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Last Lecture: Web Scraping & Messy Data
• Data can be scraped from web pages by writing code that:
• Downloads HTML pages
• Picks out data elements using CSS selectors (or XPath)
• Also pick out links to pages with additional data
• Repeat!

• Data can have missing, incorrect, or inconsistent values for many reasons:
• Pulled from different sources with different naming or unit conventions
• Paper scanning (OCR) errors
• Human input errors

• Variety of  tools are needed to deal with messy data:
• Review summary statistics
• Synonym tables
• Named entity matching with ML (dedupe.io and Open Refine)
• Crowdsourcing: MTurk, home-grown solutions

• Above all, don’t blindly trust data you are given!



Computers store information in binary
•Ones and Zeros
•…000100100001001001110011011010101010111100000…
• Called “bits,” meaning “binary digits”

•Why?
• Simplicity
• Noise robustness
• By convention

• But how do we get meaning from a sequence of  ones and zeros?



Data is zeros and ones plus an interpretation/context
• An encoding defines what the zeros and ones represent
• “01000100011000010111010001100001” can represent:
• The number 1,147,237,473 as an integer
• The number 901.8184 as a float
• The four letters “Data” in the ASCII or UTF-8 character encoding
• This color (at 37% transparency) in RGBA
• 32 separate True or False values

• Any crazy encoding is possible, but there are some standards.



Decimal numbers in text
• CSV, JSON, and XML files store text, usually UTF-8 encoded.
• In that text, you can print decimal numbers using the chars [0-9.eE\-]
• For example:
• “12” =  “1” + “2” = 0x 31 32 = 0011 0001 0011 0010
• “12.2e-4” = “1” + “2” + “.” + “2” + “e” + “-” + “4”

= 0x 31 32 2E 32 65 2D 34
= 0011 0001 0011 0010 0010 1110 0011 0010 0110 0101 0010 1101 0011 0100

• These text-based encodings are inefficient because they only make use 
of  a small subset of  the characters.
•However, they are easy to read and machine-independent.
• A general-purpose compressor like “gzip” works well on text.
•Other numeric encodings work directly with the bits, not with text.



Subset of  chars used by numbers are highlighted.



Integers
• Integers are the simplest of  all data encodings
•Whole numbers only (no fractions)
•Numbers are represented directly in the “base two” positional notation
• The familiar “base ten” representation of  numbers is just a convention 

due to the fact that humans have ten fingers.
•What number base will octopuses evolve to use?

(drawing from http://drawingpencilarts.com/realistic-octopus-drawing/)



Integers in detail
Decimal 137ten

1    3    7
x100  x10   x1 ß powers of  10
100 + 30  + 7 = 137

Binary 10001001two = 137ten

1    0    0    0    1    0    0    1

x128  x64  x32  x16   x8   x4   x2   x1 ß powers of  2
128  + 0  + 0  + 0  + 8 +  0  + 0  + 1 = 137  



Simple binary integers
1ten = 1two

2ten = 10two

4ten = 100two

8ten = 1000two

16ten = 10000two

32ten = 100000two

64ten = 1000000two

128ten = 10000000two

3ten = 11two

7ten = 111two

15ten = 1111two

31ten = 11111two

63ten = 111111two

127ten = 1111111two

255ten = 11111111two



There are only 10 types of  people in 
this world… those who understand 
binary and those who don’t.

(Stop and practice)



Binary tricks
• Remember the first eight powers of  two:
• 2, 4, 8, 16,    32, 64, 128, 256

• Remember that 210 = 1024 ≈ 1000
• Lets you estimate the number of  binary digits in a decimal integer:

Every three decimal digits gives about ten binary digits
• Remember the important large powers of  two:
• 28 = 256
• 216 ≈ 64 thousand
• 232 ≈ 4 billion
• 264 ≈ really big



Addition in binary
4 + 7 = 11

1 ß carry
4

+ 7
1 1

100 + 111 = 1011

1 ß carry
1 0 0

+ 1 1 1
1 0 1 1



More binary addition
63 + 98 = 161

1 1 ß carry
6 3

+ 9 8
1 6 1

11111 + 110010 = 1010001

1 1 1 1 1 ß carry
1 1 1 1 1

+ 1 1 0 0 1 0 
1 0 1 0 0 0 1



Subtraction: addition’s tricky pal

161 – 98 = 63

⤳ ⤳ borrow
01 156 11
- 9   8

6   3

1010001 - 110010 = 11111

⤳ ⤳ ⤳ ⤳ ⤳ borrow
01 10 101 10 10 10   1
- 1   1   0   0   1   0

1   1   1   1   1



What about negative integers?
• Signed integers can represent both positive and negative integers
•We need an extra bit to represent the sign of  the number
• But we don’t just use a simple sign bit
•We use two’s complement to represent negative numbers, because it
• Simplifies the computer’s addition and subtraction circuitry, and
• And it has just one representation of  zero

•Negative numbers “roll over” from the top of  the binary range.



Works like an old-style car odometer



Two’s complement for three-bit numbers
3: 011
2: 010
1: 001
0: 000 

-1: 111 ↩ rollover
-2: 110
-3: 101
-4: 100

-2 + 1 = -1
110 + 001 = 111

• Subtraction is done in the 
exact same way as addition!
•No need to learn how to 
“borrow.”



Subtraction works just like addition!
No need to learn how to “borrow.”
Just negate the second number and add.

3 – 2 = 3 + (-2) =

1 1 ß carry
0 1 1

+ 1 1 0
0 0 1 ß our answer!

We ignore the final carry because it falls outside 
of  the 3-bits we are working with.  That’s how we 
roll-over between negative and positive.

3: 011
2: 010
1: 001
0: 000 
-1: 111 
-2: 110
-3: 101
-4: 100



Two’s complement negation
To negate a number:
•Flip all the bits.  Ones become 

zeros and zeros become ones.
•Add one

For example -3
• Start with the bits for three: 011
•Flip the bits: 100
•Add one: 101

3: 011
2: 010
1: 001
0: 000 

-1: 111
-2: 110
-3: 101
-4: 100



Overflow: when numbers don’t fit
For example, 2 + 2 = 4
4 cannot be represented in a three-bit signed integer.
What happens when we try this addition?

1 ß carry
0 1 0

+ 0 1 0
1 0 0 ß answer looks like -4!

• The computer will throw an exception if  the signs of  the operands 
were the same, but the sign of  the result is different.
• positive + negative cannot overflow.
• positive + positive should give a positive
• negative + negative should give a negative

• Remember that the left-most bit indicates the sign.

3: 011
2: 010
1: 001
0: 000 
-1: 111
-2: 110
-3: 101
-4: 100



Examples with 4 and 8 bits
4-bit is between -8 and 7

8-bit is between -128 and 127

(Stop and practice)



Just for fun over the weekend
• This video shows how addition is actually implemented in hardware:

https://www.youtube.com/watch?v=1I5ZMmrOfnA
Search YouTube for “PBS ALU”

• If  you’re interested in learning more, take
COMP_ENG-203 Intro to Computer Engineering

https://www.youtube.com/watch?v=1I5ZMmrOfnA
https://www.mccormick.northwestern.edu/electrical-computer/courses/descriptions/203.html


A few more things about integers
•Multiplication: two’s complement works magically here too
• Positive division works as expected
• Sign extension: when increasing the “bit size” of  a negative number, add 

leading ones.
• Eg., -2 is 1110 as a 4-bit signed integer and 11111110 in 8 bits.

• Computers typically use 32 or 64 bit integers.

Any questions on last week’s material?



Limitations of  Integers
Integers are great for counting, but sometimes we need to measure
fractional quantities.

Binary numbers can have “decimal” places, too
• 0.1111111111two is slightly smaller than 1
• 0.0000000001two is slightly larger than 0
• 0.1two is one half

• 10.101two = 1 × 21 + 0 × 20 + 1 × 2-1 + 0 × 2-2 + 1 × 2-3

= 2         + 0         + 1/2     + 0          + 1/8     =  2 #$
How shall we represent fractional number in the computer?



Fixed point: Integers 2.0
• Simplest solution is to just stick an implicit radix point somewhere.
• We don’t call it a decimal point because we’re not in base ten.

• Examples of  fixed point numbers in base ten:
• Represent the cost of  a purchase with an integer number of  cents.
• The cost of  a sandwich is 625 cents.

• Represent the distance between cities by counting the hundredths of  a mile.
• Evanston is 1321 hundredths of  a mile from Chicago
• and 79,543 hundredths of  a mile from Philadelphia



Fixed point example in 16 bits
Let’s store the chemical elements’ atomic weights.
• Smallest value (hydrogen) is 1.00784
• Largest value (uranium) is 238.02891
• Negative values are not possible
• We can reserve 8 bits for the fractional part and 8 bits for the part > 1
• In this particular binary fixed point representation, weight of  uranium is: 

The radix point is implicit, not stored in the computer.
11101110.00000111
= 238 %

&#' = 238.02734375  (We had to round off, so this is not precisely accurate)
• And the weight of  hydrogen is:

00000001.00000010
= 1 &

&#' = 1.0078125



Fixed point limitations
• Fixed point is simple & efficient, but…
• Range is very limited
• Multiplication overflows easily – can double the number of  bits
• Eg., if  working in 32-bits, then we can only multiply 16-bit values without overflow

• Division underflows easily (small values are rounded to zero)
• Precision varies across the range:
• Small numbers have few significant figures:
• For example, 00000000.00000010 is not very precise



Floating point
• Based on scientific notation:
• 10,340 = 1.034 × 104

• 0.00424 = 4.24 × 10-3

• Scientific notation gives a compact representation of  extreme values:
• 1,000,000,000,000,000,000,000,000 = 1.0 × 1024

• 0.000 000 000 000 000 000 000 001 = 1.0 × 10-24

• In binary:
• 100010two = 1.0001two × 25

ten = 1.0001 × 10101
two

• 0.00101two = 1.01two × 2-3
ten = 1.01 × 10-11

two



Representing floating point in bits
0.15625ten = 0.00101two = 1.01 × 10-11

two

• Three essential parts are the sign, fraction, & exponent
• Notice that the first significant figure is always “1” so we don’t have to store it

• In the mid 1980s, the IEEE standardized the floating point 
representation of  32 and 64 bit numbers:
• The exponent has a sign too, but the standard says to add a “bias” of  127

1111100 = 124     124-127 = -3 exponent



64-bit floating point
• Similar to 32-bit, but we have more precision in the fraction and larger 

exponents are possible.
• 32-bit is called single precision and 64-bit is called double precision.
• Double precision can represent larger, smaller, and more precise numbers.



A few special floats
• The IEEE standard allows for a few special values to be stored
• Positive and negative zero (We normally start with an implied “1” which 

doesn’t work for zero)
• Positive and negative infinity (the result of  divide by zero)
• Not a number (the result of  zero divided by zero)

• These all have the exponent bits set to all ones or all zeros



The Flexibility and Flaws of  Floats
• A 32-bit signed integer can represent all the whole numbers between

-2,147,483,648 and 2,147,483,647
• A 32-bit floating point number can be as large as ±3.402823 × 1038

= 340,282,300,000,000,000,000,000,000,000,000,000,000
• or as tiny as 5.8774718 × 10-39

= 0.000 000 000 000 000 000 000 000 000 000 000 000 005 877 471 8
• But, single-precision floats have only 24 bits of  precision:
• Can only precisely store integers up to 224 = 16,777,216

• Floats can store larger numbers than integers of  the same bit-length,
but with less precision because 8 bits are set aside for the exponent.



Floats just distribute numbers differently

• Above, the dashes represent possible numbers using 4 bits.
• Both of  the above number lines have 16 dashes (possible numbers)
• Actually, there are 17 dashes, and we have to leave out the largest number (8, 32).

• The only difference is the spacing.
• Integer spacing is constant but floats are exponentially spaced



Catastrophic Cancellation
• Subtraction of similar-sized numbers leads to a loss of precision:

0.1234567891 − 0.1234567890 = 0.0000000001
1.234567891 × 10-1 − 1.234567890 × 10-1 = 1.000000000 × 10-10

result has 9 insignificant figures
•We started with 10 significant figures but the result has just one sig fig!
• Note that I’m giving an example in decimal, but the same idea applies to 

floating point’s binary representation.
•What about:
• addition?  multiplication?  division?
• Actually, only subtraction can lead to a loss of precision.

• Integers?
• Integers may overflow, precision is not really defined for integers.



Numerical Methods
• Math on computers (especially with floats) has limited precision.
• The field of  Numerical Methods (within Applied Math) studies:
• The errors introduced by numeric representations and calculations,
• Optimizes numerical calculations so as to minimize errors, runtime, etc.

• For example, the quadratic formula you learned in high school is 
theoretically correct:

• But catastrophic cancellation occurs when 𝑏 ≅ 𝑏* − 4𝑎𝑐
• A better numerical method for finding roots of  quadratic functions is as 

follows, though there is still a catastrophic cancellation when 4𝑎𝑐 ≅ 𝑏*:

https://en.wikipedia.org/wiki/Loss_of_significance


When to use the various number representations
•When counting or labelling things, always use integers
•When measuring things, usually use floating point
• May use fixed point if  speed/simplicity is more important than accuracy

• If  your machine does not support floating point (eg., a toaster):
• Use fixed point representation for fractional quantities

• If  rounding is desired then use fixed point
• U.S. currency values usually should be rounded to the nearest cent

• Use 64-bit integers when you need values > 2 billion
• Floating point rules of  thumb:
• Single precision gives ~7 decimal digits of  precision, max of  ~1038

• Double precision gives ~16 decimal digits of  precision, max of  ~10308



How do computers work with floats?
• It’s complicated and slow!
•Have to manipulate both the fraction and the exponent.
• Addition is no longer simple, as it was for integers & fixed point.



Recap
• Computers represent numbers with different binary encodings
• Text can represent decimal numbers in various formats (eg., CSV, JSON).
• Integers represent whole numbers
• Remember that 210 = 1024 ≈ 1000,  232 ≈ 4 billion
• Signed integers use two’s complement
• Used for counting and identifying records.

• Fixed point adds an implicit radix point to an integer.
• Allows representing fractional quantities as integers, but with limited range.
• Used for numbers that should round off, like prices.

• Floating point is a binary scientific notation representation
• Can represent tiny fractional values and huge values with equal precision

• Single precision ≈ 7 decimal digits, Double precision ≈ 16 decimal digits of precision
• Used for measurements and calculations.
• Float subtraction can lead to catastrophic cancellation.


