
EECS-317 Data Management and
Information Processing

Lecture 12 –
Data files and Data APIs

Steve Tarzia
Spring 2019

Announcements
• Final project was posted.
• Part 1 due May 22nd (next Wednesday)
• Part 2 due June 12th (Wednesday of finals week)

• Another small homework will also be posted, covering MySQL and
indexes.

Last lecture: Defining databases and adding data
• Showed how introducing a single identifier column can make foreign

keys simpler.
• Looked in detail at an example needing two unique composite keys.
•Gave SQL syntax for creating and altering tables, and modifying data:
• CREATE TABLE …
• INSERT INTO …
• DELETE FROM …
• UPDATE …
• ALTER TABLE …

• Showed how SQL can be used inside of another language (like
Python) to build a database programmatically.

Data files
• A computer file is a container for data, and files have:
• A path (sequence of folders and a filename):
C:/Users/Steve/My Documents/my_data.csv
• A sequence of data bytes “in” the file (8 bits = 1 byte):
00010101 10110101 11010101 11010010 10100011 01010101 1111011 …
• Other metadata like permissions, depending on the filesystem type.

• Files are:
• Persistent, meaning that they remain in the computer after it is rebooted
• Sharable by other programs running on the computer

• Thus, files allow programs to
• Save their own data
• Share data with other programs on the same computer
• Transfer data between computers

• Databases are a more powerful alternative to plain files (“flat files”),
but they are not as portable.
• we still use flat files to exchange bulk data.

Standard data file formats
• The filename extension conventionally determines the file format.
• Tells us how to interpret the sequence of bits in the file

• Some file formats use human-readable ASCII or UTF-8 text.
• txt, csv, json, xml

• More efficient file formats represent data directly in binary form.
• mat (matlab), RData, sqlite, jpg, zip

• Some files use both formats in two stages:
• human-readable files that have been compressed to a binary format:
• xlsx, docx, csv.gz, txt.gz

Text encodings
•How do computers store text as ones and zeros?
• Early standard is called the American Standard Code for Information

Interchange (ASCII)
• Developed in the 1960s
• Uses seven bits per character,

but in practice each character is stored in 8 bits and the top bit is zero.
• ASCII text includes:
• Lowercase letters, uppercase letters, numbers, punctuation, other symbols
• Whitespace characters: space, tab, newline, carriage return
• Control characters: null, line feed, vertical tab, bell, escape, delete, backspace, etc.

Hexadecimal notation
• Computer programmers often use hex

notation to represent bit sequences.
•Hex takes four bits and represents them as one

of sixteen characters:
• 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E

• It’s the most convenient way for people to
represent bit sequences (data):
• binary 0010 1111 0001 0000 = 0x2F10
• “0x” prefix is sometimes added to clarify that what

follows is a hexadecimal number.
• ASCII “A” = 0x41 = 01000001 in binary

Decimal Bits Hex

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

“Hello!” in ASCII

H e l l o !

hex 48 65 6C 6C 6F 21
binary 0100 1000 0110 0101 0110 1100 0110 1100 0110 1111 0010 0001

The ASCII table tells us that the
letter “H” is represented by this
eight-character bit sequence.
“H” encodes to 01001000.
01001000 decodes to “H”.

The character “l” has the same
encoding whenever it appears in
ASCII text.

Encoding a text file
C:\Users\Steve\My Documents\tale of two cities.txt

42 6f 6f 6b 20 74 68 65 20 46 69 72 73 74 2d 2d |Book the First--|
52 65 63 61 6c 6c 65 64 20 74 6f 20 4c 69 66 65 |Recalled to Life|
0d 0a 0d 0a 0d 0a 0d 0a 0d 0a 49 2e 20 54 68 65 |..........I. The|
20 50 65 72 69 6f 64 0d 0a 0d 0a 0d 0a 49 74 20 | Period......It |
77 61 73 20 74 68 65 20 62 65 73 74 20 6f 66 20 |was the best of |
74 69 6d 65 73 2c 0d 0a 69 74 20 77 61 73 20 74 |times,..it was t|
68 65 20 77 6f 72 73 74 20 6f 66 20 74 69 6d 65 |he worst of time|
73 2c 0d 0a 69 74 20 77 61 73 20 74 68 65 20 61 |s,..it was the a|
67 65 20 6f 66 20 77 69 73 64 6f 6d 2c 0d 0a 69 |ge of wisdom,..i|
74 20 77 61 73 20 74 68 65 20 61 67 65 20 6f 66 |t was the age of|
20 66 6f 6f 6c 69 73 68 6e 65 73 73 2c 0d 0a 69 | foolishness,..i|
74 20 77 61 73 20 74 68 65 20 65 70 6f 63 68 20 |t was the epoch |
6f 66 20 62 65 6c 69 65 66 2c 0d 0a 69 74 20 77 |of belief,..it w|
61 73 20 74 68 65 20 65 70 6f 63 68 20 6f 66 20 |as the epoch of |
69 6e 63 72 65 64 75 6c 69 74 79 2c 0d 0a 69 74 |incredulity,..it|

Data bits in the the file,
shown in hex notation for brevity.
(from “hexdump -C” command)

Appearance in text editor

ASCII or UTF-8 encoding translates each
byte (or up to 4 bytes) to a character

What about other characters we might need?
• ¿Español?, 中文, Ελληνικά
•😀📟🍟⚽
•Different currency symbols
• Even American English uses “weird punctuation” sometimes.
• A single 8-bit byte will not be enough to store all the possible

characters.

UTF-8 to the rescue!
• UTF-8 is now the most common text encoding.
• The latest version includes 136,690 symbols, and more can be added.
• Can eventually be expanded to more than two million characters

• It’s a variable-length encoding
• Characters are represented with one, two, three, or four bytes.

• Backward-compatible with ASCII
• ASCII text is also valid UTF-8
• Previous version of Unicode (such as UTF-16) were not widely adopted due

to incompatibility with ASCII.

Variable length character encoding with UTF-8

1st byte 2nd byte 3rd byte 4th byte # of free bits
0... 7 (ASCII)
110. 10.. 11
1110 10.. 10.. 16
1111 0... 10.. 10.. 10.. 21

• Single-byte characters are identical to ASCII
• First byte tells you how many total bytes to expect
• Every “extra” byte starts with “10”
• If you start reading in the middle of a character you’ll know it.
• It’s very easy to know where each new character starts.

Comma Separated Values (CSV)
• CSV is a simple text format for storing tabular data (spreadsheets)
• Each row is represented on one line of text
• Columns are separated by commas
• Values can be enclosed in double quotes ("...") if necessary
• For example, if value includes comma or newline characters
• Double quotes within a text value must be “escaped” by using two double quotes

• Values can be empty by having nothing between the commas

NBA_player_of_the_week.csv viewed in Excel

NBA_player_of_the_week.csv viewed as text
PlayerID,TeamID,PositionID,First Name,Last Name,Seasons in League,Height ,Weight,Age
1,20,7,Micheal,Richardson,6,77,189,29
2,14,9,Derek,Smith,2,78,205,23
3,9,2,Calvin,Natt,5,79,220,28
4,15,1,Kareem,Abdul-Jabbar,15,80,225,37
5,2,8,Larry,Bird,5,81,220,28
6,32,9,Darrell,Griffith,4,82,190,26
7,11,7,Sleepy,Floyd,2,83,170,24
8,8,8,Mark,Aguirre,3,84,232,25
9,15,7,Magic,Johnson,5,85,255,25
10,1,8,Dominique,Wilkins,2,86,200,25
11,33,6,Tom,McMillen,9,87,215,32
12,6,9,Michael,Jordan,0,88,215,22
13,7,4,World,Free,9,89,185,31
14,10,7,Isiah,Thomas,3,90,180,23
15,18,6,Terry,Cummings,2,92,220,23
16,6,6,Orlando,Woolridge,3,94,215,25
17,30,1,Jack,Sikma,7,95,230,29
18,22,8,Bernard,King,7,96,205,28
19,25,1,Moses,Malone,8,97,215,29
20,9,8,Alex,English,8,98,190,31
21,26,6,Larry,Nance,3,99,205,26
22,13,1,Herb,Williams,4,101,242,28
23,25,6,Charles,Barkley,1,102,252,23
24,32,8,Adrian,Dantley,9,85,208,30
25,18,9,Sidney,Moncrief,6,89,180,28
26,27,9,Clyde,Drexler,2,95,210,23
27,29,9,Alvin,Robertson,1,98,185,23
28,33,1,Jeff,Ruland,4,99,240,27

CSV files represent a single table
• Relational (SQL) models for complex data involve several tables, so you need several

CSV files to represent complex data.
• Groups of CSV files are often used for data exchange
• The CSV file can have column names in the first row
• However, other important schema information is not stored in CSV:
• Data types
• Primary keys
• Unique key constraints
• Foreign key relationships
• Indexes

• The above metadata can be included in an SQL script that accompanies the CSV
files, or in a human-readable document.
• Each DBMS also has its own proprietary format for exchanging databases, including

both the data and metadata.
• SQLite is the simplest. Its just the *.sqlite file.

SQL files for data exchange
• SQL database dumps are also sometimes used to exchange data.
• These are text files with a listing of all the SQL commands needed to re-

generate the database.
• Includes CREATE TABLE commands and INSERT commands.
• Running these commands on a fresh/empty database will create a copy of the

database that was originally dumped.
• For example:
• mysqldump commandline tool for MySQL
• .dump command in SQLite
• See the .SQL files in Canvas in the “sqlite databases” folder.

• Disadvantages of SQL as a data exchange format:
• SQL language dialects differ, so it may not be compatible with all DBMSs
• It’s not very space efficient (lots of SQL syntax is included).

Semi-structured data
• We often must represent complex data in a single file and in a standard way.
• JSON and XML files store semi-structured data
• Not limited to two dimensions like CSV files
• Data is organized in a tree-like/hierarchical way, where any item can have

more details below it.
• However, unlike a relational database, there is no clear pre-defined structure

or schema for the data.
• The data defines its own structure.

• Compared to CSV, it’s more difficult to read and is more prone to errors
because data elements can be missing.

JSON
• JavaScript Object Notation

• Used in many web applications and data APIs
• Allows an arbitrary amount of nesting
• Spaces are ignored, except within quotes.

Basic components are:

• [] for ordered lists
• Items are separated by commas
• Items can be any JSON

• {} for unordered dictionaries/objects
• Key: value pairs are separated by commas
• Keys must be strings (text)
• Values can be any JSON

• Numbers, true, false, null
• Strings (text) in double quotes "..."

[
{
"name": "John",
"age": 30,
"cars":

["Ford", "BMW", "Fiat"]
},
{
"name": "Alicia",
"age": 32,
"hometown": "Seattle"

}
]

JSON data graph example
[
{
"name": "John",
"age": 30,
"cars":

["Ford", "BMW", "Fiat"]
},
{
"name": "Alicia",
"age": 32,
"hometown": "Seattle"

}
]

XML
• eXtensible Markup Language
• Older than JSON, and now is less common than JSON because

many people think XML is unnecessarily complicated.
• HTML is an XML document that defines a web page.

Basic components are:

• Text
• Tags

• <tagname>…</tagname> or just <tagname>
• Have a name, and have XML inside
• Each start tag has a corresponding end tag, but only if it has data

inside.

• Attributes
• <tag attr="value" …>
• Appear within tags
• Attribute name and value must be text
• Tag can have multiple attributes, but each must have a unique

name

<people>

<person name="John"

age="30">

<cars>

<car>Ford</car>

<car>BMW</car>

<car>Fiat</car>

</cars>

</person>

<person name="Alicia"

age="32">

<hometown city="Seattle">

</person>

</people>

XML data graph example
<people>

<person name="John"

age="30">

<cars>

<car>Ford</car>

<car>BMW</car>

<car>Fiat</car>

</cars>

</person>

<person name="Alicia"

age="32">

<hometown
city="Seattle">

</person>

</people>

Comparison of data exchange formats
Proprietary SQL CSV JSON XML

Space efficiency Compact binary
representation

Bloated text with
SQL syntax

Text with little
extra syntax

Text with little
extra syntax

Text with verbose
tag names

Compatibility
(readable by many)

Must use specific
program/DB

Each DBMS has its
own SQL dialect

Standardized
format

Standardized
format

Standardized
format

Expressibility
(data complexity)

Complex
relationships

Complex
relationships

Represents a single
table

Complex
relationships

Complex
relationships

Popularity Rare Rare Common Common Less common

Flexibility/rigidity SQL DBs are have a clearly defined
schema that must be obeyed.

Rows all have same
columns.

Data and schema are defined together.
Different elements can have different

attributes.

• Text-based file formats (SQL, CSV, JSON, XML) are not space efficient, but text files can be compressed using
general-purpose file compression utilities like gzip to alleviate the problem (eg., my_data.json.gz)

1st half recap
•Data is exchanged by data files (arrays of bits, zeros and ones).
• Several file formats are common:
• CSV, XML, JSON, and less commonly SQL and proprietary formats.

•Many of these formats are text files with special syntax.
• Text files represent each character with a certain bit sequence.
• ASCII uses 8 bits (one byte) for each character
• UTF-8 uses 1-4 bytes for each character, is backward-compatible with ASCII

• CSV files store just one table & can be imported into SQL easily.
• JSON and XML files represent data with complex, nested relationships
• However, no schema is defined ahead of time.
• Data itself gives the structured (hence, we call it semi-structured data).
• Python and R scripts can easily load these files.

Bulk vs. online data sources
• So far, we have assumed that we can bulk export and import data.
• In other words, we can get easily get all the data in one download.
• Data is exchanged as CSV, JSON, XML, or SQL files:
• Dump file(s) from origin database
• Load file(s) into the destination database

•However, some data sources do not allow bulk access, and instead
provide some kind of web-based access to the data:
• A data API may be provided for users to query the data programmatically.
• Data may be presented in web page for human reading, not intended for

programmatic access.

Why is bulk access sometimes not an option?
• If the data set is huge, user many not want to download the entire set.
• Instead, let the data remain in the cloud (on some servers on the Internet),

and let users query for their desired data as needed.
•Data may be constantly changing
• Bulk data files would quickly get “out of date”
• Instead, provide users some kind of access to a live database.

• Provider may not want general public to have the full data set.
• For example, Weather Underground lets users get some data, but does not

want competing websites to copy all their weather forecasts.

Why isn’t SQL used to access cloud data?
• Actually, relational (SQL) databases can be data-sharing platforms.
• Remember that many users can connect to one SQL database and run queries.

• For example, students in this class accessed a shared MySQL server to
access the large Yelp and Stack Overflow databases.
• murphy DB server is on campus, not “in the cloud,” but it could have been.

• A data provider could open up its DB servers for public access
(without any secret username and password required).
• In practice, I have never seen this done. Why not?
• DB servers may not be robust enough for public access.

One poorly written query can slow down the system for everyone.
• Data users may not know SQL.
• Database may not support SQL, like MongoDB, DynamoDB, etc.

Data API
• API means Application Programming Interface
• It’s a very generic term that is applied to different types of interfaces:
• A software library’s API is the list of public functions provided to operate it.

In other words, the API defines how your software can use the library.
• A web service’s API defines how your software can interact with a remote

server to perform various tasks. The API defines what network messages
should be passed between the client and server machines.

• REST APIs are a type of web service API.
• REST = REpresentational State Transfer (bad name!)
• A REST API’s requests for data look very much like a web browser’s requests

for html pages and images, so it’s familiar and attractive to software engineers.
• REST APIs are now standard way to provide data access to the public.

Hyper Text Transport Protocol (HTTP)

•HTTP is a client-server data exchange protocol
• It was invented for web browsers to fetch pages from webservers

• Request specifies:
• A human-readable header with: URL, method, (plus some optional headers)
• An optional body, storing raw data (bytes).

• Response includes:
• A human-readable header with response code, (plus some optional headers)
• An optional body

Request:

From
https://www.ntu.edu.sg/home/ehchua/pro
gramming/webprogramming/HTTP_Basics.
html

(optional for GET)

Response:

https://www.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html

HTTP methods and responses
Methods

•GET: to request a data
• POST: to post data to the server,

and perhaps get data back, too.

And less commonly:
• PUT: to create a new document on the server.
• DELETE: to delete a document.

• HEAD: like GET, but just return headers

Response codes

• 200 OK: success
• 301 Moved Permanently:

redirects to another URL
• 403 Forbidden: lack

permission
• 404 Not Found: URL is bad
• 500 Internal Server Error
… and many more

A weather information service (REST API)
HTTP Request
GET
http://api.wthr.com/[key]/fore
cast?location=San+Francisco
HTTP/1.1
Accept-Encoding: gzip
Cache-Control: no-cache
Connection: keep-alive

HTTP Response
HTTP/1.1 200 OK
Content-Length: 2102
Content-Type:
application/json

{ "wind_dir": "NNW",
"wind_degrees": 346,
"wind_mph": 22.0,
"feelslike_f": "66.3",
"feelslike_c": "19.1",
"visibility_mi": "10.0",
"UV": "5", … }

REST API example
Twitter REST API documentation
• https://developer.twitter.com/en/docs/tweets/post-and-engage/api-

reference/post-statuses-update

Discourse web forum public API documentation:
• https://docs.discourse.org
Output examples:
• https://meta.discourse.org/categories.json
• https://meta.discourse.org/latest.json?category=7
• https://meta.discourse.org/t/3423.json (requires authentication)

https://developer.twitter.com/en/docs/tweets/post-and-engage/api-reference/post-statuses-update
https://docs.discourse.org/
https://meta.discourse.org/categories.json
https://meta.discourse.org/latest.json?category=7
https://meta.discourse.org/t/3423.json

Inputs and outputs of REST APIs
Request Inputs
• Choice of Method:
• GET for reading data
• POST/PUT/DELETE for editing

• URL
• Usually identifies the type of request, but

may also supply parameters:
GET /tweets/connor4real

• Query parameters after the main URL
• Written after a “?” character.

GET /search?startDate=2018-10-
10&search=best+restaurant&api_key=3iur2
0du9302o3i0d

• Body
• Usually form-encoded or JSON

Response Outputs
• Status code
• 200, 404, 403, etc.

• Body
• Usually JSON encoded

• Many APIs require that you
provide an API key or access
token somewhere your
request.
• This is like a password that

identifies you to the service.

REST APIs in Python
• Simplest option is to use requests library:
• First, “pip install requests”, then:

http://docs.python-requests.org/en/master/

2nd half recap
• Bulk access to data is simple, not always possible
• Data may be too big, dynamic, or guarded by the owner

•Data is often exposed to users through data APIs, which allow users
to request pieces of the data. In particular:
• REST APIs use HTTP requests to get data from remote servers.
• This involves web requests that return JSON data instead of HTML pages.

