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Announcements
• Final project:
• Rubric was posted.
• Part 1 due tomorrow.

•HW5 due Friday.



Last Lecture: A Data Safari
• CSV files are common
•Geographic data uses special file formats (“shape files”)
• A data set might include many files (eg., Stanford dogs)
•Multiple tables can be distributed as a single SQLite database file
• REST APIs allow fetching of  data by providing query information in 

the URL (or in a POSTed JSON object).
• Return value is usually a JSON object.
• The data provider must provide a specification for the API, to tell users how 

to construct requests and how to interpret responses.



Web Scraping/Crawling
• Some data hosts have websites for humans to browse their data, but no 

clean way to programmatically access the data (no Data API).
• You could manually click through all the pages and copy the data, but 

this would be tedious. 
•Web scraping is writing a computer program to “crawl” through a 

website and get all the data you need.
•Warning: don’t violate a site’s terms of  service (more details)
• For example, Facebook will cancel your account if  they think you are scraping 

content from their site.  LinkedIn sued ~100 individuals for scraping.
• Don’t steal data from a subscription service.
• Computer Fraud and Abuse Act (CFAA) may apply even for “public” pages!

https://benbernardblog.com/web-scraping-and-crawling-are-perfectly-legal-right/


Let’s scrape CS course info:
O

ne
 in

de
x 

pa
ge

M
an

y 
de

ta
il 

pa
ge

s

https://www.mccormick.northwestern.edu/computer-science/courses/


Index page
From the index page, we must 
scrape each course’s:
• Course numbers
• Course title
• URL for course details

Then we’ll scrape each course’s 
detail page for further info.



Detail page
From the detail page, we wish to 
scrape:
•Quarter offered, time, instructor
• Prerequisites
•Description



Recommended scraping tools
• Python
• requests Python package to fetch web pages using HTTP
• Recall that we also can use this library to get data from REST data APIs.

• beautifulsoup4 Python package to parse HTML pages
• Will be able to pick out elements of  the page using CSS selectors.

• Code for the McCormick course scraping example is at:
• https://github.com/starzia/webscraping-examples
• 51 lines of Python code.

http://docs.python-requests.org/en/master/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://github.com/starzia/webscraping-examples


Web scraping example: USMS Swim team stats
• A slightly more complex example 

requiring 146 lines of  Python code.
• https://github.com/starzia/usms-

scrape
• Downloads a CSV swim team roster.
• Then scrapes swim meet results for 

each swimmer.
• Uses lxml package and XPath syntax to 

pick out HTML nodes with relevant data.
• Reorganizes and prints the data as 

shown →

200 IM
2:09.03 (39) Patrick Lahey
2:14.23 (23) Daniel Melnick
2:23.51 (41) David Corr
2:25.49 (24) William Harris
2:26.64 (64) Phil Dodson
2:34.82 (29) Ruby Krueger
2:41.78 (56) Bill Avery
2:43.67 (41) Nichelle Pajeau
2:46.75 (33) Stephen Tarzia
2:46.94 (57) James Bychowski
3:02.71 (66) Joe Carroll
3:15.06 (42) Elizabeth Gjerde
3:26.16 (61) Kathleen Roderer
3:27.75 (60) Holly Seguine
3:31.13 (58) Dana Deane
3:50.97 (65) Robert Hertel
4:36.68 (59) Sarah Fodor

https://github.com/starzia/usms-scrape
https://www.usms.org/reg/members/jqs/lmscmembers.php?LMSCID=21&RegYear=2019&oper=csv&_search=false&nd=1481396514766&rows=500&page=1&si%5Cdx=BinaryLastName+asc,+FirstName+asc,+RegDate&sord=asc&totalrows=-1
https://www.usms.org/comp/meets/indresults.php?SwimmerID=0AP1J&Sex=&StrokeID=0&Distance=&CourseID=0&lowage=&highage=


A very complex web scraping example
• https://github.com/starzia/bibliometrics
•Gathers data for an analysis of  the “research 

impact” of  the top ten US business schools.
• Scrapes faculty directory pages for 10 

universities, eg: K, H, S, S2
• Also get lists of  publications, like: K, H, S

• Also scrapes Google Scholar search results by 
using Selenium to control Firefox.  Using a 
full browser (instead of  requests lib) allows:
• Scraping of  pages that require Javascript
• A human attendant can “babysit” the program 

and solve CAPTCHAs when prompted.

https://github.com/starzia/bibliometrics
http://www.kellogg.northwestern.edu/faculty/advanced_search.aspx
http://www.hbs.edu/faculty/Pages/browse.aspx
https://www.gsb.stanford.edu/faculty-research/faculty
https://www.gsb.stanford.edu/faculty-research/faculty/academic-areas/accounting
https://www.kellogg.northwestern.edu/faculty/Directory/Blount_Sally/
https://www.hbs.edu/faculty/Pages/profile.aspx?facId=6628
https://www.gsb.stanford.edu/faculty-research/faculty/mary-e-barth
https://scholar.google.com/citations?user=ZE8Yo5gAAAAJ&hl=en


Web scraping overview
• Find the pages that hold the data
• Often you’ll start with a hard-coded index page and then programmatically look for links 

to additional pages.
• Download the HTML (using Python requests package, for example)

• Extract the data from a given page:
• Web pages are usually generated by a computer program, so the data will always be found 

within a certain pattern of  HTML code.
• Locations in the HTML document can be specified in one of  two ways:
• CSS selectors – used be web page designers in Cascading Style Sheets to specify 

which fonts/colors/etc. (styles) apply to which parts of  the page.
• Python beautifulsoup4 package uses CSS selectors

• XPath queries – used for finding elements in an XML document (remember 
that HTML is a type of  XML).
• Python lxml package used XPath

• CSS selector and XPath syntax can be tested in the Chrome developer tools.

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://lxml.de/index.html
https://yizeng.me/2014/03/23/evaluate-and-validate-xpath-css-selectors-in-chrome-developer-tools/


CSS selectors pick out a set of  HTML elements
• Tag type:
• ‘a’ matches <a href="http://link.com">hello</a>

• Class name:
• ‘.time’ or ‘td.time’ matches <td class="time">23</td>

• Id name:
• ‘#best’ or ‘td#best’ matches <td id="best">103</td>

• Attribute values :
• ‘a[href="http://link.com"]’

matches <a href="http://link.com">hello</a> but not 
<a>this</a>



Combining CSS Selectors
•Descendant: [space]
• ‘table td’ matches 
<table><tr><td>a</td>this<td>b</td></tr><table>

•Direct child: > 
• ‘tr > td’ also matches above

•General siblings: ~
• ‘td ~ td’ also matches above

• Adjacent siblings: +
• ‘p.heading + div.sec’ matches 
<div><p class="heading">hello</p>

<div class="sec">target</div></div>
References: https://developer.mozilla.org/en-US/docs/Learn/CSS/Introduction_to_CSS/Selectors https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors

https://developer.mozilla.org/en-US/docs/Learn/CSS/Introduction_to_CSS/Selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors


Recap (part 1): Web Scraping
•Data can be scraped from web pages by writing code that:
• Downloads HTML pages
• Picks out data elements using CSS selectors (or XPath)
• Also pick out links to pages with additional data
• Repeat!



Intermission

“Bad news, captain. The ship’s computer has been 
sharing all our personal data with the Romulans.”



Real world data is often messy
•Data entered manually can have typographic errors and use 

inconsistent naming conventions.
•Different data sources can us different naming conventions.
• Buggy computer programs can produce bad results.
• Program may not behave well when data is missing.
• Data overflow and type conversion can cause problems.

• Temporary sensor malfunction can lead to a bogus measurement.
•Numbers may have different units
• dollars vs millions of  dollars • fraction vs percent

•Data can be missing due to an interrupted data import.
•Data may be scanned from paper forms (leading to OCR errors).



Optical Character Recognition (OCR)
• OCR extracts text from scanned 

images of  text.
• Adobe Acrobat Pro has OCR.
• Many scanners and all-in-one 

printers come with OCR 
software.
• Python Tesseract is open-

source, state-of-the-art OCR.
• Text is easy to capture 

accurately, but punctuation and 
formatting is difficult.
• Handwriting can also be 

recognized, with less accuracy.

https://github.com/madmaze/pytesseract


Handwriting OCR
•Obviously, more difficult and 

error-prone than typed text.
• “Letter boxes” can help both 

human and OCR legibility.
• Checkboxes can be difficult to 

scan due to stray marks
• A check mark or X mark may “spill 

over” into another box.
• This may lead to multiple or zero 

selections instead of  one.



Extract Transform Load (ETL)
• ETL programs move data between different storage media.
• For example:
• Import data from data files into a database.
• Move from one database to another.

• ETL script can help deal with messy data by including:
• List of  validation rules to identify problematic data
• List of  behaviors to correct or discard problematic data
• Transformations to apply to the input data before inserting into DB

• Specialized ETL tools exist, like MS SQL Server Integration Services
• ETL also be done with general-purpose data processing tools:
• Plain Python, Pandas, PySpark



How to recognize bad data?
No simple or easy answer.
• Start with good documentation.  Know what each column means.
•Define a very strict schema and look for warnings when importing
• Define columns as NOT NULL, when appropriate, to prevent incomplete 

data.
• Define columns with numeric types rather than text if  you expect numbers.
• Define foreign keys if  you expect columns to match between tables.

• Look at summary statistics after data is imported:
SELECT MIN(col), MAX(col), AVG(col)…
• If  min and max values are unexpected, then look for outliers by sorting 

according to that column.
• In R, use the summary(…) command on a data frame.
• In Pandas (Python), use the describe() method on a data frame.



Debugging a data import
• If  data fails to import completely, try loading it into a temporary text table
• Drop keys and use large text types for every column

•Query the text table to look for unexpected values in the source data

This table has strict constraints on 
what kind of  data can be inserted:

CREATE TABLE person (
SSN int NOT NULL,
firstName varchar(30) NOT NULL,
lastName varchar(30) NOT NULL,
birthDate char(10) NOT NULL,
PRIMARY KEY (SSN)

);

This temporary table relaxes those 
constraints:

CREATE TABLE _import_person (
SSN varchar(1000) NOT NULL,
firstName varchar(1000) NOT NULL,
lastName varchar(1000) NOT NULL,
birthDate varchar(1000) NOT NULL,

);



Named Entity Matching
• In real-world data, people, companies, products, etc., all can be 

represented with variations of  their name:

•When combining data from multiple sources, we need fuzzy 
matching to join according to text fields.
• Look for approximate text matches.
• Humans are good at this, but it’s difficult to automate.

• Eleanor Roosevelt
• E. Roosevelt
• Roosevelt, Eleanor
• Mrs. Roosevelt

• Northwestern Univ.
• NWU
• Northwestern
• Northwestern 

University

• Apple iPhone 6S
• iPhone 6 S 32 GB Space Gray
• A1633



SQL synonym table
• A simple solution is to create a synonym table 

to list all variations of  names.
• Use the synonym table as a linking table in a 

four-way join.
• For example, if  product and product_details use 

different variations of  the product name:
SELECT * FROM product
INNER JOIN product_synonym AS n1
ON product.name=n1.name

INNER JOIN product_synonym AS n2
ON n1.id=n2.id

INNER JOIN product_details
ON n2.name=product_details.name;

product_synonym

product_id name
1 Apple iPhone 6s

1 iPhone 6 S

1 iPhone 6S 32 GB

1 iPhone 6S Space Gray

1 iPhone 6S Gold

2 Google Nexus 6P

2 Nexus 6P

2 Nexus 6-P



Shortcomings of  synonym table
• Creating the synonym table manually is slow
• Cannot be scaled to many thousands of  rows

• Synonym table must be updated every time new data arrives.
•However, we may try to apply Machine Learning to automatically 

generate synonym tables for named entity matching…



Data cleaning tools
• You supply a CSV file, and the tool lets you quickly match synonyms
• http://dedupe.io https://youtu.be/9wEA90Fz-lU?t=109
• Uses machine learning.

• http://openrefine.org/ https://youtu.be/B70J_H_zAWM
• Lets you quickly define matching rules.

•Or, develop your own tools (described next)

http://dedupe.io/
https://youtu.be/9wEA90Fz-lU?t=109
http://openrefine.org/
https://youtu.be/B70J_H_zAWM


Text similarity metrics
• An alternative to ML is a graph partitioning approach
• Use text similarity metrics to build a name similarity graph.
• For example, the edit distance (or Levenshtein distance) is the 

minimum number of  single-character changes needed to make one 
phrase equal to another.
• Edit distance between “school” and “college” is 7 because you have to delete 

an s, h, o, and add “lege”
• Edit distance between “iPhone 6S” and “iPhone 6-S” is just one

(delete the hyphen)
• Edit distance between “iPhone 5” and “iPhone 6” is also just one, but these 

are different phone models.
• Edit distance is useful, but cannot be used blindly.



Amazon Mechanical Turk
• A crowdsourcing marketplace.
• Allows you to pay a few cents for a human to answer a short question.
• Useful for small, repetitive problems requiring human intelligence, 

where simple rules or even Machine Learning would not work.
• Example: pick out the year of  graduation from professors’ CVs:
• Each CV is a PDF document (an academic resumé).
• These documents all have different formats.
• It’s difficult for a computer to reliably parse them, but easy for a person.

https://www.mturk.com/






MTurk use cases
• Parsing data in unstructured forms
• Poorly-scanned documents
• Transcribing audio
• Photo identification.
•Generating training data for Machine Learning.

•MTurk tasks can be created by non-programmers,
but there is also an advanced API to setup complex tasks.



Named after a fake chess-playing automaton (1770)



When to trust human input
Humans are unrealiable, so how can we make MTurk results more 
trustworthy?
• Use only experienced and highly-rated MTurk workers.
• Use majority voting:
• Give the same task to three different workers
• If  at least two of  the three give the same answer, then trust it.

•Manually or programmatically check the results, if  possible
• Sometimes it’s easier to check the answer than to generate it.



Crowdsourced data gathering & processing
• Crowdsourcing is using the power of  online crowds to do some work.
•MTurk is kind of  an example, but usually “crowdsourcing” refers to 

unpaid work.

Examples:
• ProPublica: Free the Files (2012) 

https://youtu.be/tTlA_TJHq5o?t=198
• iNaturalist
•National Gun Violence Memorial

https://youtu.be/UWzWwT546EY

https://projects.propublica.org/free-the-files/
https://youtu.be/tTlA_TJHq5o?t=198
https://www.inaturalist.org/projects/never-home-alone-the-wild-life-of-homes
http://gunmemorial.org/
https://youtu.be/UWzWwT546EY


Additional resources on Data Cleaning
• https://github.com/Quartz/bad-data-guide
• https://www.coursera.org/learn/data-cleaning

https://github.com/Quartz/bad-data-guide
https://www.coursera.org/learn/data-cleaning


Recap (part 2): Messy Data
•Data can have missing, incorrect, or inconsistent values for many 

reasons:
• Pulled from different sources with different naming or unit conventions
• Paper scanning (OCR) errors
• Human input errors

• Variety of  tools are needed to deal with messy data:
• Review summary statistics
• Synonym tables
• Named entity matching with ML (dedupe.io and Open Refine)
• Crowdsourcing: MTurk, home-grown solutions

• Above all, don’t blindly trust data you are given!


