# EECS-317 Data Management and Information Processing

# Lecture 14 – Web Scraping & Messy Data

Steve Tarzia

Spring 2019

#### Northwestern

#### Announcements

- Final project:
  - Rubric was posted.
  - Part 1 due tomorrow.
- HW5 due Friday.

#### Last Lecture: A Data Safari

- CSV files are common
- Geographic data uses special file formats ("shape files")
- A data set might include many files (eg., Stanford dogs)
- Multiple tables can be distributed as a single SQLite database file
- REST APIs allow fetching of data by providing query information in the URL (or in a POSTed JSON object).
  - Return value is usually a JSON object.
  - The data provider must provide a specification for the API, to tell users how to construct requests and how to interpret responses.

# Web Scraping/Crawling

- Some data hosts have websites for humans to browse their data, but no clean way to programmatically access the data (no Data API).
- You could manually *click through* all the pages and copy the data, but this would be tedious.
- Web scraping is writing a computer program to "crawl" through a website and get all the data you need.
- Warning: don't violate a site's terms of service (more details)
  - For example, Facebook will cancel your account if they think you are scraping content from their site. LinkedIn **sued** ~100 individuals for scraping.
  - Don't steal data from a subscription service.
  - Computer Fraud and Abuse Act (CFAA) may apply even for "public" pages!

#### Let's scrape <u>CS course info</u>:



### Index page



From the index page, we must scrape each course's:

- Course numbers
- Course title
- URL for course details

Then we'll scrape each course's detail page for further info.

# Detail page



From the detail page, we wish to scrape:

- Quarter offered, time, instructor
- Prerequisites
- Description

### Recommended scraping tools

- Python
- requests Python package to fetch web pages using HTTP
  - Recall that we also can use this library to get data from REST data APIs.
- beautifulsoup4 Python package to parse HTML pages
  - Will be able to pick out elements of the page using CSS selectors.
- Code for the McCormick course scraping example is at:
  - <a href="https://github.com/starzia/webscraping-examples">https://github.com/starzia/webscraping-examples</a>
  - 51 lines of Python code.

#### Web scraping example: USMS Swim team stats

- A slightly more complex example requiring 146 lines of Python code.
- <a href="https://github.com/starzia/usms-scrape">https://github.com/starzia/usms-scrape</a>
- Downloads a <u>CSV swim team roster</u>.
- Then scrapes <u>swim meet results</u> for each swimmer.
  - Uses **lxml** package and **XPath** syntax to pick out HTML nodes with relevant data.
- Reorganizes and prints the data as shown →

```
200 IM
   2:09.03 (39) Patrick Lahey
   2:14.23 (23) Daniel Melnick
   2:23.51 (41) David Corr
   2:25.49 (24) William Harris
   2:26.64 (64) Phil Dodson
   2:34.82 (29) Ruby Krueger
   2:41.78 (56) Bill Avery
   2:43.67 (41) Nichelle Pajeau
   2:46.75 (33) Stephen Tarzia
   2:46.94 (57) James Bychowski
   3:02.71 (66) Joe Carroll
   3:15.06 (42) Elizabeth Gjerde
           (61) Kathleen Roderer
   3:27.75 (60) Holly Sequine
   3:31.13 (58) Dana Deane
   3:50.97 (65) Robert Hertel
   4:36.68 (59) Sarah Fodor
```

### A very complex web scraping example

- <a href="https://github.com/starzia/bibliometrics">https://github.com/starzia/bibliometrics</a>
- Gathers data for an analysis of the "research impact" of the top ten US business schools.
- Scrapes faculty directory pages for 10 universities, eg: <u>K, H, S, S2</u>
  - Also get lists of publications, like: K, H, S
- Also scrapes <u>Google Scholar search results</u> by using Selenium to control Firefox. Using a full browser (instead of *requests* lib) allows:
  - Scraping of pages that require Javascript
  - A human attendant can "babysit" the program and solve CAPTCHAs when prompted.



# Web scraping overview

- Find the pages that hold the data
  - Often you'll start with a hard-coded index page and then programmatically look for links to additional pages.
  - Download the HTML (using Python requests package, for example)
- Extract the data from a given page:
  - Web pages are usually generated by a computer program, so the data will always be found within a certain pattern of HTML code.
- Locations in the HTML document can be specified in one of two ways:
  - CSS selectors used be web page designers in Cascading Style Sheets to specify which fonts/colors/etc. (styles) apply to which parts of the page.
    - Python <u>beautifulsoup4</u> package uses CSS selectors
  - **XPath queries** used for finding elements in an XML document (remember that HTML is a type of XML).
    - Python <a href="https://example.com/lxml">lxml</a> package used XPath
  - CSS selector and XPath syntax can be tested in the Chrome developer tools.

### CSS selectors pick out a set of HTML elements

- Tag type:
  - 'a' matches <a href="http://link.com">hello</a>
- Class name:
  - '.time' or 'td.time' matches 23
- Id name:
  - '#best' or 'td#best' matches 103
- Attribute values :
  - 'a[href="http://link.com"]'
    matches <a href="http://link.com">hello</a> but not
    <a>this</a>

### Combining CSS Selectors

- Descendant: [space]
  - 'table td' matches
     athistd>
- Direct child: >
  - 'tr > td' also matches above
- General siblings: ~
  - 'td ~ td' also matches above
- Adjacent siblings: +

## Recap (part 1): Web Scraping

- Data can be scraped from web pages by writing code that:
  - Downloads HTML pages
  - Picks out data elements using CSS selectors (or XPath)
  - Also pick out links to pages with additional data
  - Repeat!

#### Intermission



"Bad news, captain. The ship's computer has been sharing all our personal data with the Romulans."

#### Real world data is often messy

- Data entered manually can have typographic errors and use inconsistent naming conventions.
- Different data sources can us different naming conventions.
- Buggy computer programs can produce bad results.
  - Program may not behave well when data is missing.
  - Data overflow and type conversion can cause problems.
- Temporary sensor malfunction can lead to a bogus measurement.
- Numbers may have different units
  - dollars vs millions of dollars
     fraction vs percent
- Data can be missing due to an interrupted data import.
- Data may be scanned from paper forms (leading to OCR errors).

# Optical Character Recognition (OCR)

- OCR extracts text from scanned images of text.
- Adobe Acrobat Pro has OCR.
- Many scanners and all-in-one printers come with OCR software.
- Python Tesseract is opensource, state-of-the-art OCR.
- Text is easy to capture accurately, but punctuation and formatting is difficult.
- Handwriting can also be recognized, with less accuracy.



# Handwriting OCR

- Obviously, more difficult and error-prone than typed text.
- "Letter boxes" can help both human and OCR legibility.
- Checkboxes can be difficult to scan due to stray marks
  - A check mark or X mark may "spill over" into another box.
  - This may lead to multiple or zero selections instead of one.



#### Extract Transform Load (ETL)

- ETL programs move data between different storage media.
- For example:
  - Import data from data files into a database.
  - Move from one database to another.
- ETL script can help deal with messy data by including:
  - List of validation rules to identify problematic data
  - List of behaviors to correct or discard problematic data
  - Transformations to apply to the input data before inserting into DB
- Specialized ETL tools exist, like MS SQL Server Integration Services
- ETL also be done with general-purpose data processing tools:
  - Plain Python, Pandas, PySpark

#### How to recognize bad data?

#### No simple or easy answer.

- Start with good documentation. Know what each column means.
- Define a very strict schema and look for warnings when importing
  - Define columns as **NOT NULL**, when appropriate, to prevent incomplete data.
  - Define columns with numeric types rather than text if you expect numbers.
  - Define foreign keys if you expect columns to match between tables.
- Look at summary statistics after data is imported:

```
SELECT MIN(col), MAX(col), AVG(col)...
```

- If min and max values are unexpected, then look for outliers by sorting according to that column.
- In R, use the **summary** (...) command on a data frame.
- In Pandas (Python), use the describe () method on a data frame.

## Debugging a data import

- If data fails to import completely, try loading it into a temporary text table
  - Drop keys and use large text types for every column
- Query the text table to look for unexpected values in the source data

This table has strict constraints on what kind of data can be inserted:

```
CREATE TABLE person (
SSN int NOT NULL,
firstName varchar(30) NOT NULL,
lastName varchar(30) NOT NULL,
birthDate char(10) NOT NULL,
PRIMARY KEY (SSN)
);
```

This temporary table relaxes those constraints:

```
CREATE TABLE _import_person (
   SSN varchar(1000) NOT NULL,
   firstName varchar(1000) NOT NULL,
   lastName varchar(1000) NOT NULL,
   birthDate varchar(1000) NOT NULL,
);
```

## Named Entity Matching

- In real-world data, people, companies, products, etc., all can be represented with variations of their name:
  - Eleanor Roosevelt
  - E. Roosevelt
  - Roosevelt, Eleanor
  - Mrs. Roosevelt

- Northwestern Univ.
- NWU
- Northwestern
- Northwestern
   University

- Apple iPhone 6S
- iPhone 6 S 32 GB Space Gray
- A1633

- When combining data from multiple sources, we need **fuzzy** matching to join according to text fields.
  - Look for *approximate* text matches.
  - Humans are good at this, but it's difficult to automate.

### SQL synonym table

- A simple solution is to create a *synonym table* to list all variations of names.
- Use the synonym table as a linking table in a four-way join.
- For example, if *product* and *product\_details* use different variations of the product name:

```
SELECT * FROM product
INNER JOIN product_synonym AS n1
   ON product.name=n1.name
INNER JOIN product_synonym AS n2
   ON n1.id=n2.id
INNER JOIN product_details
   ON n2.name=product details.name;
```

| product_synonym |                      |
|-----------------|----------------------|
| product_id      | name                 |
| 1               | Apple iPhone 6s      |
| 1               | iPhone 6 S           |
| 1               | iPhone 6S 32 GB      |
| 1               | iPhone 6S Space Gray |
| 1               | iPhone 6S Gold       |
| 2               | Google Nexus 6P      |
| 2               | Nexus 6P             |
| 2               | Nexus 6-P            |

## Shortcomings of synonym table

- Creating the synonym table manually is slow
  - Cannot be scaled to many thousands of rows
- Synonym table must be updated every time new data arrives.
- However, we may try to apply Machine Learning to automatically generate synonym tables for named entity matching...

## Data cleaning tools

- You supply a CSV file, and the tool lets you quickly match synonyms
- <a href="http://dedupe.io">https://dedupe.io</a> <a href="http://dedupe.io">https://youtu.be/9wEA90Fz-lU?t=109</a>
  - Uses machine learning.
- <a href="http://openrefine.org/">https://openrefine.org/</a> <a href="https://youtu.be/B70J">https://youtu.be/B70J</a> H zAWM
  - Lets you quickly define matching rules.
- Or, develop your own tools (described next)

### Text similarity metrics

- An alternative to ML is a graph partitioning approach
- Use text similarity metrics to build a name similarity graph.
- For example, the **edit distance** (or Levenshtein distance) is the minimum number of single-character changes needed to make one phrase equal to another.
  - Edit distance between "school" and "college" is 7 because you have to delete an *s*, *h*, *o*, and add "*lege*"
  - Edit distance between "iPhone 6S" and "iPhone 6-S" is just one (delete the hyphen)
  - Edit distance between "iPhone 5" and "iPhone 6" is also just one, but these are different phone models.
  - Edit distance is useful, but cannot be used blindly.

#### Amazon Mechanical Turk

- A crowdsourcing marketplace.
- Allows you to pay a few cents for a human to answer a short question.
- Useful for small, repetitive problems requiring human intelligence, where simple rules or even Machine Learning would not work.
- Example: pick out the year of graduation from professors' CVs:
  - Each CV is a PDF document (an academic resumé).
  - These documents all have different formats.
  - It's difficult for a computer to reliably parse them, but easy for a person.

#### **JILLIAN CHOWN**

Kellogg School of Management, Northwestern University 2211 Campus Drive, Rm 5165, Evanston, IL 60208 jillian.chown@kellogg.northwestern.edu +1 (224) 714-8277

#### ACADEMIC APPOINTMENTS

#### Kellogg School of Management, Northwestern University

Evanston, IL

Assistant Professor of Management and Organizations (2016-present) Donald P. Jacobs Scholar (2016/17)

#### **EDUCATION**

#### Rotman School of Management, University of Toronto

Toronto, ON

PhD, Strategic Managemen (2016)

- Dissertation: Professions, Organizations and the Challenges of Change: A Multi-Method Exploration in the Context of Healthcare Delivery
- Committee: Sarah Kaplan (chair), Anita McGahan, Brian Golden, Nicola Lacetera

Masters of Business Administration (2006)

Top academic standing for Full Time MBA Core

#### **University of Toronto**

Toronto, ON

Bachelor of Applied Science - Engineering Science (2004)

#### **Torben Gustav Andersen**

Department of Finance Kellogg School of Management Northwestern University 2211 Campus Drive Evanston, Illinois 60208, USA

Tel: (847) 467-1285

E-Mail: t-andersen@kellogg.northwestern.edu

**Personal Information** Marital status: Married; three children.

Citizenship: Denmark; U.S. Permanent Resident.

Education Ph. D. in Economics, Yale University, New Haven, 1992.

Master's Degree, Science, Economics and Mathematics (Cand Scient Oecon).

University of Aarhus, Denmark, 1985.

#### **Academic Positions:**

2015-2017 Chair, Department of Finance, Kellogg School of Management, Northwestern University.

2000-present: Nathan S. and Mary P. Sharp Distinguished Professor of Finance, Department of Finance,

Kellogg School of Management, Northwestern University.

2011-2017 Member of Board, Foundation for Advancement of Research in Financial Economics

2013-present: Fellow of the *Society for Financial Econometrics*, *SoFiE*.

2008-present: Fellow of the *Econometric Society*.

2008-present: Research Affiliate of *The Volatility Institute*, Stern School of Business, New York University.

#### MTurk use cases

- Parsing data in unstructured forms
- Poorly-scanned documents
- Transcribing audio
- Photo identification.
- Generating training data for Machine Learning.

• MTurk tasks can be created by non-programmers, but there is also an advanced API to setup complex tasks.



#### Named after a fake chess-playing automaton (1770)



#### When to trust human input

Humans are unrealiable, so how can we make MTurk results more trustworthy?

- Use only experienced and highly-rated MTurk workers.
- Use majority voting:
  - Give the same task to three different workers
  - If at least two of the three give the same answer, then trust it.
- Manually or programmatically check the results, if possible
  - Sometimes it's easier to check the answer than to generate it.

# Crowdsourced data gathering & processing

- Crowdsourcing is using the power of online crowds to do some work.
- MTurk is kind of an example, but usually "crowdsourcing" refers to unpaid work.

#### Examples:

- ProPublica: Free the Files (2012) https://youtu.be/tTlA\_TJHq5o?t=198
- iNaturalist
- National Gun Violence Memorial https://youtu.be/UWzWwT546EY

#### Additional resources on Data Cleaning

- https://github.com/Quartz/bad-data-guide
- <a href="https://www.coursera.org/learn/data-cleaning">https://www.coursera.org/learn/data-cleaning</a>

### Recap (part 2): Messy Data

- Data can have missing, incorrect, or inconsistent values for many reasons:
  - Pulled from different sources with different naming or unit conventions
  - Paper scanning (OCR) errors
  - Human input errors
- Variety of tools are needed to deal with messy data:
  - Review summary statistics
  - Synonym tables
  - Named entity matching with ML (dedupe.io and Open Refine)
  - Crowdsourcing: MTurk, home-grown solutions
- Above all, don't blindly trust data you are given!