CS-340 Introduction to Computer
Networking

Lecture 3: Application-layer
protocols, HT TP

Steve Tarzia

Network diagrams adapted from those by J.FF Kurose and K.W. Ross
HTTP slides adapted from website by Chua Hock-Chuan:

https://www.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html

https://www.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html

l.ast Lecture

* Packets travel along many /ops to reach the intended destination

* Fach router has a fixed-size queue; packets are dropped if full
* Packet is also dropped if a bit-flip error 1s detected

* Showed four different sources of packes delay at each hop:
* Nodal processing, queueing (assoclated with the router)
* Transmission, propagation (assoclated with the link)

* Internet is a “network of networks”
* Tier 1 ISPs and big content providers build high-speed backbone links.

* Peering 1s when networks connect to each other without any payment.

* Networks use layered protocols, eg.: Ethernet, IP, TCP, TLS, HTTP

* Socket 1s a software abstraction of a network connection (TCP or UDP)
* It’s one end of a pipe: you can send data in or get data out

* Each socket is bound to a particular Ebm‘ number. Port number determines which
process on a host 1s responsible for handling a given packet.

Separation of concerns

* Link layer: shares a physical channel
among several transmitters/receivers

* Network layer: routes from source to
destination, along many hops.
* Transport layer:
* Multiplexing >1 connection per machine
* Ordering, * Acknowledgement, ¢ Pacing

* Session Security layer:
* Encryption, * Authentication.

* HI'TP Application layer:
* Resource utls, ®* Response codes,
* Caching, * Content-types, * Compression

Ethernet Packet
MAC addresses, CRC, et.

IP Packet
IP addresses, TTL,, ete.

TCP Packet
Port #, sequence #, ack #, ete.

TLS Record
Sequence #, length, MAC

HTTP Response

status code, content-type, eic.

<html><body><h1>My
great page</h1><p>...

application

ranspo

network
physical

Application-layer protocols

* Purpose is to allow apps running on different
computers to communicate.

* System is called c/ent-server ot peer-to-peer depending
on whether it relies on central control (at a server).

* Apps don’t worry about low-level details of
the network.

* Assume that we can send messages (of
arbitrary size) to any host on the network if

we know it's address. ot Tk

physical

* Every computer has a unique IP address like
34.200.20.23 and domain names like q -
"cs.northwestern.edu" somehow map to IP = 3
addresses (using DNS, discussed in next lecture) e

physical

(2D 5

Client-server architecture client

* Servers: handle requests

* Always powered on

* Permanent IP addresses

* Usually have a DNS hostname

* Usually reside in data centers

* No display, keyboard, or mouse
* Listen for requests from clients.

* Clients: make requests
* Opposite of above, in every way.
* Do not listen for u#nsolicited messages

* Only accept responses to their requests.

* Do not communicate directly with other
clients. Server must re/ay messages.

Key difference between client and servers

Servers:

* Do not move!

* [.ocation/address in the network
1S constant.

* Can listen for requests.

Clients:

e Can move around with users.

e Are difficult to find.

* Thus, do not listen for requests
coming from unknown machines.

* Send requests on behalf of user’s
apps, and listen brzefly for a
response from the one server that
was contacted.

* All participants have equal responsibilities,
thus are peers.

* Do not rely on powerful, central servers

* A very scalable design.

* Hach new participant brings new capacity

* But there are many difficulties:
* Hosts join and leave the network (churn).
* IP addresses change.
* Firewalls may block access to peers.
* Edge networks have limited upload speed.

* Uses kind of centralized directory/ tracker.

* Examples: BitTorrent, Skype
* Might also think of SMTP as P2P

Napster

* A technically

mnnovative P2P m

app.

* Allowed music
Diracy on
massive scale

in 2000-2001.

e Shut down
after several
copyright
lawsuits.

* Inspired
BitTorrent.

& Ffile €dit Find Channels User Tools Web Help Sat 6:47:13PM %

B | () Napster

&I&I&I@IM@I

ﬁ Turtles_So Happy Together.mp3 40MB 192 Kbps Cable 2:59 minutes Jpkeri
fg Turtles - So Happy Together.mp3 39MB 192 Kbps Cable

Why was 1t important for Napster to

2:55 minutes cfankeny

use a peer-to-peer architecture?

9717 Users sharing 1743953 files (7384 Gigs)

timeout

timeout

STO

and

P
THIN

% @
Download Order I Progress I Size I Speed I Tirr{é
L 2 g Andrew Lloyd Webber - Think of Me - The Phantom of the Opera - Disc 1 ... [l | 4.9 MB 5.5 K/sec 10
34 ?9 John Williams - Duel Of The Fates.mp3 I— 48MB 14.2 K/sec 2
$:‘_Bg 02_-_john_williams_- _duel_of_the_fates.mp3 — 4.8 MB 4.9 K/sec 5
$ E’g Paul Simon - You Can Call Me &l.mp3 n | 5.3MB 2.8 K/sec 29
L 2 g Paul Simon-You Can Call Me Al.mp3 =X | 5.3 MB 3.0 K{sec 26
$?9 Paul Simon-You Can Call Me &l.mp3 T | 5.3 MB 1.6 K/sec 54
4 :‘_Bg FF4- Main theme {Enya Remix).mp3 — | 42MB 12.4K/sec 3

Hyper Text Transport Protocol (HTTP)

* HT'ITP is a client-server data exchange protocol built on top ot TCP
* TCP provides a reliable, bi-directional data stream between two machines.

* HT'TP was invented for browsers to fetch pages from webservers

* Request specities:

* A human-readable header with: URIL, #zethod, (plus some optional headers)
* An optional lbody, storing raw data (bytes).

* Response includes:
* A human-readable header with respornse code, (plus some optional headers)

* An optional bod)y

* HT'TP is a stateless protocol:

* Hach request is self-contained — contains all info needed to give a response.
* Meaning of requests are independent; servers need not remember past requests.

Request:

Response:

From
https://www.ntu.edu.sg/home/ehchua/pro

oramming/webprooramming/H'I'I'P Basics.

html

GET /doc/test.html HTTP/1.1
Host: www.test101.com
Accept: image/gif, image/jpeg, */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0
Content-Length: 35

\

> Request Line A

> Request Headers

Request
> Message
Header

/

/

bookId=12345&author=Tan+Ah+Teck

(optional for GET)

HTTP/1.1 200 OK
Date: Sun, 08 Feb xxxx 01:11:12 GMT
Server: Apache/1.3.29 (Win32)
Last-Modified: Sat, 07 Feb xxxx
ETag: "0-23-4024c3a5"
Accept-Ranges: bytes
Content-Length: 35

Connection: close

Content-Type: text/html

> Status Line
\

J

<h1>My Home page</hl>

> Response Headers

> A blank line separates header & body
| } Request Message Body

Response

Message
Header

J

> A blank line separates header & body

| } Response Message Body

https://www.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html

11

HTTP transaction steps

Notice that “Content-Length”

AL TR 1o TR T S| TCP socket. header tells length of message body.
Host: www.testl101.com

Accept: image/gif, image/jpeg, */* A bi-directional

Accept-Language: en-us

Accept-Encoding: gzip, deflate 1

User-Agent: Mozilla/4.0 plpe/stream Of bytes

(Content-Length: 35]

bookId=12345&author=Tan+Ah+Teck
g::’e’{léinfegsméeb xxxx 01:11:12 GMT l?

GET /doc/test.html HTTP/1.1
Host: www.test101.com

Accept: image/gif, image/jpeg, */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0
Content-Length: 35

bookId=12345&author=Tan+Ah+Teck

Server: Apache/1.3.29 (Win32)
Last-Modified: Sat, @7 Feb xxxx
ETag: "0-23-4024c3a5"
Accept-Ranges: bytes
Content-Length: 35

Connection: close

R Client HTTP/1.1 200 OK
\ Date: Sun, 08 Feb xxxx 01:11:12 GMT

. Server: Apache/1.3.29 (Win32)
Client creates TCP socket, and server accepts the socket. Last-Modified: Sat, 07 Feb xxxx

, , . . ETag: "0-23-4024c3a5"
Client writes HT'TP request to socket; starts listening for response. Accept-Ranges: bytes

. . (Content-Length: 35 |

Server notices new data on socket and starts reading request data. Connection: close

Content-Type: text/html

Server eventually notices that it has received a full HT'TP request. 55 Foe mraediED

Server does some work to generate an appropriate response.
Server writes HT'TP response to socket.

N e A=

Client reads and parses response data; stops reading after calculating that the response is complete.

12

HTTP methods and responses

Methods Response codes
* GET: to request a data * 200 OK: success
* POST: to post data to the server, * 301 Moved Permanently:
and perhaps get data back, too. redirects to another URL
* PUT: to create 2 new document on * 403 Forbidden: lack
the server. permission
* DELETE: to delete a document. * 404 Not Found: URL is bad
* HEAD: like GET, but just return
headers

* 500 Internal Server Error

... and many more

POST method is offen used when client supplies data”

LOGIN

Username:
Password:

<html><body>
<h2>LOGIN</h2>
<form method="post" action="/api/login">

Username:
<input type="text" name="user"/>

Password:
<input type="password" name="pw"/>

<input type="hidden"
name="action" value="login" />

<input type="submit" value="SEND" />
</form>
</body></html>

Send HTTP POST request when click button

POST /api/login HTTP/1.1

Host: somewebsite.com

Accept: image/gif, image/jpeg, */*

Referer: http://somewebsite.com/login.html

Accept-Language: en-us

Content-Type:
application/x-www-form-urlencoded

Accept-Encoding: gzip, deflate

User—-Agent: Mozilla/4.0 (..)

Content-Length: 37

Connection: Keep-Alive

Cache-Control: no-cache

User=Peter+Pan&pw=123456&action=login

Response to login request gives user a cookie

* Cookies are how web applications track state, often to track user identity.

* If username and password were correct, server will return a cookie in the response:

HTTP/1.1 302 Found
<2 Location: http://somewebsite.com/account
Set-Cookie: someweb-id=kfj203d14t9s

* RCSpOIlSC tells the client browser to redirect to http://somewebsite. com/account, but 1t
also gives the browser a cookie to remember.

* Browser will include the cookie in all future HT'TP requests to somewebsite.com:

GET /account HTTP/1.1
Is HTTP with Host: somewebsite.com
cookies still Referer: http://somewebsite.com/api/login —m—ys

stateless? Cookie: someweb-id=kfj203d14t9s

* Server getting this request can use the cookie to determine which user it came from!

GET requests can send data in a URL’s guery string

LOGIN

Username:
Password:

<html><body>
<h2>LOGIN</h2>
<form method="get" action="/api/login">

Username:
<input type="text" name="user"/>

Password:
<input type="password" name="pw"/>

<input type="hidden"
name="action" value="login" />

<input type="submit" value="SEND" />
</form>
</body></html>

15

Send HTTP GET request when click button

GET /api/login?User=Peter+Lee&pw=123456&ac
tion=1login HTTP/1.1

Host: somewebsite.com

Accept: image/gif, image/jpeg, */*
Referer: http://somewebsite.com/login.html
Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (..)

Connection: Keep-Alive

Cache-Control: no-cache

Notice that some characters must be translated to be
compatible with a URL, eg., space become “+” or “%20”

The evolution of HTTP & the Web ’

* Early 1990s: HT'TP was just a document-fetching service

* Web servers would just serve up stazze HIML and image files (~Project 1).
* GET /index.html — referstoan HTML file stored on the server

* Late 1990s: Web servers ran scripts to generate content on-demand
* GET /product/1234 — generates a page using information found in a
database relevant to “product 1234 as well as user-specific information.
* 2005+: Javascript allows pages to be interactive (Gmail, Google Maps)
* AJAX: HTTP request that gets more data w/out re-loading entire page

* 2010s: HT'TP spreads beyond web applications
* HT'TP infrastructure 1s robust:
* libraries, software, caches, proxies, encryption, compression
* It's convenient base all client-server, request-response interactions on HTTP.
* Eg., smartphone-app-to-server, server-to-server

A weather information service (REST API)

HTTP Request HTTP Response

GET HTTP/1.1 200 OK

http://api.wthr.com/[key]/fore Content-Length: 2102
cast?location=San+Francisco

HTTR /1.1 Content-Type:

application/json
Accept-Encoding: gzip
Cache-Control: no-cache { "wind dir": "NNW",
Connection: keep-alive "wind degrees": 346,
"wind mph": 22.0,
"feelslike f": "66.3",
"feelslike c": "19.1",
"visibility mi": "10.0"

(A} UV" . 1A} 5 LA , . }

17

REST API example (REpresentational State Transfer)

* https://petstore.swagger.io/

* https://developer.twitter.com/en/docs/tweets/post-and-engage /api-

reference/post-statuses-update

18

https://petstore.swagger.io/
https://developer.twitter.com/en/docs/tweets/post-and-engage/api-reference/post-statuses-update

Inputs and outputs for an API built on top of HTTP

Request Inputs

* Method

* GET/POST/PUT/DELETE
* URL

* Usually identifies the type of

request, but may also supply
parameters.

* Query parameters after URL

* Body
* Usually form-encoded or JSON

Response Outputs

e Status code
e 200, 404, 403, etc.

* Body
* Usually JSON encoded

It’s bad style to HTTP headers for input/output.
Goal is to build on top of HT'TP, not alter it.

20

Why use HT'TP for new applications?

* Web community has already solved the problems you are likely face.
* Encryption
* Compression
* BEvery programming language already has HT'TP client libraries

* Many different server frameworks to choose from, and these already handle
encryption, queueing, database connection pooling:

* Eg., Apache httpd, Tomcat, Node.js, Django, Flask
* Web proxies and caches can be reused (Squid, Nginx, Akamai, etc.)
* HT'TP response codes are generic enough to be adapted to other services.

* Disadvantages:
* Inherit some unneeded complexities, and perhaps unexpected behaviors.
* Human-readable headers introduce overhead (but compression helps)
* May have to rethink your API to fit the URL/resource model.

Simple Mail Transport Protocol

* Another protocol built on top of TCP.
* Defined in REFC 2821.
* Uses port 25 by default.

* Developed in 1982, earlier than HT'TP:
Internet’s first popular app.

* SMTP 1s a P2P protocol used by mail

servers to exchange users’ messages.

* Mail servers act as clients when sending,
and as servers when recetving.

* Each domain has its own mail server(s).

* User agents use ditterent protocols to

fetch emails (IMAP, POP3, webmail)

server

HRR{EiN

mail
server

HiRRIEIN

I outgoing £l
message queue

[1 user mailbox

mail |~

server
L

https://www.ietf.org/rfc/rfc2821.txt

22
220 smtp.example.com ESMTP Postfix

Example

S: means server
C: means client

HELO relay.example.com

250 smtp.example.com, I am glad to meet you
MAIL FROM:<boblexample.com>

250 Ok

RCPT TO:<alice@example.com>

250 Ok

RCPT TO:<theboss(@example.com>

250 Ok

DATA

354 End data with <CR>}LF>.<CR>}LF>

From: "Bob Example" <bob@example.com>

To: "Alice Example" <alicel@example.com>
Cc: thebosslexample.com

Date: Tue, 15 January 2008 16:02:43 -0500
Subject: Test message

Hello Alice.
This is a test message with 5 header fields and 4 lines in the message body.

Your friend,
Bob

250 Ok: queued as 12345
QUIT How i1s this different than HTTP?
221 Bye It5 stateful.

The server closes the connection}

~ N QO n OO0 n OO n O n O n OO nun O m

SMTP telnet demo

Try SMTP tor yourselt

It’s one of the simplest protocols

*S telnet <servername> 25
* telnet command is available on murphy.wot.eecs.northwestern.edu.

» enter HELO, MAIL, FROM, RCPT TO, DATA, QUIT commands

* This lets you send email without a mail app (or an email account!)

* Few SMTP servers will relay arbitrary messages
* Try connecting to the specific SMTP server for the recipient:

* S nslookup -type=MX u.northwestern.edu
* Returns: aspmx.1l.google.com

* However, your message will likely end up in the “junk”™ folder

24

Recap

* Application-layer protocols are usually built on top of TCP

* Don’t have to worry about network itself, just create socket connections to
other hosts. The socket hides many details from the app.

* Most applications use a c/zent-server architecture: request-response.

* A peer-to-peer architecture 1s more scalable, but difficult to organize.

* H'T'T'P was invented for fetching documents from web servers.
* It’s now used as the basis for many request-response interactions.
* URLs, request method, response status, human-readable headers, body
* REST APIs are built on top of HT'TP, so it’s a networking layer itself.

* SMTP is an earlier application-layer protocol, for sending email.
* Unlike HT'TP, 1t’s stateful (server must remember what you previously said).

25

