bytes receiver is
willing to accept

counting by bytes
of data
(not segments!)

checksum
(as in UDP)

Any TCP packet can
carry an ACK number,
so ACKs can be “piggy
backed” on data
flowing in the opposite
direction.

5TCP seq #s and ACKs
• Sequence Numbers:
• Indicate the offset in the byte stream of

the segment’s first byte
• Cumulative ACKs:
• Send next expected sequence number

(like Go Back N)
• Receiver may drop out-of-order

segments (like GBN), or buffer them
for later reassembly (like Selective
Repeat). source port # dest port #

sequence number
acknowledgement number

checksum

rwnd
urg pointer

incoming segment to sender

A

sent,
ACKed

sent, not-yet
ACKed

(“in-flight”)

usable,
but not
yet sent

not
usable

window size
N

sender sequence number space

source port # dest port #
sequence number

acknowledgement number

checksum

rwnd
urg pointer

app data …

outgoing segment from sender

6Simple TCP example (after the handshake)

Visits page, sending 100-
byte long HTTP request

Client ACKs HTML body.
Does not have any other

data to send.

Server ACKs request, and sends
back 1200 bytes of HTML

Web Server
Seqinit=79

Web Browser
Seqinit=42

Seq=42, ACK=79, data = ‘GET /index.htm HTTP/1.1\r\nHost:…’

Seq=79, ACK=142, data = ‘HTTP/1.1 200 OK…’

Seq=142, ACK=1279, data = ‘’
Server has already ACK’ed
142+0, so don’t send an ACK.

Seq = index of
data being sent.
ACK = index of
data it expects to
receive next

7Timeouts are an important parameter
• TCP keeps one timer, for oldest un-ACK’ed segment
• Retransmit that one segment when timer expires. Why just one?
• ACK received → start timer for next-lowest un-ACK’ed segment, if any.

• Timer must be set carefully:
• Too long → waste time waiting before a necessary retransmit.
• Too short → send duplicate packets unnecessarily.

•What is the ideal value of the timer?
• In other words, how much time do we expect to elapse before getting ACK?
• Answer: just slightly longer than expected round-trip time (RTT).

• Thus, TCP keeps track of recent RTTs by constantly measuring
delay between every transmission and its ACK.

STOP
and

THINK

STOP
and

THINK

8Exponentially-weighted moving average RTT
EstimatedRTT = (1-a)*EstimatedRTT + a*SampleRTT

• Every time a new SampleRTT is observed, update the EWMA RTT.
• Typically, a = 0.125

•Gives us a “smoothed”
average of recent RTT.
• Then set

timeout > EstimatedRTT
• But how much greater?

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

RT
T

(m
illi

se
co

nd
s)

SampleRTT Estimated RTT

RT
T

(m
illi

se
co

nd
s)

RTT: gaia.cs.umass.edu to
fantasia.eurecom.fr

sampleRTT
EstimatedRTT

time (seconds)

STOP
and

THINK

9RTT variance (jitter) also affects timeout choice
• Square points show

traffic with high variance
in RTT (high jitter)
• Should choose

timer significantly >
EstimatedRTT

• Circle points show
traffic with low variance
in RTT (low jitter)
• Can choose timer just

slightly > EstimatedRTT

0

50

100

150

200

250

300

0 5 10 15 20
O

bs
er

ve
d

R
T

T

Time (seconds)

High jitter Low jitter

10Final RTT estimation
• Also track an exponentially-weighted moving average of RTT

deviation (jitter):
DevRTT = (1-b)*DevRTT + b*|SampleRTT-EstimatedRTT|

Typically b=0.25

• Add a multiple of DevRTT as a “safety margin” above EstimatedRTT:

TimeoutInterval = EstimatedRTT + 4*DevRTT

• Initially set Timeout to one second, until we have some measurements.

11

0

100

200

300

400

500

600

700

800

900

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

M
ill

ise
co

nd
s

SampleRTT EstimatedRTT DevRTT TimeoutInterval

Timeout
initially set to

one second

Low RTT period

High RTT,
high jitter

High RTT,
low jitter

Moving average
makes the

TimeoutInterval
adaptive to
changing
network

conditions

12

Intermission

13TCP retransmission scenarios

Premature timeout

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8
bytes of data

tim
eo

ut
ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

Lost ACK

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

Xtim
eo

ut

ACK=100

X

Lost ACK, but cumulative ACK
prevents retransmission

Seq=92, 8 bytes of data

ACK=100

Seq=120, 15 bytes of data

tim
eo

ut

Seq=100, 20 bytes of data

ACK=120

What if the second ACK is
dropped instead of the first?

STOP
and

THINK

14Delayed ACKs
• TCP recommends that receiver wait before sending an ACK (RFC 1122).
• This allows the TCP’s ACK response (and receive window update) to be

piggy-backed on an application-layer response.
• Send ACK only after 500ms or with next data in other direction.
• Eg., an “echo” app that repeats back the data received:

delayed
ACK

delayed
ACK

processing
time

With delayed ACKsEager ACKs

https://tools.ietf.org/html/rfc1122

15TCP ACK generation (RFC 1122, 2581)

Event at Receiver
• Arrival of in-order segment with

expected seq #. All data up to
expected seq # already ACK’ed.
• Arrival of in-order segment with

expected seq #. One other segment
has ACK pending.
• Arrival of out-of-order segment

(with higher-than-expect seq #).
In other words, a gap was detected.
• Arrival of segment that partially or

completely fills gap.

TCP action taken
Delayed ACK. Wait up to 500ms for
next segment. If no next segment,
send ACK.
Immediately send a single
cumulative ACK, ACK’ing both in-
order segments.
Immediately send duplicate ACK,
indicating seq. # of next expected
byte.
Immediately send ACK if segment
starts at beginning of gap.

https://tools.ietf.org/html/rfc1122
https://tools.ietf.org/html/rfc2581

16TCP fast retransmit
•With using cumulative ACKs,

duplicate ACKs suggest packet loss.
• Receiver will always set ACK # to the

index of the next byte expected (the gap).

•On triple duplicate ACK, instead of the
sender waiting for timer to expire, TCP
fast retransmit immediately re-sends
lowest un-ACK’ed segment.

X

ACK=100

tim
eo

ut ACK=100

ACK=100

ACK=100

Seq=92, 8 bytes of data
Seq=100, 20 bytes of data

fast retransmit after sender
receipt of triple duplicate ACK

Seq=100, 20 bytes of data

17Triple DUP ACK
•Why does TCP wait for three duplicate ACKS before performing a

fast retransmit? Why not after one?
• RFC 2001:

“Since TCP does not know whether a duplicate ACK is caused by a
lost segment or just a reordering of segments, it waits for a small
number of duplicate ACKs to be received. It is assumed that if there
is just a reordering of the segments, there will be only one or two
duplicate ACKs before the reordered segment is processed, which
will then generate a new ACK. If three or more duplicate ACKs are
received in a row, it is a strong indication that a segment has been
lost.”

STOP
and

THINK

https://tools.ietf.org/html/rfc2001

18TCP has characteristics of both GBN and SR:
Go Back N

•Only one timer is kept, but →
• Send cumulative ACKs, but →
•Duplicate ACK for early segment.

Selective Repeat

• Re-send just one segment on timeout.
• Receiver may save out-of-order

segments for later reassembly.

Plus some new features:

•Guidelines for setting timeout interval, based on observations
•Delayed ACKs. • Triple duplicate ACK triggers a retransmit.
• Connection setup with 3-way handshake, and teardown.
•Window size changes to implement flow & congestion control

19TCP window → flow and congestion control
• Recall that window size limits the

maximum # of in-flight segments.
• Peak throughput is proportional to

window size (divided by RTT).
• Hosts control windows, not RTT.

• Control sender’s window size to
prevent packet loss, by preventing:
• Overflow of receiver’s receive buffer

(flow control).
• Overflow of routers’ packet queues

(congestion control).

Sender Receiver

segments ≤ N

20TCP flow control – to avoid overwhelming the receiver
• In receive window, host tells how

many bytes of new data it can receive.
• Sender simply tracks # un-ACK’ed

bytes and keeps this ≤ receive window.
• A simple and effective solution is

possible because we can directly observe
the receive buffer and report its status.

• Congestion control requires a more
complex solution because it involves
many routers along the path, and many
flows (connections) across each router.
• We must infer network congestion.

source port # dest port #

32 bits

application data

sequence number
acknowledgement number

receive window
urgent data ptrchecksum

FSRPAUhead
len

not
used

options (variable length)

21TCP connection setup
• Before starting data exchange, hosts must agree on a few parameters:
• Initial sequence numbers (in both direction)
• Receive window size (for flow control)

• Recall: choose a random initial sequence number for two reasons:
• So new packets are not confused with retransmission from prior connection.
• So an attacker cannot easily inject fake packets in the data stream.

• Three-way handshake sets up the connection
1. SYN: Initiator sends its parameters (init. seq #, window size, etc.).
2. SYN-ACK: Listener sends ACK including its own parameters.
3. ACK: Initiator ACKs (and may include first segment of data).
Above ACKs use initial sequence number + 1

223-way handshake, from “TCP/IP Illustrated” reference book

An example: In general:

May open a TCP socket:
• Actively (we specify the connection partner, and a SYN is sent)
• Passively (just listen for a SYN from unknown host)
Usually call the active initiator the client, and the passive listener the server.

seq # : end of data (data size)

23TCP connection close
• Each side of the connection sends FIN to say it’s finished sending.
• Waits for an ACK.
• Connection may be half closed if only one side is done sending.

24

25Protocol must also handle unusual timings

26TCP state transition diagram

27Recap
• TCP implements a combination of Go Back N and Selective Repeat.
• ACK timeout can be appropriately set with Exponentially-Weighted

Moving Average (EWMA) of recent RTT and recent jitter.
• ACKs count bytes, not packets, and can be piggybacked on data sent in

the reverse direction. ACKs are sometimes delayed for efficiency.
• Triple duplicate ACK suggests packet loss à retransmit.
• Connection setup requires a 3-way handshake.
• Connection close also uses a handshake. Each direction is closed.

• TCP throughput should be regulated so as not to overwhelm:
• the receiver -- Flow control is implemented with explicit Receive Window.
• the network – Congestion control will be discussed next lecture.

