
EECS-317 Data Management and
Information Processing

Text and Natural Language Data

Steve Tarzia
Spring 2019

Announcements
• Final exam is in one week!
• Will cover SQL, database schema design, maybe a little on number

representations.
• In other words, it will be similar to past final exams.

• Final project due in 13 days (June 12th)

Last Lecture: Big Data
•Hash functions map deterministically to pseudo-random values.
• A hash table is a data structure to store (key, value) pairs:
• Hashing the key determines the data’s storage address.
• So, hashing is an alternative to binary search trees for indexing data.

• Big Data requires databases (or filesystems) distributed over many
computers
• NoSQL databases are distributed hash tables. Lack the full power of SQL.

•Hadoop is a distributed computing platform, using MapReduce:
• Map function takes input and produces a bunch of intermediate results.
• Reduce function takes intermediate results and produces an output.

• Stop and think before using “big data” tools (SQL is pretty scalable!)

Natural Language Data
•Natural Language means a language that has evolved naturally.
• For example, written English or spoken English.
• These are human languages.

• In contrast, a Formal Language is defined by a strict set of rules.
• For example, SQL or Python.
• These are computer or mathematical languages.

•Natural languages are difficult for machines to process because there
are no clear rules for semantics (meaning).
• Thus, natural language processing (NLP) is a difficult artificial intelligence

problem. Eg., Siri, Alexa, Google search.
• Details of state-of-the-art NLP is way beyond the scope of this course…

How to deal with natural language data?
For example, Yelp reviews:
• Red, white and bleu salad was super yum and a great addition to the menu!

This location was clean with great service and food served at just the right
temps! Kids pizza is always a hit too with lots of great side dish options for
the kiddos! When I'm on this side of town, this will definitely be a spot I'll
hit up again!
• Ate the momos during the momo crawl.. Was the best of the lot so decided

to eat at the restaurant and the mutton thali was equally good!!
• Pizza here made my night... Good people and great pizza. They can do

anything you ask with a great attitude!
• Great brisket sandwich as claimed. Weird that it's a gas station/ hipster bbq

lunch spot/ hallmark store carwash.
• Interesting food, great atmosphere, and great service. I like this place

because there really isn't anything like this around the Charlotte area. I will
definitely be coming back! Oh, and MILK BREAD.

Pattern matching
• In SQL, you can use LIKE or REGEXP to find patterns
• Eg., it might be useful to find all the reviews mentioning Pizza:
SELECT text FROM review WHERE text LIKE "%pizza%”;
• Red, white and bleu salad was super yum and a great addition to the menu! This

location was clean with great service and food served at just the right temps! Kids
pizza is always a hit too with lots of great side dish options for the kiddos! When
I'm on this side of town, this will definitely be a spot I'll hit up again!
• Pizza here made my night... Good people and great pizza. They can do anything

you ask with a great attitude!
• Another case of the Emperor's New Clothes. Someone of the artsy set decided

that this relatively good but overpriced fare was great pizza and all the lemmings
followed suit. Will anyone tell the Emperor he has no clothes? The limited hours,
no delivery, and lack of dining area add to the snob appeal. Don't be taken in.

Regular Expressions (REGEXP)
Regular Expressions are patterns that match text.

… WHERE column REGEXP "pattern" …
• They are much more flexible than the LIKE expressions we have used.
• LIKE expressions use % to represent a sequence of unknown characters

and _ to represent a single unknown character.
• Regular Expressions can be much more specific:
• Match different types of characters (letters, numbers, whitespace)
• Allows sub-patterns to repeat
• … and more

• SQLite, MySQL, and every major DBMS support REGEXP, although the
syntax details may vary.
• Regular Expressions are also used in many other programing languages and

for searching with files using:
• grep command-line tool on Mac and Unix.
• FINDSTR and Select-String commands on Windows.

A simple Regular Expression

barf matches:

• barf
• barfly
• I embarfed on my journey.
• I barfed at McDonalds.

barf does not match:

• Barf
• BARF
• This bar finally closed.
• I enjoyed my meal at McDonalds.
• arf

• Returns true only if the pattern is present in the text.
• Is case sensitive.

To experiment with Regular Expressions
• In SQLite:
• SELECT "Some String" REGEXP "tri";
• Will return 1 (true) if it matches.

• In Mac Terminal.app:
• echo "Some String" | grep "tri" --color=always
• Will print the string if it matches.

• In the Windows command prompt:
• echo "Some String" | findstr "tri"

Beginning and end of the text
Normally, regular expressions match anywhere in the text, but we can
change that behavior as follows:

^ represents the beginning of the text
$ represents the end of the text

^Hello matches “Hello World.” but does not match “Big Hello”
world$ matches “hello world” but does not match “world cup”
^hello world$ matches “hello world” and nothing else.

Sets of characters
. (period) matches any one character (as does _ with LIKE
expressions)

m.p matches “map” “mop” “mope”
but not “dimple” nor “mousetrap”

Square braces […] specify a set of characters, any of which can match.
[aA] specifies either “a” or “A”
[a-z] specifies any of the characters between “a” and “z”
[^b] specifies any character other than “b”

These sets can be combined, as follows:
[a-zA-Z013] specifies any English letter or numbers 0, 1, or 3
[^CDA] specifies any character other than “C” “D” or “A

Examples
^[Dd]atabase matches: “Database”, “databases”, “Database Mgmt”

does not match: “My Database”, “data”

C[aeiou][b-d] matches: “Cab”, “Abra Cadabra”, “Cob”, “Cic”
does not match: “Clad”, “CB”

[Cc].[^aeiou] matches: “Cab”, “ccc”, “Green catnip”, “MacBride”
does not match: “Clad”, “cab”, “CB”

* lets the previous thing repeat any number of times, including zero
times.

+ lets the previous thing repeat one or more times.
? makes the previous thing optional (appears zero or one times).
{n,m} lets the previous thing repeat between n and m times.

The pipe character gives OR:
(this|that)

.* matches anything because it’s any one
character repeated any number of times.

Repetition

Examples
^1.*t$ matches: “12 point”, “100.3 feet”, “111ttt”, “1t”

does not match: “This 12 point font”

[Cc]ats? matches: “Cat behavior”, “5 cats”, “catnip”
does not match: “cast”, “CATS”

[0-9]+.[a-z]? matches: “249032/b”, “23.”, “
does not match: “a”, “aa”, “1”

([cC]at|[Dd]og)(food)? matches: “cat food”, “Dog”
does not match: “ food”

Car license plate example
Let’s say we want to match text that could be car license plates.
•Must be 6 to 8 characters, optionally with a space or dash in the

middle.
• Eg., “123-AB3” or “4FDK930”

[A-Z0-9]{3,4}[\-]?[A-Z0-9]{3,4}

3 or 4 capital letters or numbers Optional space
or hyphen

3 or 4 capital letters or numbers

“\” is needed to “escape” the normal meaning of hyphen inside square brackets.
We want the literal hyphen character; we are not specifying a range of characters.

Special characters
Whitespace in text is represented by a variety of characters:
• \t is the tab character
• \n is newline
• \r is carriage return
• Unix-style text ends each line with “\n”
• Windows-style text ends each line with “\r\n”

• To match any whitespace, use [\t\n\r] or simply \s
• \w represents a “word character”, meaning anything other than

whitespace: [^\s]

Commandline Demo

Regex Summary
• Regular expressions are used to

match text, both in SQL and in
many other data management tools.
• A match anywhere in the text

returns true.
• ^ anchors to the beginning
• $ anchors to the end
• . matches any character
• […] specifies a set of possible

characters
• [a-z] hyphen specifies a range
• [^abc] carrot within brackets

negates the match

• Repetitions are supported:
• * any number
• + one or more
• ? zero or one
• {n,m} n to m repetitions

• | pipe character gives OR
• (…) can be used for grouping

But patterns alone cannot capture deep meaning
• Let’s say I want to find all the “positive” reviews.
• Is this a positive review?
• “Interesting food, great atmosphere, and great service. I like this place

because there really isn't anything like this around the Charlotte area. I will
definitely be coming back! Oh, and MILK BREAD.”

•How can we use pattern matching to find positive reviews?
• Maybe search for reviews with positive words?
• good, great, love, excellent, best, happy, …

• What if review has both positive and negative words?
• “Our waiter did a great job of ignoring our table.”

• Should all words have equal weight?

Word frequency vectors
• If we treat the text as just a “bag of words” we lose some meaning

(the ordering of words is lost), but easy comparisons become possible.
• A word frequency vector has a dimension for each possible word and

the value in that dimension represents the frequency of that word.
• Might have 30,000 dimensions:
• [a, Aachen, aah, aardvark, …, zygote, zymurgy, zzz]

• Any text can be represented by such a vector:
• “I like cats like that.” →

[0, …, 0, 0.2, 0, … 0, 0.2, 0, …, 0, 0.4, 0, …, 0, 0.2, 0, … 0]

8,301st dimension is cats 12,401st is I 13,021st is like. 21,022nd is that
• Represent each text as a point in a space of extremely high dimension.

Shakespeare plays
•Word frequency vectors can be calculated for very large documents.
• For example, Shakespeare plays:

• Above, we are showing just four of the many dimensions of the WFV.
• Some words are more important than others for a particular task.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

Looking at just two dimensions of the WFV:

• The frequency of words battle and fool are very different for comedies and
the dramas (histories and tragedies).
• These two dimensions of the WFV can help in classifying these documents.

5 10 15 20 25 30

5

10

Henry V [4,13]

As You Like It [36,1]

Julius Caesar [1,7]ba
ttl

e

 fool

Twelfth Night [58,0]

15

40

35 40 45 50 55 60

Comedies

Dramas

5 10 15 20 25 30

5

10

Henry V [4,13]

As You Like It [36,1]

Julius Caesar [1,7]ba
ttl

e
 fool

Twelfth Night [58,0]

15

40

35 40 45 50 55 60

Similarity of WFVs
•Word frequency vectors are often compared by the angle between

them, which is called the cosine similarity:

• Cosine similarity will be 1
if WFCs are identical, 0 if
they are completely orthogonal.
• Above, there is a large angle between Julius Caesar and As You Like It (their

WFVs are not very similar).
• However, As You Like It and Twelfth Night are much closer (more similar)

12 CHAPTER 6 • VECTOR SEMANTICS

~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (6.9)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector
dividing it by |~a|. For unit vectors, the dot product is the same as the cosine.

The cosine value ranges from 1 for vectors pointing in the same direction, through
0 for vectors that are orthogonal, to -1 for vectors pointing in opposite directions.
But raw frequency values are non-negative, so the cosine for these vectors ranges
from 0–1.

Let’s see how the cosine computes which of the words apricot or digital is closer
in meaning to information, just using raw counts from the following simplified table:

large data computer
apricot 2 0 0
digital 0 1 2

information 1 6 1

cos(apricot, information) =
2+0+0p

4+0+0
p

1+36+1
=

2
2
p

38
= .16

cos(digital, information) =
0+6+2p

0+1+4
p

1+36+1
=

8p
38
p

5
= .58 (6.11)

The model decides that information is closer to digital than it is to apricot, a
result that seems sensible. Fig. 6.7 shows a visualization.

6.5 TF-IDF: Weighing terms in the vector

The co-occurrence matrix in Fig. 6.5 represented each cell by the raw frequency of
the co-occurrence of two words.

It turns out, however, that simple frequency isn’t the best measure of association
between words. One problem is that raw frequency is very skewed and not very
discriminative. If we want to know what kinds of contexts are shared by apricot and
pineapple but not by digital and information, we’re not going to get good discrimi-
nation from words like the, it, or they, which occur frequently with all sorts of words
and aren’t informative about any particular word.

It’s a bit of a paradox. Word that occur nearby frequently (maybe sugar appears
often in our corpus near apricot) are more important than words that only appear

Back to finding “positive” reviews
• Using word-frequency vectors, we can represent

each review as a point/vector in an extremely high-
dimensional space.
• Similar to the picture at right, but with

> 10,000 dimensions instead of just 3D.
• We assume that the positive reviews occupy some

region of the space.
• If we have a few reviews that we know are positive (training data) then

we can look for review that are “close” to those in the space.
• That’s the essence of supervised machine learning.

Each review is a point in word-
frequency space:

Reducing dimension of the vectors
• If each dimension represents a word, then 10,000+ dimensions are

needed.
•However, many words are similar, especially if we’re ignoring ordering.
• Principle component analysis (PCA) and similar techniques can be

used to reduce dimensionality.
•Word embeddings define each possible word as a vector in a much

smaller dimension space (perhaps 200).
• This is done by analyzing a huge language corpus, like all of Wikipedia.
• Now, you can translate a bag of words into a vector in this 200-dimensional

space by multiplying the frequency of each word by it’s word embedding
vector and summing them all up.

Recap: Text and Natural language Data
• Text is somewhat difficult to analyze.
• Patterns can be found using Regular Expressions.

•However, more intelligent analyses require AI techniques.
•Word Frequency Vectors treat the text as a “bag of words” and

assume that different meaning usually involves different sets of words.
• Cosine similarity can measure differences in WFVs.

•Gave examples of:
• Document classification, review sentiment (positive/negative)
• Also applies to email spam detection, etc.

