EECS-317 Data Management and
Information Processing

Lecture 15 —
Number representations

Steve Tarzia

Spring 2019

Northwestern

Last Lecture: Web Scraping & Messy Data

* Data can be scraped from web pages by writing code that:
* Downloads HTML pages
* Picks out data elements using CSS selectors (or XPath)
* Also pick out links to pages with additional data
* Repeat!

* Data can have missing, incorrect, or inconsistent values for many reasons:

* Pulled from different sources with different naming or unit conventions
* Paper scanning (OCR) errors
* Human input errors

* Variety of tools are needed to deal with messy data:
* Review summary statistics
* Synonym tables
* Named entity matching with ML (dedupe.io and Open Refine)

* Crowdsourcing: MTurk, home-grown solutions

* Above all, don’t blindly trust data you are given!

Computers store information in binary

e Ones and Zeros

¢ ...000100100001001001110011011010101010111100000...
* Called “bits,” meaning “binary digits”

* Why?
* Simplicity
* Noise robustness
* By convention

* But how do we get meaning from a sequence of ones and zeros?

Data is zeros and ones plus an interpretation/context

* An encoding defines what the zeros and ones represent

*“01000100011000010111010001100001” can represent:
* The number 1,147,237,473 as an integer
* The number 901.8184 as a float
* The four letters “Data” in the ASCII or UTT-8 character encoding
* This color (at 37% transparency) in RGBA
* 32 separate True or False values

* Any crazy encoding is possible, but there are some standards.

Decimal numbers in text

* CSV, JSON, and XML files store text, usually UTF-8 encoded.

* In that text, you can print decimal numbers using the chars [0-9.eE\-]

* For example:
¢ “127 = “17 4+ “2” = 0x 31 32 = 0011 0001 0011 0010
o €1DDe-47 = €1V 4 QY A P QY P 4 L 4 47
= Ox 31 32 2E 32 65 2D 34
= 0011 0001 0011 0010 0010 1110 0011 0010 0110 0101 0010 1101 0011 0100

* These text-based encodings are inefficient because they only make use
of a small subset of the characters.

* However, they are easy to read and machine-independent.

* A general-purpose compressor like “gzip” works well on text.

* Other numeric encodings work directly with the bits, not with text.

A S C I I I A B L E Subset of chars used by numbers are highlighted.

Decimal Hex Char Decimal Hex Char |[Decimal Hex Char|Decimal Hex Char
0 0 [NULL] 32 20 [SPACE] | 64 40 @ 96 60 :
1 1 [START OF HEADING] 33 21 ! 65 41 A 97 61 a
2 2 [START OF TEXT] 34 22 " 66 42 B 98 62 b
3 3 [END OF TEXT] 35 23 # 67 43 C 99 63 c
4 4 [END OF TRANSMISSION] | 36 24 $ 68 44 D 100 64 d
5 5 [ENQUIRY] 37 25 % 69 45 E 101 65 e
6 6 [ACKNOWLEDGE] 38 26 & 70 46 F 102 66 f
7 7 [BELL] 39 27 ' 71 47 G 103 67 g
8 8 [BACKSPACE] 40 28 (72 48 H 104 68 h
9 9 [HORIZONTAL TAB] 41 29) 73 49 1 105 69 i
10 A [LINE FEED] 42 2A % 74 an 106 6A j
11 B [VERTICAL TAB] 43 2B + 75 4B K 107 6B k
12 C [FORM FEED] 44 2C) 76 4C L 108 6C I
13 D [CARRIAGE RETURN] 45 2D - 77 4D M 109 6D m
14 E [SHIFT OUT] 46 2E . 78 4E N 110 6E n
15 F [SHIFT IN] 47 2F / 79 4F o) 111 6F o
16 10 [DATA LINK ESCAPE] 48 30 0 80 50 P 112 70 p
17 11 [DEVICE CONTROL 1] 49 31 1 81 51 Q 113 71 q
18 12 [DEVICE CONTROL 2] 50 32 2 82 52 R 114 72 r
19 13 [DEVICE CONTROL 3] 51 33 3 83 53 S 115 73 s
20 14 [DEVICE CONTROL 4] 52 34 a4 84 54 T 116 74 t
21 15 [NEGATIVE ACKNOWLEDGE] | 53 35 5 85 55 U 117 75 u
22 16 [SYNCHRONOUS IDLE] 54 36 6 86 56 Y/ 118 76 v
23 17 [ENG OF TRANS. BLOCK] 55 37 7 87 57 w 119 77 w
24 18 [CANCEL] 56 38 8 88 58 X 120 78 X
25 19 [END OF MEDIUM] 57 39 9 89 59 Y 121 79 y
26 1A [SUBSTITUTE] 58 3A : 90 5A Z 122 JIA 2
27 1B [ESCAPE] 59 3B ; 91 5B [123 7B {
28 1C [FILE SEPARATOR] 60 3C < 92 5C \ 124 7C |
29 1D [GROUP SEPARATOR] 61 3D = 93 5D 1 125 7D}
30 1E [RECORD SEPARATOR] 62 3E > 94 5E ~ 126 7E ~
31 1F [UNIT SEPARATOR] 63 3F ? 95 5F ~ 127 7F [DEL]

Integers

* Integers are the simplest of all data encodings

* Whole numbers only (no fractions)
* Numbers are represented directly in the “base two” positional notation

* The familiar “base ten” representation of numbers is just a convention
due to the fact that humans have ten fingers.

* What number base will octopuses evolve to use?

Integers in detail

Decimal 137,
1 3 7
x100 x10 x1 € powers of 10
100 + 30 + 7 = 137

Binary 10001001, = 137 .,
1 0 0 0 1 0 0 1
x128 x64 x32 x16 % 8 x4 X2 x1 € powets of 2
128 + 0 +0 +0 +8+ 0 +0 + 1 = 137

Simple binary integers

1‘[611 — /“tWO

2‘[611 — /OtWO

4‘[611 — /OOtWO

Bien = 1000,

16,.. = 10000,
32, = 100000, .
64... = 1000000,
128, = 10000000,

ten

ten

15

ten

31
63

ten

ten

127 A 4 4 4 4 4
A A A A 4L

ten

| \ \
r r
' A\ - \ - \ - \ - \
r r r r
- \ - \ - \ -
r r r r
N \ N \ N \
r

255 A 4 4 4 A4 A4 A
A A A4 A 4 141 41

ten

There are only 10 types ot people in
this world... those who understand
binary and those who don’t.

(Stop and practice)

Binary tricks

* Remember the first eight powers of two:
«2.4.8.16, 32,64, 128,256

e Remember that 21° = 1024 = 1000

* Lets you estimate the number of binary digits in a decimal integer:
Every three decimal digits gives about ten binary digits

* Remember the important large powers of two:
¢ 28 =256
* 216 = 64 thousand
* 252 = 4 billion
* 204 = really big

Addition in binary
4+7=11

+
J S

|_\
|_\

100 + 111 = 1011

- |+

o [=
— [~ o
— = o

More binary addition

63 + 98 =161 11111 + 110010 = 1010001
1 1 1 1 1 1
o 3 1 1 11
+ 9 8 + 0 01 0
1 o6 1 1 0 0 0 1

Subtraction: addition’s tricky pal

161 — 98 = 63 1010001 - 110010 = 11111
~ ~ borrow ~N S ~ ~ ~ borrow
0+ 156 11 0o+ 16 10&+ 16 16 10 1
— 9 8 — 1 1 0 0 1 0
6 3 1 1 1 1 1

What about negative integers?

* Signed integers can represent both positive and negative integers
* We need an extra bit to represent the sign of the number

* But we don’t just use a simple sign bit

* We use two’s complement to represent negative numbers, because it

* Simplifies the computer’s addition and subtraction circuitry, and
* And it has just one representation of zero

* Negative numbers “roll over” from the top of the binary range.

Works like an old-style car odometer

39 99 9]

° RNDLL ||

e

P R N DLz L

Two’s complement for three-bit numbers

3: 011 2+ 1=-1

2: 010 110 + 001 = 111

1: 001

0: 000 e Subtraction is done in the
1. 111 < rollover exact same way as addition!
~2. 110 * No need to learn how to

) “borrow.”

-3: 101
-4: 100

Subtraction works just like addition!

No need to learn how to “borrow.”
Just negate the second number and add.

3-2=34+(-2)=
1 1
0 1 1 _
+ 1 1 0 o
0 0 1 <€ ouranswet! _3.
We ignore the final carry because it falls outside 4.

of the 3-bits we are working with. That’s how we
roll-over between negative and positive.

011
010
001
000
111
110
101
100

Two’s complement negation

To negate a numbet:

* IFlip all the bits. Ones become

zeros and zeros become ones.

* Add one

For example -3 D
e Start with the bits for three: 011 ~3-
* Flip the bits: 100 -4

e Add one: 101

011
010
001
000
111
110
101
100

Overftlow: when numbers don’t fit

For example, 2 + 2 =4

4 cannot be represented in a three-bit siggned integet.
What happens when we try this addition:

carry

&
1
1
0

+
= 1o O =

0
0
0 €& answer looks like -4!

* The computer will throw an exception if .the. signs of the operands
were the same, but the sign of the result is different.

* positive + negative cannot overflow.
* positive + positive should give a positive
* negative + negative should give a negative

* Remember that the left-most bit indicates the sign.

011
010
001
000
111
110
101
100

Examples with 4 and 8 bits

4-bit 1s between -8 and 7
8-bit is between -128 and 127

(Stop and practice)

Just for tun over the weekend

* This video shows how addition is actually implemented in hardware:
https://www.youtube.com/watch?v=115ZMmrOfn A

Search YouTube for “PBS ALLU”

* [f you’re interested in learning more, take
COMP ENG-203 Intro to Computer FEngineering

https://www.youtube.com/watch?v=1I5ZMmrOfnA
https://www.mccormick.northwestern.edu/electrical-computer/courses/descriptions/203.html

A tfew more things about integers

* Multiplication: two’s complement works magically here too

* Positive division works as expected

* Sign extension: when increasing the “bit size” of a negative number, add
leading ones.

* Eg.,-21s 1110 as a 4-bit signed integer and 11111110 in 8 bits.
* Computers typically use 32 or 64 bit integers.

Limitations ot Integers

Integers are great for counting, but sometimes we need to measure
fractional quantities.

Binary numbers can have “decimal” places, too

«0.1111111111

*+0.0000000001_
+0.1_

is slightly smaller than 1

O

is slightly larger than 0

O

1s one half

O

°*10.101__ =1x2!+0x2"+1x21+0x22+1x27
=2 + 0 +1/2 +0 +1/8 =2

How shall we represent fractional number in the computer?

Q| U

Fixed point: Integers 2.0

* Simplest solution 1s to just stick an implicit radix point somewhere.

* We don’t call it a decimal point because we’re not in base ten.

* Examples of fixed point numbers in base ten:
* Represent the cost of a purchase with an integer number of cents.
* The cost of a sandwich 1s 625 cents.

* Represent the distance between cities by counting the hundredths of a mile.

* Evanston is 1321 hundredths of a mile from Chicago
* and 79,543 hundredths of a mile from Philadelphia

Fixed point example in 16 bits

Let’s store the chemical elements” atomic weights.

* Smallest value (hydrogen) 1s 1.00784

* Largest value (urantum) 1s 238.02891

* Negative values are not possible

* We can reserve 8 bits for the fractional part and 8 bits for the part > 1

* In this particular binary fixed point representation, weight of uranium is:

v~ The radix point is implicit, not stored in the computer.
11101110.00000111

= 238 - = 238.02734375 (We had to round off, so this is not precisely accurate)

256
* And the weight of hydrogen is:
00000001.00000010
=1 =1.0078125

256

Fixed point limitations

* Fixed point 1s simple & efficient, but...
* Range is very limited
* Multiplication overflows easily — can double the number of bits
* Eg., if working in 32-bits, then we can only multiply 16-bit values without overflow
* Division underflows easily (small values are rounded to zero)
* Precision vartes across the range:

* Small numbers have few significant figures:
* For example, 00000000.00000010 1s not very precise

Floating point

e Based on scientific notation:
* 10,340 = 1.034 x 10
° 0.00424 = 4.24 x 102

* Scientific notation gives a compact representation of extreme values:
* 1,000,000,000,000,000,000,000,000 = 1.0 x 10
* 0.000 000 000 000 000 000 000 001 = 1.0 x 10-24

* In binary:
¢ 100010, = 1.0001, x 2°
¢ 0.00101,,, = 1.01,._ x 273

o = 1.0001 x 10101 _
=1.01 x 101"

ten

Representing tloating point
0.15625

ten

=0.00101,,. = 1.01 x 10:11
7

1n bits

two

* Three essential parts are the sign, fraction, & exponent

* Notice that the first significant figure 1s always “1” so we don’t have to store it

* In the mid 1980s, the IEEE standardized the floating point

representation of 32 and 64 bit numl

DCTS:

* The exponent has a sign too, but the standard says to add a “bias” of 127

sign exponent{8-bit) fraction (23-bit)

| I
00111110001 000000O00

31 \ 23

I
COO0OO0O0OO0O0O0O0O0OOO =0.15625

0

1717177100 = 124 124-127 = -3 exponent

64-bit tloating point

* Similar to 32-bit, but we have more precision in the fraction and larger
exponents are possible.

* 32-bit is called single precision and 64-bit is called double precision.

* Double precision can represent larger, smaller, and more precise numbers.

sign exponent{8-bit) fraction (23-bit)
I I 1

00111110001000000000000000000000 =0.15625

31 23 0
exponent fraction
sign (11 bit) (52 bit)
|1 W T |
LCLCELELEE TR E e e e E e e e L]
o o o

63 52 O

A tew special tloats

* The IEEE standard allows for a few special values to be stored

* Positive and negative zero (We normally start with an implied “1”” which
doesn’t work for zero)

* Positive and negative infinity (the result of divide by zero)
* Not a number (the result of zero divided by zero)

* These all have the exponent bits set to all ones or all zeros

The Flexibility and Flaws of Floats

* A 32-bit signed integer can represent all the whole numbers between
2,147 483,648 and 2,147 .483,647

* A 32-bit floating point number can be as large as £3.402823 X 10°®
= 340,282,300,000,000,000,000,000,000,000,000,000,000

* or as tiny as 5.8774718 x 10~
= 0.000 000 000 000 000 000 000 000 000 000 000 000 005 877 471 8

* But, single-precision floats have only 24 bits of precision:
* Can only precisely store integers up to 2%* = 16,777,216

* Floats can store larger numbers than integers of the same bit-length,
but with less precision because 8 bits are set aside for the exponent.

Floats just distribute numbers differently

In*eﬂer 4 U
| | \ Y L 9
e
F\oa%r\j Yoivt |
| —— 1
P9l O

* Above, the dashes represent possible numbers using 4 bits.
* Both of the above number lines have 16 dashes (possible numbers)
* Actually, there are 17 dashes, and we have to leave out the largest number (8, 32).

* The only difference is the spacing,

* Integer spacing is constant but floats are exponentially spaced

Catastrophic Cancellation

* Subtraction of similar-sized numbers leads to a loss of precision:
0.1234567891 — 0.1234567890 = 0.0000000001
1.234567891 x 107" = 1.234567890 x 10~ = 1.000000000 x 10-1

result has 9 insignificant figures

* We started with 10 significant figures but the result has just one sig tig!

* Note that I'm giving an example in decimal, but the same idea applies to
floating point’s binary representation.

* What about:
* addition? multiplication? division?
* Actually, only subtraction can lead to a loss of precision.
* Integers?

* Integers may overflow, precision 1s not really defined for integers.

Numerical Methods

* Math on computers (especially with tloats) has limited precision.
* The field of Numerical Methods (within Applied Math) studies:

* The errors introduced by numeric representations and calculations,
* Optimizes numerical calculations so as to minimize errors, runtime, etc.

* For example, the quadratic formula you learned in high school 1s
theoretically correct: _b+ /B — 4ac

€Tr =

2a
* But catastrophic cancellation occurs when b = vb? — 4ac

* A better numerical method for finding roots of quadratic functions is as
follows, though there is still a catastrophic cancellation when 4ac = b*:

—b — sgn(b) /b2 — 4ac o 2c o
T = 2 = = —
1 2a —b —sgn(b) \/b? —4ac 1

https://en.wikipedia.org/wiki/Loss_of_significance

When to use the various number representations

* When counting or labelling things, always use integers
* When measuring things, usually use floating point
* May use fixed point if speed/simplicity is more important than accuracy

* I[f your machine does not support tloating point (eg;, a toaster):
* Use fixed point representation for fractional quantities

* If rounding 1s desired then use fixed point
* U.S. currency values usually should be rounded to the nearest cent

* Use 64-bit integers when you need values > 2 billion

* Floating point rules of thumb:
* Single precision gives ~7 decimal digits of precision, max of ~1078
* Double precision gives ~16 decimal digits of precision, max of ~10°%%

How do computers work with floats?

* I[t’s complicated and slow!
* Have to manipulate both the fraction and the exponent.

* Addition 1s no longer simple, as it was for integers & fixed point.

Recap

* Computers represent numbers with different binary encodings
* Text can represent decimal numbers in various formats (eg., CSV, JSON).

* Integers represent whole numbers
* Remember that 2'° = 1024 = 1000, 2*> = 4 billion
* Signed integers use two’s complement
* Used for counting and identsfying records.

* Fixed point adds an implicit radix point to an integer.

* Allows representing fractional quantities as integers, but with limited range.
* Used for numbers that should round off, like prices.

* Floating point is a binary scientific notation representation

* Can represent tiny fractional values and huge values with equal precision

* Single precision = 7 decimal digits, Double precision = 16 decimal digits of precision
* Used for measurements and calculations.
* Float subtraction can lead to catastrophic cancellation.

