
EECS-317 Data Management
and Information Processing

Lecture 18 – Course Review

Steve Tarzia
Spring 2019

Announcements
• Final exam on Thursday!
• Practice Final exams posted.
• All homework answers are posted.
• Project due Wednesday, June 12th.

These are a few of my favorite slides

Why use a relational database?
• Scalability – work with data larger than computer’s RAM
• Persistence – keep data around after your program finishes
• Indexing – efficiently sort & search along various dimensions
• Integrity – restrict data type, disallow duplicate entries
•Deduplication – save space, keep common data consistent
• Concurrency – multiple users or applications can read/write
• Security – different users can have access to specific data
• “Researchability” – SQL allows you to concisely express analysis

Sometimes we start with one redundant table and break it
down to reflect the logical components

staff

id name department building room faxNumber
11 Bob Industrial Eng. Tech 100 1-1000

20 Betsy Computer Sci. Ford 100 1-5003

21 Fran Industrial Eng. Tech 101 1-1000

22 Frank Chemistry Tech 102 1-1000

35 Sarah Physics Mudd 200 1-2005

40 Sam Materials Sci. Cook 10 1-3004

54 Pat Computer Sci. Ford 102 1-5003

This is called Normalization

staff

id name department
11 Bob 1

20 Betsy 2

21 Fran 1

22 Frank 4

35 Sarah 5

40 Sam 7

54 Pat 2

department

id name building
1 Industrial Eng. 1

2 Computer Sci. 2

4 Chemistry 1

5 Physics 4

7 Materials Sci. 5

building

id name faxNumber
1 Tech 1-1000

2 Ford 1-5003

4 Mudd 1-2005

5 Cook 1-3004

6 Garage 1-6001

• Removes redundancy
• Save space
• Edit values in one place, so duplicates don’t become inconsistent

• Tables can be populated separately
• But, you are adding a new id column for each table

Syntax diagrams
• Any path from start to end is a

valid statement.
• Choose which arrows to follow
• The rectangles refer to other

diagrams.
• Used by our SQL book
• Used by SQLite online docs:

https://sqlite.org/lang.html

https://sqlite.org/lang.html

SELECT steps (abbreviated)

1. FROM chooses the table of interest
2. WHERE throws out irrelevant rows
3. GROUP BY identifies rows to combine
4. SELECT tells what values to return (allowing math and aggregation)
5. HAVING throws out irrelevant rows (after aggregation)
6. ORDER BY sorts
7. LIMIT throws out rows based on their position in the results

Each step gets closer to the specific result you want.

GROUP BY explained
• GROUP BY combines multiple rows into one row in the result.
• Rows with the same value for the grouping criterion are grouped.
• An aggregation function is usually applied.

SELECT CategoryID, COUNT(*) AS category_count,
MAX(RetailPrice) AS most_expensive_price

FROM Products GROUP BY CategoryID;

How JOIN builds a composite table
SELECT * FROM staff JOIN department

ON staff.departmentId=department.id

staff.id staff.name staff.room staff.departmentId department.id department.name department.buildingId
11 Bob 100 1 1 Industrial Eng. 1

20 Betsy 100 2 2 Computer Sci. 2

21 Fran 101 1 1 Industrial Eng. 1

22 Frank 102 4 4 Chemistry 1

35 Sarah 200 5 5 Physics 4

40 Sam 10 7 7 Materials Sci. 5

54 Pat 102 2 2 Computer Sci. 2

Start with the first table (staff) Join with rows from the 2nd table (department)
that match according to the ON columns

staff

id name room departmentId
11 Bob 100 1

20 Betsy 100 2

21 Fran 101 1

department

id name buildingId
1 Industrial Eng. 1

2 Computer Sci. 2

4 Chemistry 1

1 Physics 4

1 Materials Sci. 5

Using INNER JOIN, what if rows don’t match one-to-one?
In output,
• multiple

matches leads
to multiple
rows.
• no matches

leads to no
rows

staff.id staff.name staff.room staff.departmentId department.id department.name department.buildingId
11 Bob 100 1 1 Industrial Eng. 1

11 Bob 100 1 1 Physics 4

11 Bob 100 1 1 Materials Sci. 5

20 Betsy 100 2 2 Computer Sci. 2

21 Fran 101 1 1 Industrial Eng. 1

21 Fran 101 1 1 Physics 4

21 Fran 101 1 1 Materials Sci. 5

SELECT * FROM staff JOIN department
ON staff.departmentId=department.id

CROSS JOIN is like the cartesian product of two sets
• Take every element (row) of

the first set (table) and
combine it with every element
of the second set.
• If first set has N elements

and second set has M
elements, then cartesian
product has N·M elements.
• There is no “ON” expression

to limit results:
• SELECT Orders
CROSS JOIN
Order_Details;

NATURAL JOIN
• A shorthand notation to make some JOINs shorter to express.
•NATURAL JOIN matches rows using whatever columns have

identical names.

For example:
SELECT * FROM Orders JOIN Order_Details
ON Orders.OrderNumber=Order_Details.OrderNumber;

Becomes:
SELECT * FROM Orders NATURAL JOIN Order_Details;

LEFT JOIN
• LEFT JOIN includes all rows in the first table (left-hand side)

and just the matching rows in the second table (right-hand side).

LEFT JOIN
(standard)

INNER JOIN

All rows from
First table

Matching rows
from Second table

staff

id name room departmentId
11 Bob 100 1

20 Betsy 100 NULL

21 Fran 101 1

22 Frank 102 99999

35 Sarah 200 5

40 Sam 10 7

54 Pat 102 2

department

id name buildingId
1 Industrial Eng. 1

2 Computer Sci. 2

5 Physics 4

7 Materials Sci. 5

SELECT * FROM staff LEFT JOIN department ON staff.departmentId=department.id;

staff.id staff.name staff.room staff.departmentId department.id department.name department.buildingId
11 Bob 100 1 1 Industrial Eng. 1

20 Betsy 100 NULL NULL NULL NULL
21 Fran 101 1 1 Industrial Eng. 1

22 Frank 102 99999 NULL NULL NULL
35 Sarah 200 5 5 Physics 4

40 Sam 10 7 7 Materials Sci. 5

54 Pat 102 2 2 Computer Sci. 2

• Betsy and Frank have NULLs in
the right haft of the output
because no matching department
was found.

• In other words no pair of rows
was found to satisfy the ON
staff.departmentId=department.id

LEFT JOIN with exclusion
• Includes rows from a table that must not match

another table.
• Useful for finding rows lacking something.
• Just add a WHERE clause to look for NULL values in

the right-hand side of the joined table
• For example, to determine which faculty members

should be assigned a class:
• SELECT * FROM Faculty NATURAL LEFT
JOIN Faculty_Classes
WHERE ClassID IS NULL;

•Which classrooms are unused?
• SELECT * FROM Class_Rooms NATURAL LEFT
JOIN Classes WHERE ClassID IS NULL;

JOIN TYPES
Introduced different types of JOINs:
• INNER (default): prints all pairs of rows (one from first

table, one from second table) that satisfy the JOIN
predicate.

• LEFT: same as INNER, but adds rows from LEFT
table that never satisfied the JOIN predicate.

• LEFT with exclusion: only print rows form left table
that never satisfied the JOIN predicate.

UNION, INTERSECT, and EXCEPT
are used to combine two SELECT statements

• UNION prints rows from either of two SELECTs
(printing duplicates just once)

• INTERSECT prints rows present in both SELECTs

• EXCEPT prints rows present in one SELECT but
missing from another SELECT

JOIN vs. UNION
• JOINs combine tables

horizontally.
• Match rows from two tables based

on one or more columns matching.
• Creates a wider set of rows, adding

columns from both tables.
JOIN:

• UNION, INTERSECT, and EXCEPT
combine result tables vertically
• Number & type of columns in the

two result tables must match
• Changes the number of rows,

not columns
UNION:

Summing an indicator variable
Two ways to count recipes with “salsa” in description:
• SELECT COUNT(*) FROM Recipes WHERE
RecipeTitle LIKE "%salsa%”;
• WHERE clause keeps just the rows matching “salsa,” then these rows are

counted.
• SELECT SUM(RecipeTitle LIKE "%salsa%")
FROM Recipes;
• A column is created for every recipe indicating whether its title matches

“salsa” or not.
• Column’s value will be 1 if it matches and 0 if not.
• Sum of all the ones and zeros will be the count of matching recipes.

• First approach is easier to understand, but second is shorter.

SELECT CASE WHEN CategoryID=2
THEN "Bike"
ELSE ProductName END FROM Products;

CASE conditional
WHEN condition is tested for every row, giving true or false

If condition is true then
use the first value.

If condition is false then
use the second value.

Output:

Regular Expressions
• Regular expressions are used to

match text, both in SQL and in
many other data management tools.
• A match anywhere in the text

returns true.
• ^ anchors to the beginning
• $ anchors to the end
• . matches any character
• […] specifies a set of possible

characters
• [a-z] hyphen specifies a range
• [^abc] carrot within brackets

negates the match

• Repetitions are supported:
• * any number
• + one or more
• ? zero or one
• {n,m} n to m repetitions

• | pipe character gives OR
• (…) can be used for grouping

Examples
^1.*t$ matches: “12 point”, “100.3 feet”, “111ttt”, “1t”

does not match: “This 12 point font”

[Cc]ats? matches: “Cat behavior”, “5 cats”, “catnip”
does not match: “cast”, “CATS”

[0-9]+.[a-z]? matches: “249032/b”, “23.”, “
does not match: “a”, “aa”, “1”

([cC]at|[Dd]og)(food)? matches: “cat food”, “Dog”
does not match: “ food”

Why sorting is not enough
• You can’t sort in multiple dimensions
• Let’s say you want to find a product quickly according to either it’s name,

manufacturer, or price. You can only sort by one of the there three columns.
• Can’t insert new data without shifting everything over to make room.
• It doesn’t take advantage of the hardware’s storage hierarchy.
• The binary search will have to access the disk in every step because the index

is distributed over the full data set.
• It would be better to put all the index data close together (spatial locality).

The solution:
• Indexes provide quick to rows by looking up column values.

When to index columns?
•When a query is slow!
•Generally, add an index if the column is:
• Used in WHERE conditions, or
• Used in JOIN … ON conditions, or
• A foreign key refers to it.

• Also helpful if the column is:
• In a MIN or MAX aggregation function

Key and Index terminology in SQL
• Plain key or index is just a way to find rows quickly
• Just creates a search tree.

•Unique key is an index that prevents duplicates
• Bottom level of search tree has no repeated values
• DBMS can use the tree to quickly search for existing rows with that value

before allowing a row insertion (or column update) to proceed.
• Primary key is just a unique key, but there can only be one per table
• We think of the primary key as the most important unique key in the table

• Foreign key makes a column’s values match a column in another table
• The referenced column in the other table should be indexed

(usually it’s the primary key).

Primary Keys
• Every table has a unique

primary key – the column(s)
that uniquely identify each row.
• No two rows can have the same

primary key value.
• The primary key defines the

principal feature of each row.
• Often it’s an integer identifier
• PlaylistTrack table is different.

It uses a composite primary key
(made of two columns) and it
lacks an integer identifier.

• In this class, we will underline
primary keys in the diagrams.

* * *

*

*

*

*

*

*

Unique keys
• Unique keys are like additional

(secondary) primary keys.
•No two rows can have the same

value for a unique key.
• For example, we may wish to

require that all Albums have both
a unique AlbumId and a unique
UPC (bar code):

•We write UNIQ next to columns
with unique keys in the diagrams

AlbumId
Title
ArtistId
UPC UNIQ

Album

•When inserting data into this
table, the new row must have
both a unique AlbumId and a
unique UPC.

Foreign Keys
• Tables may be linked by foreign

keys – columns that refer to
keys in other tables.
• Usually these are integers ids,

and should refer to a
primary/unique key
• PlaylistTrack table is made

entirely of foreign keys, so we
call it a linking table.

• Arrows in these diagrams go
from a foreign key to the
column(s) they reference.

* *

*

*

*

*

*

*

Parent and
Child tables

• Foreign keys define a
parent and child table.
• Child points back to parent
• Parent row must be created

before child row

• A table can simultaneously
be both a parent and child.
• Album is a child to Artist,

but a parent to Track.

* *

*

*

*

*

*

* * *

*

*

*

*

*

*

One to Many
(or equivalently “many to one”)
•Most foreign keys create

one-to-many relationships
• Created when a column

that is not a primary key
has a foreign key.
• All of the arrows in this

diagram represent one-to-
many relationships.
• Many of the rows in the

child table can be related
one row in the parent table.

Many to Many
• Two one-to-many

relationships starting at the
same table can create a
many-to-many relationship
• These are represented with

linking tables.
• But, some tables can be

classified in multiple ways:
• We think of Track as either

an object or as a many-to-many
relationship between albums
and genres.

InvoiceId

One to One
• One-to-one relationships exists

when a primary (or unique) key
is also a foreign key.
• In other words, there is an arrow

pointing from one
primary/unique key to another.
• The fact that it’s a unique key

prevents it appearing multiple
times (thus, not one-to-many).

• The child is a subset table.
• Subset tables are an alternative

to having optional columns in
the parent table.

GrammyAward
AlbumId
Year

Return

Time

RefundAmount

CREATE TABLE Syntax examples
from SchoolScheduling.sqlite

CREATE TABLE Buildings (

BuildingCode nvarchar(3) NOT NULL,

BuildingName nvarchar(25),

NumberOfFloors smallint,

ElevatorAccess bit NOT NULL DEFAULT 0,

SiteParkingAvailable bit NOT NULL DEFAULT 0,

PRIMARY KEY (BuildingCode)

);

Text with at most 25 characters

Columns

Required column, not optional

Column cannot be NULL, but it will take a value
of zero if none is specified.

Table name

Each column has a data type, like nvarchar(3) or smallint

“Hello!” in ASCII

H e l l o !

hex 48 65 6C 6C 6F 21
binary 0100 1000 0110 0101 0110 1100 0110 1100 0110 1111 0010 0001

Variable length character encoding with UTF-8

1st byte 2nd byte 3rd byte 4th byte # of free bits
0... 7 (ASCII)
110. 10.. 11
1110 10.. 10.. 16
1111 0... 10.. 10.. 10.. 21

• Single-byte characters are identical to ASCII
• First byte tells you how many total bytes to expect
• Every “extra” byte starts with “10”
• If you start reading in the middle of a character you’ll know it.
• It’s very easy to know where each new character starts.

NBA_player_of_the_week.csv viewed as text
PlayerID,TeamID,PositionID,First Name,Last Name,Seasons in League,Height ,Weight,Age
1,20,7,Micheal,Richardson,6,77,189,29
2,14,9,Derek,Smith,2,78,205,23
3,9,2,Calvin,Natt,5,79,220,28
4,15,1,Kareem,Abdul-Jabbar,15,80,225,37
5,2,8,Larry,Bird,5,81,220,28
6,32,9,Darrell,Griffith,4,82,190,26
7,11,7,Sleepy,Floyd,2,83,170,24
8,8,8,Mark,Aguirre,3,84,232,25
9,15,7,Magic,Johnson,5,85,255,25
10,1,8,Dominique,Wilkins,2,86,200,25
11,33,6,Tom,McMillen,9,87,215,32
12,6,9,Michael,Jordan,0,88,215,22
13,7,4,World,Free,9,89,185,31
14,10,7,Isiah,Thomas,3,90,180,23
15,18,6,Terry,Cummings,2,92,220,23
16,6,6,Orlando,Woolridge,3,94,215,25
17,30,1,Jack,Sikma,7,95,230,29
18,22,8,Bernard,King,7,96,205,28
19,25,1,Moses,Malone,8,97,215,29
20,9,8,Alex,English,8,98,190,31
21,26,6,Larry,Nance,3,99,205,26
22,13,1,Herb,Williams,4,101,242,28
23,25,6,Charles,Barkley,1,102,252,23
24,32,8,Adrian,Dantley,9,85,208,30
25,18,9,Sidney,Moncrief,6,89,180,28
26,27,9,Clyde,Drexler,2,95,210,23
27,29,9,Alvin,Robertson,1,98,185,23
28,33,1,Jeff,Ruland,4,99,240,27

JSON
• JavaScript Object Notation

• Used in many web applications and data APIs
• Allows an arbitrary amount of nesting
• Spaces are ignored, except within quotes.

Basic components are:

• [] for ordered lists
• Items are separated by commas
• Items can be any JSON

• {} for unordered dictionaries/objects
• Key: value pairs are separated by commas
• Keys must be strings (text)
• Values can be any JSON

• Numbers, true, false, null
• Strings (text) in double quotes "..."

[
{
"name": "John",
"age": 30,
"cars":

["Ford", "BMW", "Fiat"]
},
{
"name": "Alicia",
"age": 32,
"hometown": "Seattle"

}
]

XML
• eXtensible Markup Language
• Older than JSON, and now is less common than JSON because

many people think XML is unnecessarily complicated.
• HTML is an XML document that defines a web page.

Basic components are:

• Text
• Tags

• <tagname>…</tagname> or just <tagname>
• Have a name, and have XML inside
• Each start tag has a corresponding end tag, but only if it has data

inside.

• Attributes
• <tag attr="value" …>
• Appear within tags
• Attribute name and value must be text
• Tag can have multiple attributes, but each must have a unique

name

<people>

<person name="John"

age="30">

<cars>

<car>Ford</car>

<car>BMW</car>

<car>Fiat</car>

</cars>

</person>

<person name="Alicia"

age="32">

<hometown city="Seattle">

</person>

</people>

Comparison of data exchange formats
Proprietary SQL CSV JSON XML

Space efficiency Compact binary
representation

Bloated text with
SQL syntax

Text with little
extra syntax

Text with little
extra syntax

Text with verbose
tag names

Compatibility
(readable by many)

Must use specific
program/DB

Each DBMS has its
own SQL dialect

Standardized
format

Standardized
format

Standardized
format

Expressibility
(data complexity)

Complex
relationships

Complex
relationships

Represents a single
table

Complex
relationships

Complex
relationships

Popularity Rare Rare Common Common Less common

Flexibility/rigidity SQL DBs are have a clearly defined
schema that must be obeyed.

Rows all have same
columns.

Data and schema are defined together.
Different elements can have different

attributes.

• Text-based file formats (SQL, CSV, JSON, XML) are not space efficient, but text files can be compressed using
general-purpose file compression utilities like gzip to alleviate the problem (eg., my_data.json.gz)

Fixed point example in 16 bits
Let’s store the chemical elements’ atomic weights.
• Smallest value (hydrogen) is 1.00784
• Largest value (uranium) is 238.02891
• Negative values are not possible
• We can reserve 8 bits for the fractional part and 8 bits for the part > 1
• In this particular binary fixed point representation, weight of uranium is:

The radix point is implicit, not stored in the computer.
11101110.00000111
= 238 !

"#$ = 238.02734375 (We had to round off, so this is not precisely accurate)
• And the weight of hydrogen is:

00000001.00000010
= 1 "

"#$ = 1.0078125

Representing floating point in bits
0.15625ten = 0.00101two = 1.01 × 10-11

two

• Three essential parts are the sign, fraction, & exponent
• Notice that the first significant figure is always “1” so we don’t have to store it

• In the mid 1980s, the IEEE standardized the floating point
representation of 32 and 64 bit numbers:
• The exponent has a sign too, but the standard says to add a “bias” of 127

1111100 = 124 124-127 = -3 exponent

Floats just distribute numbers differently

• Above, the dashes represent possible numbers.
• Both of the above number lines have 17 dashes (possible numbers)
• The only difference is the spacing.
• Integer spacing is constant but floats are exponentially spaced

Number Representation summary
• Computers represent numbers with different binary encodings
• Text can represent decimal numbers in various formats (eg., CSV, JSON).
• Integers represent whole numbers
• Remember that 210 = 1024 ≈ 1000, 232 ≈ 4 billion
• Signed integers use two’s complement
• Used for counting and identifying records.

• Fixed point adds an implicit radix point to an integer.
• Allows representing fractional quantities as integers, but with limited range.
• Used for numbers that should round off, like prices.

• Floating point is a binary scientific notation representation
• Can represent tiny fractional values and huge values with equal precision

• Single precision ≈ 7 decimal digits, Double precision ≈ 16 decimal digits of precision
• Used for measurements and calculations.

Bulk vs. online data sources
• So far, we have assumed that we can bulk export and import data.
• In other words, we can get easily get all the data in one download.
• Data is exchanged as CSV, JSON, XML, or SQL files:
• Dump file(s) from origin database
• Load file(s) into the destination database

•However, some data sources do not allow bulk access, and instead
provide some kind of web-based access to the data:
• A data API may be provided for users to query the data programmatically.
• Data may be presented in web page for human reading, not intended for

programmatic access.

Web scraping
• Find the pages that hold the data
• Often you’ll start with a hard-coded index page and then programmatically look for links

to additional pages.
• Download the HTML (using Python requests package, for example)

• Extract the data from a given page:
• Web pages are usually generated by a computer program, so the data will always be found

within a certain pattern of HTML code.
• Locations in the HTML document can be specified in one of two ways:
• CSS selectors – used be web page designers in Cascading Style Sheets to specify

which fonts/colors/etc. (styles) apply to which parts of the page.
• Python beautifulsoup4 package uses CSS selectors

• XPath queries – used for finding elements in an XML document (remember
that HTML is a type of XML).
• Python lxml package used XPath

• CSS selector and XPath syntax can be tested in the Chrome developer tools.

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://lxml.de/index.html
https://yizeng.me/2014/03/23/evaluate-and-validate-xpath-css-selectors-in-chrome-developer-tools/

Messy data
•Data can have missing, incorrect, or inconsistent values for many

reasons:
• Pulled from different sources with different naming or unit conventions
• Paper scanning (OCR) errors
• Human input errors

• Variety of tools are needed to deal with messy data:
• Review summary statistics
• Synonym tables
• Named entity matching with ML (dedupe.io and Open Refine)
• Crowdsourcing: MTurk, home-grown solutions

• Above all, don’t blindly trust data you are given!

Data modeling practice

Final words of wisdom
• Peter Drucker famously said:
• “If you can’t measure it, you can’t improve it.”

• MBA programs teach “scientific management” principles.
• Data-driven decision making is popular.
• However, data can be easily cherry-picked and misinterpreted.
• Focusing on the measurables is easy, but avoids important long-term issues.
• Many of a business’ most important qualities cannot be queried from the

databases:
• Customer satisfaction.
• Employee morale.
• Brand image.
• Long-term sustainability.

• Unfortunate reality:
• “If you can’t improve it, measure it!”

Beware of “whaling” analysts
Naïve analysis:
• Profits could be increased by more

than 30% by focusing on the top
20% most profitable customers!

Fatal assumptions:
• It’s possible to drop the “bad”

customers without also losing
many “good” customers.
• Market dominance has no effect on

ability to attract the good customers.
• Per-customer profitability is

constant over time.
• Some of those “bad” customers may

be very profitable next year (and vice
versa).From “The Management Myth” by Matthew Stewart.

Good
customers

Approximate
break-even point

“Bad” customers

Supposed gains by dropping 80% of customers

https://www.amazon.com/Management-Myth-Debunking-Business-Philosophy/dp/0393338525/ref=sr_1_1?keywords=the+management+myth&qid=1559658959&s=gateway&sr=8-1

Use data wisely
• Analysis doesn’t stop when you get a numeric “answer” or a plot.
• Ask yourself:
• What’s missing from this analysis?
• What are we not measuring (where we could search for more data)?
• What cannot be measured?
• Do the results change if we look at different time periods or random subsets

of the data? (This indicates a lack of statistical significance.)
•Now ask the same questions above to the people most intimately

familiar with the business.
•Data related to human activities are always a simplification of reality!
• View data as a scientist – keep testing your assumptions.

