
1

CS-340 Introduction to
Computer Networking

Lecture 5: Reliable Transport

Steve Tarzia

Many diagrams & slides are adapted from those by J.F Kurose and K.W. Ross

2Last Lecture: Domain Name Service
•DNS is the Internet’s directory service
• It’s distributed and hierarchical
• 13 Root servers are run by ICANN
• Top level domain (TLD) servers manage com, org, edu, cn, au, uk, etc.
• Each subdomain has a set of authoritative nameservers

• Various types of records exist to do more than just map name → IP
•Domain registrars are accredited by each TLD to sell names.
•Dynamic DNS servers can cleverly craft their responses to provide:
• Load balancing and fault tolerance in a cluster of servers
• Content Delivery Networks, that direct you to the closest service “mirror”
• Captive portals

3Recall the four main layers on the Internet
Ethernet Frame

MAC addresses, CRC, etc.

Ethernet payload
IP Packet

IP addresses, TTL, etc.

IP payload
TCP Segment

Port #, sequence #, ack #, etc.

TCP payload
HTTP Response

status code, content-type, etc.

<html><body><h1>My
great page</h1><p>…

Ethernet Frame
MAC addresses, CRC, etc.

IP Packet
IP addresses, TTL, etc.

TCP Segment
Port #, sequence #, ack #, etc.

TCP payload continued
HTTP Response

Continued

…and that is all</p>
</body></html>

4Each layer solves a subset of problems
• Link layer: shares a physical channel among

several transmitters/receivers
• Network layer: routes from source to

destination, along many hops.
• Transport layer:
• Creates connections/sockets used by apps.
• Multiplexing (>1 connection per machine)
• Ordering, • Acknowledgement, • Pacing

• HTTP layer:
• Resource urls, • Response codes,
• Caching, • Content-types, • Compression

• None of the layers shown provide security.

Ethernet Frame
MAC addresses, CRC, etc.

Ethernet payload
IP Packet

IP addresses, TTL, etc.

IP payload
TCP Segment

Port #, sequence #, ack #, etc.

TCP payload
HTTP Response

status code, content-type, etc.

<html><body><h1>My
great page</h1><p>…

5User Datagram Protocol (UDP)
• The simplest transport protocol on

the Internet (simpler than TCP).
• “transport” was a bad naming choice.

•Does not provide much more than the IP layer below.
• Datagrams are packets sent between software applications.
• IP layer provides “best effort” delivery. Packets may be dropped.
• Thus, UDP is also unreliable.

• Adds to each packet:
• A port number, to distinguish different services on the machine.
• Only one process can “listen” for packets on a given port number.

• A checksum to verify that packet data was not corrupted.

6UDP header fields

source port # dest. port #

32 bits

application data
(payload)

UDP packet format

length checksum
length, in bytes of

UDP packet, including
header

7Checksum is a simple way to detect data corruption
• Break the data into a sequence of 16-bit integers
• Add the integers
•Wrap the carry-out bits to the least-significant position.
• Finally, invert the result.
Checksum is redundant information – a summary of the packet data.

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum

8Checksum in action
• Sender wants to send data:

“Hello there, here is my message.”
• UDP library in the sender

computes a checksum as follows:
• “He” + “ll” + “o ” + “th” + “er”

+ “e,” + “ h” + “er” + “e ” + “is”
“ m” + “y ” + “me” + “ss” + “ag”
+ “e.” = 0xB51
• Wrap around: 0x51 + 0xB = 0x5C
• Flip bits:

0101 1100 → 1010 0011 = 0xA3
• Sender adds 0xA3 checksum to

UDP header of the packet.

• Receiver wants to verify the
following message:
“Hello there, here is my massage.”
• UDP packet’s checksum says

checksum is 0xA3.
• Receiver calculates checksum of

the received message, and finds
that it does not equal 0xA3
(because a bit was flipped).
• Receiver drops the packet.
• Checksum does not repair errors,

it simply lets us detect errors.

9

10TCP provides streaming connections to apps
TCP is usually implemented by the OS. An OS library handles the following:
• Ordering:
• Data must be packetized (chunked) by the sender and reassembled by receiver
• Reassembly is done in the proper order, regardless of delivery order.

• Acknowledgement: (almost, but not exactly “reliability”)
• Delivery of each packet is acknowledged, so lost packets can be retransmitted.

• Pacing:
• Sender adjusts packet send rate so neither receiver nor network are overwhelmed.
• Avoid filling up queues and dropping packets.

TCP deals with many underlying Internet problems:
• Packet loss/corruption (ack./checksum) • Packet reordering (seq. numbers)
• Finite link speed & Q size (flow & congestion control) • Finite packet size (seq. numbers)

11Human solutions to message loss
•How do people deal with "message loss" on the telephone?
• Listener may say “OK” or “mm-hmm” after each sentence.
• Called positive acknowledgement or ACK.
• If talker does not hear an ACK, then maybe she repeats herself, or asks

“are you still there?”
• Listener may say “What?” or “Can you repeat that?” if message was

corrupted or lost.
• Called negative acknowledgement or NACK.
• Talker retransmits the message in response.

•What happens if acknowledgements are lost?
• Positive: talker cannot make progress, gives up.
• Negative: listener cannot recover missed messages, gives up.

STOP
and

THINK

12Naïve ACKs
sender receiver

rcv pkt1

rcv pkt2

send ack0

send ack1

send ack2

rcv ack0

send pkt2

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt2

pkt1

ack1

ack0

ack2

(a) no loss

sender receiver

rcv pkt1

rcv pkt2

send ack0

send ack1

send ack2

rcv ack0

send pkt2

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt2

ack1

ack0

ack2

(b) packet loss

pkt1
X
loss

pkt1
timeout

resend pkt1

13Naïve ACKs (continued)

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

rcv pkt2

send ack0

send ack1

send ack2

rcv ack0

send pkt2

send pkt1

rcv ack1

send pkt0
rcv pkt0

pkt0

pkt2

ack1

ack0

ack2

(c) ACK loss

ack1
X
loss

pkt1
timeout

resend pkt1

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

send ack0
rcv ack0

send pkt1

send pkt0
rcv pkt0

pkt0

ack0

(d) premature timeout/ delayed ACK

pkt1
timeout

resend pkt1

ack1

send ack1

send pkt2
rcv ack1

pkt2

ack1

ack2

send pkt2
rcv ack1 pkt2

rcv pkt2
send ack2ack2

rcv pkt2

send ack2
(detect duplicate)

14Naïve ACK correctness
• Solves packet loss/corruption, and ordering
• Do not send packet n until we get ACK n-1.

• Timeout is necessary to decide when a packet is lost
• Sender cannot ever really know the status of a packet, unless got an ACK.
• If timeout is premature, then sender may retry too soon. That’s OK because

both sender and receiver can simply discard old/duplicate packets:
• If sender already got ACK n, then there is no need to send packet n in

response to ACK n-1.
• If receiver already got packet n, then there is no need to send ACK n-1 in

response to packet n-1.
• At most, twice the necessary data will be “in flight.”

15Naïve ACK performance
• It’s a “stop and wait” protocol.
• Round-trip time (RTT) of packets dominates performance.
• Eg., An ISP’s fiber link from New Jersey to San Jose, CA:

1 Gbps link, 15 ms propagation delay, 1.5 kByte packet size:
• RTT = 2 (15 ms + 1.5 kByte * 8 bit/Byte / 1 Gbps) = 30.01 ms
• RTT is dominated by the 30 ms round-trip propagation delay.
• Effective throughput is just 1.5 kByte * 8 bit/Byte / 30.01 ms = 250 kbps

• Performance with ACKs is 4000× slower than without ACKs.

16Stop and wait illustration

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

All this time is
idle and wasted.

17Pipelining hides latency to increase throughput
• Pipelining: allow multiple “in-flight” packets, not yet ACK-ed.

• Packet buffering & acknowledgement become more complex.
• Later we’ll talk about flow/congestion control to prevent overwhelming the

receiver/network.

A buffer is a
queue of data
waiting to be
consumed.

18Pipelining increases link utilization

• Window size is the maximum number of in-flight packets (here it’s 3).
• It’s finite to limit the data buffering required at sender & receiver, and to

limit the load placed on the network.

first packet bit transmitted, t = 0
sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

19Sequence numbers
• (Terminology: segment = packet = frame = datagram)
• Pipelining parallelizes the transfer of ACK’ed data.
• Parallelism means we must handle out-of-order delivery.
• Sequence numbers identify each data segment with an increasing

integer. (First segment has seq. # 0, next has seq. # 1, then 2, etc.)
• Allows receiver to correctly order and reassemble the received data.
• ACKs also must carry sequence numbers.
• Sender has multiple data segments in flight, so the ACK must specify which

of the several sequence numbers was received.

20Pipelining attempt #1: Go Back N
•Window size is N, sender can have up to N packets in flight.
• Receiver sends cumulative ACK: “I got everything up to seq. number x”
• Discard out-of-order packets, re-send ACK of last in-order seq. number
• If sender does not get an ACK after some timeout interval,

resend all packets starting from packet after the last ACK’ed packet.
• If the sender timeout expires several times without receiving any ACK,

then give up on the connection.

Sender's
view of
the data
stream:

21Go Back N in action
send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, discard,
(re)send ack1rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2
send pkt3
send pkt4
send pkt5

Xloss

receive pkt4, discard,
(re)send ack1

receive pkt5, discard,
(re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

0 1 2 3 4 5 6 7 8

sender window (N=4)

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

22

Go Back N Demo
https://stevetarzia.com/340/gbn.html

https://stevetarzia.com/340/gbn.html

23Go Back N advantages
• Easy to implement:
• Sender just stores # of last ACK and maintains a timer.
• Receiver just stores expected seq number and immediately passes

new in-order packets to listening app.

Go Back N shortcomings
• A single lost or delayed packet invalidates all the in-flight data.
• Receiver can throw out a lot of good data, just because it’s “early.”
• I.e. lacks receiver buffering.

• Lose an entire window of data due to one “bad” packet.

24Pipelining attempt #2: Selective Repeat
• Receiver individually ACKs all received packets.
•Out-of-order packets are stored by receiver and later reassembled
• Sender keeps many timers, one for each in-flight packet, and will re-send

any packets not ACK’ed before timeout.
•Window of size N limits the maximum range of un-ACK’ed packets.
• Receiver drops received packets with seq number outside the window.
• This prevents packets from old connection from getting inserted into new

connection’s data stream.
Only re-send an individual packet whose transmission or ACK was lost.

25Selective Repeat windows

Sender window
advances when lowest

packet is ACK’ed.

Receiver window
advances when lowest

packet is received.

26

Selective Repeat Demo
https://stevetarzia.com/340/sr.html

https://stevetarzia.com/340/sr.html

27Seq number reuse can cause confusion
• In TCP, we use a 32-bit number for seq number (0 to 4Gbyte) and it

eventually wraps around back to zero.
• Simplified illustration below assumes that 2-bit seq number is used:

• Solution: window length must be < half the max seq number

receiver window
(after receipt)

sender window
(after receipt)

0 1 2 3 0 1 2
0 1 2 3 0 1 2
0 1 2 3 0 1 2

pkt0
pkt1
pkt2

0 1 2 3 0 1 2
pkt0

0 1 2 3 0 1 2
0 1 2 3 0 1 2
0 1 2 3 0 1 2

X
will accept packet
with seq number 0

0 1 2 3 0 1 2 pkt3

(a) no problem

0 1 2 3 0 1 2
0 1 2 3 0 1 2
0 1 2 3 0 1 2

pkt0
pkt1
pkt2

0 1 2 3 0 1 2 pkt0

timeout
retransmit pkt0

0 1 2 3 0 1 2
0 1 2 3 0 1 2
0 1 2 3 0 1 2X

X
X

will accept packet
with seq number 0(b) oops!

receiver window
(after receipt)

sender window
(after receipt)

STOP
and

THINK

28Recap
• UDP is a connectionless, packet-oriented transport protocol.
• Adds a port number and checksum to packets.

• TCP is a streaming transport protocol.

• Delivery confirmation & ordering is possible by sending ACKs
• After a timeout, resend packet that was not ACK’ed.

• Pipelining packets allow much better use of link capacity.
• Window size determines the number of allowed in-flight packets

• Go Back N is a simple pipelining protocol that uses cumulative ACKs.
• Selective Repeat adds buffering to the receiver to avoid unnecessary

retransmission.

• Next time: TCP details, connection setup, flow/congestion control.

