
1

CS-340 Introduction to Computer
Networking

Lecture 3: Application-layer
protocols, HTTP

Steve Tarzia

Network diagrams adapted from those by J.F Kurose and K.W. Ross
HTTP slides adapted from website by Chua Hock-Chuan:

https://www.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html

https://www.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html

2Last Lecture
• Packets travel along many hops to reach the intended destination
• Each router has a fixed-size queue; packets are dropped if full
• Packet is also dropped if a bit-flip error is detected

• Showed four different sources of packet delay at each hop:
• Nodal processing, queueing (associated with the router)
• Transmission, propagation (associated with the link)

• Internet is a “network of networks”
• Tier 1 ISPs and big content providers build high-speed backbone links.
• Peering is when networks connect to each other without any payment.

• Networks use layered protocols, eg.: Ethernet, IP, TCP, TLS, HTTP
• Socket is a software abstraction of a network connection (TCP or UDP)
• It’s one end of a pipe: you can send data in or get data out
• Each socket is bound to a particular port number. Port number determines which

process on a host is responsible for handling a given packet.

3Separation of concerns
• Link layer: shares a physical channel

among several transmitters/receivers
•Network layer: routes from source to

destination, along many hops.
• Transport layer:
• Multiplexing >1 connection per machine
• Ordering, • Acknowledgement, • Pacing

• Session Security layer:
• Encryption, • Authentication.

•HTTP Application layer:
• Resource urls, • Response codes,
• Caching, • Content-types, • Compression

Ethernet Packet
MAC addresses, CRC, etc.

Ethernet payload
IP Packet

IP addresses, TTL, etc.

IP payload
TCP Packet

Port #, sequence #, ack #, etc.

TCP payload
TLS Record

Sequence #, length, MAC

TLS payload
HTTP Response

status code, content-type, etc.

<html><body><h1>My
great page</h1><p>…

4Application-layer protocols
• Purpose is to allow apps running on different

computers to communicate.
• System is called client-server or peer-to-peer depending

on whether it relies on central control (at a server).

• Apps don’t worry about low-level details of
the network.
• Assume that we can send messages (of

arbitrary size) to any host on the network if
we know it's address.
• Every computer has a unique IP address like

34.200.20.23 and domain names like
"cs.northwestern.edu" somehow map to IP
addresses (using DNS, discussed in next lecture)

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

5Client-server architecture
• Servers: handle requests
• Always powered on
• Permanent IP addresses
• Usually have a DNS hostname
• Usually reside in data centers
• No display, keyboard, or mouse
• Listen for requests from clients.

• Clients: make requests
• Opposite of above, in every way.
• Do not listen for unsolicited messages
• Only accept responses to their requests.

• Do not communicate directly with other
clients. Server must relay messages.

client

client

server

6Key difference between client and servers
Servers:

•Do not move!
• Location/address in the network

is constant.
• Can listen for requests.

Clients:

• Can move around with users.
• Are difficult to find.
• Thus, do not listen for requests

coming from unknown machines.
• Send requests on behalf of user’s

apps, and listen briefly for a
response from the one server that
was contacted.

7Peer-to-peer architecture (P2P)
• All participants have equal responsibilities,

thus are peers.
• Do not rely on powerful, central servers

• A very scalable design.
• Each new participant brings new capacity

• But there are many difficulties:
• Hosts join and leave the network (churn).
• IP addresses change.
• Firewalls may block access to peers.
• Edge networks have limited upload speed.

• Uses kind of centralized directory/tracker.
• Examples: BitTorrent, Skype
• Might also think of SMTP as P2P

peer

peer

peer

peer

peer

8Napster
• A technically

innovative P2P
app.
• Allowed music

piracy on
massive scale
in 2000-2001.
• Shut down

after several
copyright
lawsuits.
• Inspired

BitTorrent.

Why was it important for Napster to
use a peer-to-peer architecture? STOP

and
THINK

9Hyper Text Transport Protocol (HTTP)

• HTTP is a client-server data exchange protocol built on top of TCP
• TCP provides a reliable, bi-directional data stream between two machines.

• HTTP was invented for browsers to fetch pages from webservers
• Request specifies:
• A human-readable header with: URL, method, (plus some optional headers)
• An optional body, storing raw data (bytes).

• Response includes:
• A human-readable header with response code, (plus some optional headers)
• An optional body

• HTTP is a stateless protocol:
• Each request is self-contained – contains all info needed to give a response.
• Meaning of requests are independent; servers need not remember past requests.

10Request:

From
https://www.ntu.edu.sg/home/ehchua/pro
gramming/webprogramming/HTTP_Basics.
html

(optional for GET)

Response:

https://www.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html

11

TCP socket.
A bi-directional

pipe/stream of bytes

Client
Server

HTTP transaction steps

1. Client creates TCP socket, and server accepts the socket.
2. Client writes HTTP request to socket; starts listening for response.
3. Server notices new data on socket and starts reading request data.
4. Server eventually notices that it has received a full HTTP request.
5. Server does some work to generate an appropriate response.
6. Server writes HTTP response to socket.
7. Client reads and parses response data; stops reading after calculating that the response is complete.

Notice that “Content-Length”
header tells length of message body.

12HTTP methods and responses
Methods
• GET: to request a data
• POST: to post data to the server,

and perhaps get data back, too.
Less commonly:
• PUT: to create a new document on

the server.
• DELETE: to delete a document.
•HEAD: like GET, but just return

headers

Response codes
• 200 OK: success
• 301 Moved Permanently:

redirects to another URL
Client errors (400–499):
• 403 Forbidden: lack

permission
• 404 Not Found: URL is bad
Server errors (500-599):
• 500 Internal Server Error
… and many more

13POST method is often used when client supplies data

<html><body>
<h2>LOGIN</h2>
<form method="post" action="/api/login">

Username:
<input type="text" name="user"/>

Password:
<input type="password" name="pw"/>

<input type="hidden"
name="action" value="login" />

<input type="submit" value="SEND" />
</form>

</body></html>

POST /api/login HTTP/1.1
Host: somewebsite.com
Accept: image/gif, image/jpeg, */*
Referer: http://somewebsite.com/login.html
Accept-Language: en-us
Content-Type:
application/x-www-form-urlencoded

Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (…)
Content-Length: 37
Connection: Keep-Alive
Cache-Control: no-cache

User=Peter+Pan&pw=123456&action=login

Send HTTP POST request when click button

14Response to login request gives user a cookie
• Cookies are how web applications track state, often to track user identity.
• If username and password were correct, server will return a cookie in the response:

• Response tells the client browser to redirect to http://somewebsite.com/account, but it
also gives the browser a cookie to remember.
• Browser will include the cookie in all future HTTP requests to somewebsite.com:

• Server getting this request can use the cookie to determine which user it came from!

HTTP/1.1 302 Found
Location: http://somewebsite.com/account
Set-Cookie: someweb-id=kfj203d14t9s

GET /account HTTP/1.1
Host: somewebsite.com
Referer: http://somewebsite.com/api/login
Cookie: someweb-id=kfj203d14t9s
…

Is HTTP with
cookies still

stateless? STOP
and

THINK

15GET requests can send data in a URL’s query string

<html><body>
<h2>LOGIN</h2>

<form method="get" action="/api/login">

Username:
<input type="text" name="user"/>

Password:
<input type="password" name="pw"/>

<input type="hidden"
name="action" value="login" />

<input type="submit" value="SEND" />
</form>

</body></html>

GET /api/login?User=Peter+Lee&pw=123456&ac
tion=login HTTP/1.1
Host: somewebsite.com
Accept: image/gif, image/jpeg, */*
Referer: http://somewebsite.com/login.html
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (…)
Connection: Keep-Alive
Cache-Control: no-cache

Send HTTP GET request when click button

Notice that some characters must be translated to be
compatible with a URL, eg., space become “+” or “%20”

16The evolution of HTTP & the Web
• Early 1990s: HTTP was just a document-fetching service
• Web servers would just serve up static HTML and image files (~Project 1).
• GET /index.html → refers to an HTML file stored on the server

• Late 1990s: Web servers ran scripts to generate content on-demand
• GET /product/1234 → generates a page using information found in a

database relevant to “product 1234” as well as user-specific information.
• 2005+: Javascript allows pages to be interactive (Gmail, Google Maps)
• AJAX: HTTP request that gets more data w/out re-loading entire page

• 2010s: HTTP spreads beyond web applications
• HTTP infrastructure is robust:
• libraries, software, caches, proxies, encryption, compression

• It's convenient base all client-server, request-response interactions on HTTP.
• Eg., smartphone-app-to-server, server-to-server

17A weather information service (REST API)
HTTP Request
GET
http://api.wthr.com/[key]/fore
cast?location=San+Francisco
HTTP/1.1

Accept-Encoding: gzip

Cache-Control: no-cache

Connection: keep-alive

HTTP Response
HTTP/1.1 200 OK
Content-Length: 2102
Content-Type:
application/json

{ "wind_dir": "NNW",
"wind_degrees": 346,
"wind_mph": 22.0,
"feelslike_f": "66.3",
"feelslike_c": "19.1",
"visibility_mi": "10.0",
"UV": "5", … }

18REST API example (REpresentational State Transfer)

• https://petstore.swagger.io/
• https://developer.twitter.com/en/docs/tweets/post-and-engage/api-

reference/post-statuses-update

https://petstore.swagger.io/
https://developer.twitter.com/en/docs/tweets/post-and-engage/api-reference/post-statuses-update

19Inputs and outputs for an API built on top of HTTP
Request Inputs
•Method
• GET/POST/PUT/DELETE

• URL
• Usually identifies the type of

request, but may also supply
parameters.

•Query parameters after URL
•Headers
• Cookies, custom headers

• Body
• Usually form-encoded or JSON

Response Outputs

• Status code
• 200, 404, 403, etc.

•Headers
• Body
• Usually JSON encoded

It’s bad style to HTTP headers for input/output.
Goal is to build on top of HTTP, not alter it.

20Why use HTTP for new applications?
•Web community has already solved the problems you are likely face.
• Encryption
• Compression
• Every programming language already has HTTP client libraries
• Many different server frameworks to choose from, and these already handle

encryption, queueing, database connection pooling:
• Eg., Apache httpd, Tomcat, Node.js, Django, Flask

• Web proxies and caches can be reused (Squid, Nginx, Akamai, etc.)
• HTTP response codes are generic enough to be adapted to other services.

•Disadvantages:
• Inherit some unneeded complexities, and perhaps unexpected behaviors.
• Human-readable headers introduce overhead (but compression helps)
• May have to rethink your API to fit the URL/resource model.

21Simple Mail Transport Protocol
• Another protocol built on top of TCP.
•Defined in RFC 2821.
• Uses port 25 by default.
•Developed in 1982, earlier than HTTP:

Internet’s first popular app.
• SMTP is a P2P protocol used by mail

servers to exchange users’ messages.
•Mail servers act as clients when sending,

and as servers when receiving.
• Each domain has its own mail server(s).

•User agents use different protocols to
fetch emails (IMAP, POP3, webmail)

user mailbox

outgoing
message queue

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

https://www.ietf.org/rfc/rfc2821.txt

22Example S: 220 smtp.example.com ESMTP Postfix

C: HELO relay.example.com

S: 250 smtp.example.com, I am glad to meet you

C: MAIL FROM:<bob@example.com>

S: 250 Ok

C: RCPT TO:<alice@example.com>

S: 250 Ok

C: RCPT TO:<theboss@example.com>

S: 250 Ok

C: DATA

S: 354 End data with <CR><LF>.<CR><LF>

C: From: "Bob Example" <bob@example.com>
C: To: "Alice Example" <alice@example.com>
C: Cc: theboss@example.com
C: Date: Tue, 15 January 2008 16:02:43 -0500
C: Subject: Test message
C:
C: Hello Alice.
C: This is a test message with 5 header fields and 4 lines in the message body.
C: Your friend,
C: Bob
C: .

S: 250 Ok: queued as 12345

C: QUIT

S: 221 Bye

{The server closes the connection}

S: means server
C: means client

How is this different than HTTP?
It’s stateful. STOP

and
THINK

23

SMTP telnet demo

24Try SMTP for yourself
It’s one of the simplest protocols
• $ telnet <servername> 25
• telnet command is available on murphy.wot.eecs.northwestern.edu.

• enter HELO, MAIL FROM, RCPT TO, DATA, QUIT commands
• This lets you send email without a mail app (or an email account!)

• Few SMTP servers will relay arbitrary messages
• Try connecting to the specific SMTP server for the recipient:
• $ nslookup -type=MX u.northwestern.edu
• Returns: aspmx.l.google.com

• However, your message will likely end up in the “junk” folder

25Recap
• Application-layer protocols are usually built on top of TCP
• Don’t have to worry about network itself, just create socket connections to

other hosts. The socket hides many details from the app.
•Most applications use a client-server architecture: request-response.
• A peer-to-peer architecture is more scalable, but difficult to organize.
•HTTP was invented for fetching documents from web servers.
• It’s now used as the basis for many request-response interactions.
• URLs, request method, response status, human-readable headers, body
• REST APIs are built on top of HTTP, so it’s a networking layer itself.

• SMTP is an earlier application-layer protocol, for sending email.
• Unlike HTTP, it’s stateful (server must remember what you previously said).

