
EECS-317 Data Management
and Information Processing

Lecture 9 – Midterm Review

Steve Tarzia
Spring 2019

Announcements
•Midterm is next class (Thurs May 2nd)
• Covers SQL queries.
• Lectures 1-6
• All homeworks

• Open book, open notes, but you cannot share any materials.
• Seats will be assigned.
• Ten page practice exam (with answers) is posted.
• Last year’s midterm (with answers) is also posted.
• Don’t forget to do the practice homeworks in Canvas.

Why use a relational database?
• Scalability – work with data larger than computer’s RAM
• Persistence – keep data around after your program finishes
• Indexing – efficiently sort & search along various dimensions
• Integrity – restrict data type, disallow duplicate entries
•Deduplication – save space, keep common data consistent
• Concurrency – multiple users or applications can read/write
• Security – different users can have access to specific data
• “Researchability” – SQL allows you to concisely express analysis

Sometimes we start with one redundant table and break it
down to reflect the logical components

staff

id name department building room faxNumber
11 Bob Industrial Eng. Tech 100 1-1000

20 Betsy Computer Sci. Ford 100 1-5003

21 Fran Industrial Eng. Tech 101 1-1000

22 Frank Chemistry Tech 102 1-1000

35 Sarah Physics Mudd 200 1-2005

40 Sam Materials Sci. Cook 10 1-3004

54 Pat Computer Sci. Ford 102 1-5003

This is called Normalization

staff

id name department
11 Bob 1

20 Betsy 2

21 Fran 1

22 Frank 4

35 Sarah 5

40 Sam 7

54 Pat 2

department

id name building
1 Industrial Eng. 1

2 Computer Sci. 2

4 Chemistry 1

5 Physics 4

7 Materials Sci. 5

building

id name faxNumber
1 Tech 1-1000

2 Ford 1-5003

4 Mudd 1-2005

5 Cook 1-3004

6 Garage 1-6001

• Removes redundancy
• Save space
• Edit values in one place, so duplicates don’t become inconsistent

• Tables can be populated separately
• But, you are adding a new id column for each table

Tables
• Represent objects, events, or relationships
• Each of its rows must be uniquely identifiable
• Has attributes that the DB will store in columns
• Can refer to rows in other tables

•Objects: people, places, or things
• Events: usually associated with a specific time. Can recur.
• Relationships: associations

Designing a set of tables is called data modelling, and it’s best learned by
example.

Basic SELECT Syntax

“table” can be:
• A single table
• Multiple tables JOINed together
• A subquery that returns a table

SELECT steps (abbreviated)

1. FROM chooses the table of interest
2. WHERE throws out irrelevant rows
3. GROUP BY identifies rows to combine
4. SELECT tells what values to return (allowing math and aggregation)
5. HAVING throws out irrelevant rows (after aggregation)
6. ORDER BY sorts
7. LIMIT throws out rows based on their position in the results

Each step gets closer to the specific result you want.

Integer vs. floating point division
• Computers store numbers in two basic ways:
• Integers are whole numbers (0, 3, -40,921)
• Floating Point numbers (floats) can be fractional (1.234, 0.0, -9.9×10-4)

•When doing arithmetic on two integers, an integer is always produced.
• 1+1 = 2, 2-1=1, 4*3=12, 13/4=3

•When doing arithmetic involving at least one float, a float is produced.
• 1.0 + 1.0 = 2.0, 1.5 * 2 = 3.0, 13/4.0=3.25

• Integer division is weird – it always rounds down: 2/3 = 0, -5/2 = -3
• Usually you need floating-point (not integer) division in your queries.
• Just precede the expression with a floating point operation to force the

division to be floating point: 1.0 * -5 / 2 = -2.5

Aggregation functions
• COUNT, SUM, MIN, MAX, AVG
• These can be used to print out values that depend on multiple rows.
• For example, how many ounces of ingredients are used?
• We have to add up the “Amount” from many rows to get this answer:
SELECT SUM(Amount) FROM Recipe_Ingredients

WHERE MeasureAmountID=1;
• (“ounce” corresponds to MeasureAmountID=1)

• GROUP BY causes aggregations to occur on subsets of rows, where rows
are grouped according to some rule.
• Each group contains rows having the same value for the grouping expression

SELECT SUM(Amount) FROM Recipe_Ingredients
GROUP BY MeasureAmountID;

• Same as above, but list amounts of all ingredients

GROUP_CONCAT() is another aggregator
• Concatenates non-null values, optionally with a separator string.
• Eg.: Print all the products in each category

SELECT CategoryDescription, GROUP_CONCAT(ProductName, ", ")
FROM Products NATURAL JOIN Categories GROUP BY CategoryID;

GROUP BY explained
• GROUP BY combines multiple rows into one row in the result.
• Rows with the same value for the grouping criterion are grouped.
• An aggregation function is usually applied.

SELECT CategoryID, COUNT(*) AS category_count,
MAX(RetailPrice) AS most_expensive_price

FROM Products GROUP BY CategoryID;

Subqueries
• Any single value, list of values, or table can be replaced by a subquery
• A subquery is a query that appears inside of parentheses.
• The subquery is computed first and its result is “plugged into” the parent

expression.

SELECT SUM(Amount) FROM Recipe_Ingredients
WHERE MeasureAmountID=
(SELECT MeasureAmountID FROM Measurements
WHERE MeasurementDescription="Ounce");

staff

id name room departmentId
11 Bob 100 1

20 Betsy 100 2

21 Fran 101 1

department

id name buildingId
1 Industrial Eng. 1

2 Computer Sci. 2

4 Chemistry 1

1 Physics 4

1 Materials Sci. 5

INNER JOIN review
In output,
• multiple

matches leads
to multiple
rows.
• no matches

leads to no
rows

staff.id staff.name staff.room staff.departmentId department.id department.name department.buildingId
11 Bob 100 1 1 Industrial Eng. 1

11 Bob 100 1 1 Physics 4

11 Bob 100 1 1 Materials Sci. 5

20 Betsy 100 2 2 Computer Sci. 2

21 Fran 101 1 1 Industrial Eng. 1

21 Fran 101 1 1 Physics 4

21 Fran 101 1 1 Materials Sci. 5

SELECT * FROM staff JOIN department
ON staff.departmentId=department.id

NATURAL JOIN
• A shorthand notation to make some JOINs shorter to express.
•NATURAL JOIN matches rows using whatever columns have

identical names.

For example:
SELECT * FROM Orders JOIN Order_Details
ON Orders.OrderNumber=Order_Details.OrderNumber;

Becomes:
SELECT * FROM Orders NATURAL JOIN Order_Details;

Outer and Cross Joins
Introduced different types of JOINs:
• INNER (default): prints all pairs of rows (one from first

table, one from second table) that satisfy the JOIN
predicate.
• LEFT: same as INNER, but adds rows from LEFT

table that never satisfied the JOIN predicate.
• LEFT with exclusion: only print rows from left table

that never satisfied the JOIN predicate.
• CROSS JOIN: print the cartesian project, meaning all

rows from the first table combined with all rows from
the second table. There is no “ON” to match rows.

staff

id name room departmentId
11 Bob 100 1

20 Betsy 100 NULL
21 Fran 101 1

22 Frank 102 99999

35 Sarah 200 5

40 Sam 10 7

54 Pat 102 2

department

id name buildingId
1 Industrial Eng. 1

2 Computer Sci. 2

5 Physics 4

7 Materials Sci. 5

SELECT * FROM staff LEFT JOIN department ON staff.departmentId=department.id;

staff.id staff.name staff.room staff.departmentId department.id department.name department.buildingId
11 Bob 100 1 1 Industrial Eng. 1

20 Betsy 100 NULL NULL NULL NULL
21 Fran 101 1 1 Industrial Eng. 1

22 Frank 102 99999 NULL NULL NULL
35 Sarah 200 5 5 Physics 4

40 Sam 10 7 7 Materials Sci. 5

54 Pat 102 2 2 Computer Sci. 2

• Betsy and Frank have NULLs in
the right haft of the output
because no matching department
was found.

• In other words no pair of rows
was found to satisfy the ON
staff.departmentId=department.id

LEFT JOIN with Grouping
•When computing an aggregation on a many-to-one relationship, LEFT

JOIN includes rows from the parent table with no children.

In ClassScheduling.slite, count the classes taught by each faculty
member:
• If you want this report to include faculty members teaching zero classes, you

must use LEFT JOIN:
SELECT StaffID, ClassID,

COUNT(ClassID) AS num_classes
FROM Faculty NATURAL LEFT JOIN Faculty_Classes
GROUP BY StaffID;

• Note that “COUNT(*)” would return “1” for faculty members with no
classes, because there would still be one unmatched row from the left table.

UNION, INTERSECT, and EXCEPT
are used to combine two SELECT statements

• UNION prints rows from either of two SELECTs
(printing duplicates just once)

• INTERSECT prints rows present in both SELECTs

• EXCEPT prints rows present in one SELECT but
missing from another SELECT

JOIN vs. UNION
• JOINs combine tables
horizontally.
• Match rows from two tables based

on one or more columns matching.
• Creates a wider set of rows, adding
columns from both tables.

JOIN:

• UNION, INTERSECT, and EXCEPT
combine result tables vertically
• Number & type of columns in the

two result tables must match
• Changes the number of rows,

not columns
UNION:

Summing an indicator variable
Two ways to count recipes with “salsa” in description:
• SELECT COUNT(*) FROM Recipes WHERE
RecipeTitle LIKE "%salsa%”;
• WHERE clause keeps just the rows matching “salsa,” then these rows are

counted.
• SELECT SUM(RecipeTitle LIKE "%salsa%")
FROM Recipes;
• A column is created for every recipe indicating whether its title matches

“salsa” or not.
• Column’s value will be 1 if it matches and 0 if not.
• Sum of all the ones and zeros will be the count of matching recipes.

• First approach is easier to understand, but second is shorter.

SELECT CASE WHEN CategoryID=2
THEN "Bike"
ELSE ProductName END FROM Products;

CASE gives if-then-else behavior
WHEN condition is tested for every row, giving true or false

If condition is true then
use the first value.

If condition is false then
use the second value.

Output:

If you wish to dig further into SQL

What’s coming in the second half of the course?
• More data modeling (designing new databases)
• Indexing to handle large databases
• Defining databases and adding data
• Numeric formats
• integers, floats, precision
• Dates and times

• Text encodings
• ASCII, UTF-8, special characters

• Organizing data in files (semi-structured data)
• CSV, XML, JSON

• Messy data
• Missing entries, fuzzy matching

• ... and perhaps more, time permitting

HW3 Q4
SELECT DISTINCT Order_Details.OrderNumber

FROM Order_Details NATURAL JOIN Products NATURAL JOIN Product_Vendors

JOIN Order_Details AS od2 ON Order_Details.OrderNumber=od2.OrderNumber

GROUP BY Order_Details.OrderNumber, VendorID

HAVING COUNT(DISTINCT Order_Details.ProductNumber)=COUNT(DISTINCT
od2.ProductNumber)

HW3 Q5 strategy

HW3 Q5
-- Start with all orders

SELECT OrderNumber FROM Orders

EXCEPT

-- remove the orders that can be satisfied with one vendor (Q4):

SELECT DISTINCT Order_Details.OrderNumber

FROM Order_Details NATURAL JOIN Products NATURAL JOIN Product_Vendors

JOIN Order_Details AS od2 ON Order_Details.OrderNumber=od2.OrderNumber

GROUP BY Order_Details.OrderNumber, VendorID

HAVING COUNT(DISTINCT Order_Details.ProductNumber)=COUNT(DISTINCT
od2.ProductNumber)

EXCEPT

-- remove the orders that have three different products available from
three different vendors

SELECT o1.OrderNumber

-- list each possible combination of three line items from each order

FROM Order_Details AS o1 JOIN Order_Details AS o2 ON
o1.OrderNumber=o2.OrderNumber

JOIN Order_Details AS o3 ON o3.OrderNumber=o1.OrderNumber

JOIN Product_Vendors v1 ON o1.ProductNumber=v1.ProductNumber

JOIN Product_Vendors v2 ON o2.ProductNumber=v2.ProductNumber

JOIN Product_Vendors v3 ON o3.ProductNumber=v3.ProductNumber

WHERE

-- vendors are different

v1.VendorID != v2.VendorID

AND v1.VendorID != v3.VendorID

AND v2.VendorID != v3.VendorID

-- products are different

AND o1.ProductNumber != o2.ProductNumber

AND o1.ProductNumber != o3.ProductNumber

AND o2.ProductNumber != o3.ProductNumber;

