
EECS-317 Data Management and
Information Processing

Lecture 11 –
Defining Databases
and Adding Data

Steve Tarzia
Spring 2019

Announcements
•HW4 is due on Monday.

Movie Theater

Composite Primary Keys
• Primary Keys uniquely identify rows
• Used as indexes to find a row of interest
• Prevent duplication

•Often we need more than one column to uniquely identify rows
• Eg., a Screen is uniquely identified by theaterId and screenNumber.
• theaterId alone cannot be a primary key because it’s OK for multiple screens

to exist at the same theater, as long as they have different screenNumber.
• screenNumber alone cannot be a primary key because different theaters can

use the same screen numbers (1, 2, 3 …).
•However, composite primary keys make foreign keys and parent-child

relationships messy.

Adding a ScreenId and MovieId simplifies the schema.
Showing table becomes smaller and JOINs are simpler

Non-primary/Unique Keys
•When a table is a parent, it is common to create a meaningless “ID”

column for the primary key, then add a non-primary composite key to
enforce the integrity constraint.
• For example, in the movie theater example:
• movieId is meaningless, but it is a convenient way for other tables to refer to

movies in foreign keys.
• add a unique key on (name, year) to prevent two instances of the same movie
• Showing table can have just a single column movieId as a foreign key instead

of two columns (name, year).

Unique Keys
• Unique keys are also sometimes needed when you want to add

additional constraints beyond those enforced by the primary key.
• In the Music Festival example we needed both:
• primary key (time, artist)
• an artist cannot play on two Stages the same time

• unique key (time, stage)
• a stage cannot host two Artists at the same time

Primary key (time, artist)

• This unique key prevents
an artist from being on
two stages at the same
time
• The two crossed-out rows

are not allowed because
they duplicate a previous
(time, artist) combination.

Unique key (time, stage)

• This unique key prevents
a stage from being used
by two artists at the same
time
• The two crossed-out rows

are not allowed because
they duplicate a previous
(time, stage) combination.

Why not make a key on a single column?

•Key (artist) would prevent
an artist from performing
twice (even at different
times)
•Key (stage) would prevent

a stage from ever being
used twice.
•Key (time) would prevent

two artists from
performing at the same
time (on different stages).

Modifying SQL databases
•Define tables
• Add rows to tables
•Delete rows from tables
• Update columns in a row
• Alter tables by adding or

removing:
• Columns
• Indexes
• Foreign keys

•… and much more

• CREATE TABLE …
• INSERT INTO …
• DELETE FROM …
• UPDATE …
• ALTER TABLE …

I’ll be showing the SQLite dialect
in these slides. For the final
project, look up the detailed syntax
online:
https://sqlite.org/lang.html

https://sqlite.org/lang.html

Deleting rows
• DELETE command deletes rows in a table matching some criterion.
• Very similar to the SELECT statements you’re familiar with.
• Just replace SELECT with DELETE and don’t specify any columns
• This deletes all the rows in the Classes table for classes in a certain

room:
DELETE FROM Classes WHERE ClassRoomID=12;

• If you don’t include a WHERE clause, all the rows in that tables will
be deleted: 🚷😰
DELETE FROM Classes;

• To be safe, run a SELECT query first to see what will be deleted:
SELECT * FROM Classes WHERE ClassRoomID=12;

Foreign Keys affect deletions
• In the SchoolScheduling database, there is a foreign key in the Classes

table which refers to the Class_Rooms table.
• What happens if we try to delete a classroom that has several associated

classes?
• If you try to delete a row that is a parent to another row there are

several possible results, depending on the particular foreign key
settings:
• RESTRICT is the default behavior it it would block the deletion
• You would have to delete the classes first, then the classrooms

• CASCADE causes the child rows to be deleted as well
• Classes would be deleted

• SET NULL causes the child rows to have the column set to null
• Classes would remain, but with a NULL ClassRoomId

Updating rows
• UPDATE command is used to change one or more columns in rows

matching some criterion.
UPDATE Departments SET DeptName="Social Studies"
WHERE DeptName="History";

• Just like DELETE, a single UPDATE command can affect many rows
and it can use subqueries:
UPDATE Students SET StudMajor=
(SELECT MajorID FROM Majors WHERE Major="English");

• Can also refer to existing column values and use math functions:
UPDATE Student_Schedules SET Grade=Grade+5
WHERE ClassID=1500;

Updating multiple columns
• Use a comma-separated list to update multiple columns at once:

UPDATE my_table
SET column1=value1,

column2=value2,
column3=value3

WHERE id=123;

Inserting new rows
• INSERT command creates one row with the column values specified.
• List the column values in same order that the columns were defined:

INSERT INTO Buildings VALUES ("FD", "Ford", 5, 1, 0);

•Or, explicitly list the columns being set (this is more clear):
INSERT INTO Buildings (BuildingName, BuildingCode,

NumberOfFloors, ElevatorAccess, SiteParkingAvailable)
VALUES ("Ford", "FD", 5, 1, 0);

• Unspecified columns will get the default value specified when the table
was created (more on this later).

Bulk loading data
Three options for inserting lots of rows:
1. Write code in a programming language like R or Python to read the

source data and run lots of INSERT statements or one really big
INSERT statement:

INSERT INTO animals VALUES (1, "cat", 5), (2, "dog", 2),
(3, "mouse", 9), (4, "rat", 3) …

2. Import a CSV file:
• CSV (Comma Separated Values) is a very simple, standard spreadsheet

format.
• Exact import steps are different for each DBMS.
• In DB Browser for SQLite use File à Import à Table from CSV file

3. Use an ETL software package (Extract, Transform, Load)

Creating tables
• CREATE TABLE command defines:
• Table name
• Column names
• Column types (int, float, text, etc.)
• Whether columns are optional or required (NOT NULL)
• Primary key
• Foreign keys
• Unique keys
• Indexes (non-unique keys)

• In other words, everything that we drew in the data model diagrams

CREATE TABLE Syntax examples
from SchoolScheduling.sqlite

CREATE TABLE Buildings (

BuildingCode nvarchar(3) NOT NULL,

BuildingName nvarchar(25),

NumberOfFloors smallint,

ElevatorAccess bit NOT NULL DEFAULT 0,

SiteParkingAvailable bit NOT NULL DEFAULT 0,

PRIMARY KEY (BuildingCode)

);

Text with at most 25 characters

Columns

Required column, not optional

Column cannot be NULL, but it will take a value
of zero if none is specified.

Table name

Each column has a data type, like nvarchar(3) or smallint

CREATE TABLE Subjects (
SubjectID int NOT NULL DEFAULT 0 ,
CategoryID nvarchar (10) NULL

REFERENCES Categories(CategoryID),
SubjectCode nvarchar (8) NULL ,
SubjectName nvarchar (50) NULL ,
SubjectPreReq nvarchar (8) NULL DEFAULT NULL

REFERENCES Subjects(SubjectCode),
SubjectDescription text NULL ,
SubjectEstClassSize smallint NOT NULL DEFAULT 0,
PRIMARY KEY (SubjectID),
UNIQUE (SubjectCode)

);

Foreign keys

CREATE TABLE syntax diagram

column-def:

column-constraint: table-constraint:

Using SQLite within Python
• https://docs.python.org/2/library/sqlite3.html
• Can use similar syntax to connect to MySQL, etc.

Also possible to use SQL within R or practically any other language:
• https://db.rstudio.com/databases/sqlite/

https://docs.python.org/2/library/sqlite3.html
https://db.rstudio.com/databases/sqlite/

Debugging a data import
• If data fails to import completely, try loading it into a temporary text table
• Don’t enforce key constraints and use large text types for every column

•Query the text table to look for unexpected values in the source data

This table has strict constraints on
what kind of data can be inserted:

CREATE TABLE person (
SSN int NOT NULL,
firstName varchar(30) NOT NULL,
lastName varchar(30) NOT NULL,
birthDate char(10) NOT NULL,
PRIMARY KEY (SSN)

);

This temporary table relaxes those
constraints:

CREATE TABLE _import_person (
SSN varchar(1000) NOT NULL,
firstName varchar(1000) NOT NULL,
lastName varchar(1000) NOT NULL,
birthDate varchar(1000) NOT NULL,

);

Using queries to fill tables
• You can transfer data from the temporary to permanent tables by

putting a SELECT in an INSERT query. For example:
• INSERT INTO orders (col1, col2)
SELECT col1, col2 FROM tmp_orders;

• Above query copies data from tmp_orders to orders table.

•Note that DB Browser to sqlite does not always work well with very
large CSV files. You may have to be import big files using the
commandline version of sqlite.

CSV data import demo
• LA County Restaurant Inspections and Violations
• https://www.kaggle.com/meganrisdal/la-county-restaurant-

inspections-and-violations/home

https://www.kaggle.com/meganrisdal/la-county-restaurant-inspections-and-violations/home

Recap
• Showed how introducing a single identifier column can make foreign

keys simpler.
• Looked in detail at an example needing two unique composite keys.
•Gave SQL syntax for creating and altering tables, and modifying data:
• CREATE TABLE …
• INSERT INTO …
• DELETE FROM …
• UPDATE …
• ALTER TABLE …

• Showed how SQL can be used inside of another language (like
Python) to build a database programmatically.

