
EECS-317 Data Management and
Information Processing

Lecture 5 – OUTER JOINs and
CROSS JOINs

Steve Tarzia
Spring 2019

Announcements
•HW2 is due on Monday.

Last Lecture
• Illustrated GROUP BY
• Introduced JOINs
•Default type of JOIN is the INNER JOIN
• Combines rows from two tables using a join predicate, which usually

specifies that two columns must be equal.
•Multiple JOINs can be combined
•Must refer to columns as table.column
• Can use AS to give a table an alias for use in the statement
• Do this when joining a table two or more times, to distinguish each copy of

the table.

staff

id name room departmentId
11 Bob 100 1

20 Betsy 100 2

21 Fran 101 1

department

id name buildingId
1 Industrial Eng. 1

2 Computer Sci. 2

4 Chemistry 1

1 Physics 4

1 Materials Sci. 5

INNER JOIN review
In output,
• multiple

matches leads
to multiple
rows.
• no matches

leads to no
rows

staff.id staff.name staff.room staff.departmentId department.id department.name department.buildingId
11 Bob 100 1 1 Industrial Eng. 1

11 Bob 100 1 1 Physics 4

11 Bob 100 1 1 Materials Sci. 5

20 Betsy 100 2 2 Computer Sci. 2

21 Fran 101 1 1 Industrial Eng. 1

21 Fran 101 1 1 Physics 4

21 Fran 101 1 1 Materials Sci. 5

SELECT * FROM staff JOIN department
ON staff.departmentId=department.id

NATURAL JOIN
• A shorthand notation to make some JOINs shorter to express.
•NATURAL JOIN matches rows using whatever columns have

identical names.

For example:
SELECT * FROM Orders JOIN Order_Details
ON Orders.OrderNumber=Order_Details.OrderNumber;

Becomes:
SELECT * FROM Orders NATURAL JOIN Order_Details;

Designing your data model NATURAL-ly
• Consistent column naming allows you to use NATURAL JOINs.
• This is a reason to avoid generic column names like “id” or “name”

CROSS JOIN is like the cartesian product of two sets
• Take every element (row) of

the first set (table) and
combine it with every element
of the second set.
• If first set has N elements

and second set has M
elements, then cartesian
product has N·M elements.
• There is no “ON” expression

to limit results:
• SELECT * FROM Orders
CROSS JOIN
Order_Details;

ON functions exactly like WHERE
These two expressions are actually equivalent:
• SELECT * FROM Orders JOIN Order_Details
ON Orders.OrderNumber=Order_details.OrderNumber;
• SELECT * FROM Orders CROSS JOIN Order_Details
WHERE Orders.OrderNumber=Order_details.OrderNumber;

•However, using ON may be more efficient because it tells the DBMS
to avoid building the full N·M cartesian product, and just match rows
according to a rule.
• It’s also makes the join easier to think about, by separating the filtering

and JOINing predicates.

Different
JOINs
• INNER JOIN

constructs a table of
all pairs of matching
rows from two tables.
• INNER is the default.
• Useful for foreign keys

(numeric identifiers)
• However, there are

many other ways to
JOIN tables if you
don’t require
matching.

LEFT JOIN
• LEFT JOIN includes all rows in the first table (left-hand side)

and just the matching rows in the second table (right-hand side).

LEFT JOIN
(standard)

INNER JOIN

All rows from
First table

Matching rows
from Second table

LEFT JOIN output
• Like all JOINs, LEFT JOIN prints columns from the left table

followed by columns from the right table.
•However, with LEFT JOIN, some rows will have NULL values in the

right table columns, meaning that no match was found in the right
table.
•When to use LEFT JOIN?
• To supplement a table with additional information that may be available for

some rows, but not available for all the rows.

staff

id name room departmentId
11 Bob 100 1

20 Betsy 100 NULL
21 Fran 101 1

22 Frank 102 99999

35 Sarah 200 5

40 Sam 10 7

54 Pat 102 2

department

id name buildingId
1 Industrial Eng. 1

2 Computer Sci. 2

5 Physics 4

7 Materials Sci. 5

SELECT * FROM staff LEFT JOIN department ON staff.departmentId=department.id;

staff.id staff.name staff.room staff.departmentId department.id department.name department.buildingId
11 Bob 100 1 1 Industrial Eng. 1

20 Betsy 100 NULL NULL NULL NULL
21 Fran 101 1 1 Industrial Eng. 1

22 Frank 102 99999 NULL NULL NULL
35 Sarah 200 5 5 Physics 4

40 Sam 10 7 7 Materials Sci. 5

54 Pat 102 2 2 Computer Sci. 2

• Betsy and Frank have NULLs in
the right haft of the output
because no matching department
was found.

• In other words no pair of rows
was found to satisfy the ON
staff.departmentId=department.id

LEFT JOIN with Grouping
•When computing an aggregation on a many-to-one relationship, LEFT

JOIN includes rows from the parent table with no children.

In ClassScheduling.slite, count the classes taught by each faculty
member:
• If you want this report to include faculty members teaching zero classes, you

must use LEFT JOIN:
SELECT StaffID, ClassID,

COUNT(ClassID) AS num_classes
FROM Faculty NATURAL LEFT JOIN Faculty_Classes
GROUP BY StaffID;

• Note that “COUNT(*)” would return “1” for faculty members with no
classes, because there would still be one unmatched row from the left table.

RIGHT JOIN is symmetrical to LEFT
• Includes all rows from right table and matching rows from left table
• Reordering the tables makes a RIGHT JOIN a LEFT JOIN, so it is

not necessary to use the RIGHT JOIN syntax.

LEFT JOIN

Matching rows
from 1st table

All rows from
2nd table

RIGHT JOIN

LEFT JOIN with exclusion
• Includes rows from a table that must not match

another table.
• Useful for finding rows lacking something.
• Just add a WHERE clause to look for NULL values in

the right-hand side of the joined table
• For example, to determine which faculty members

should be assigned a class:
• SELECT * FROM Faculty NATURAL LEFT
JOIN Faculty_Classes
WHERE ClassID IS NULL;

•Which classrooms are unused?
• SELECT * FROM Class_Rooms NATURAL LEFT
JOIN Classes WHERE ClassID IS NULL;

FULL OUTER JOINs are not available in MySQL or SQLite

• You can emulate FULL OUTER JOIN with the UNION of two
queries.

SalesOrders.sqlite: List all products and the dates for any orders (of that product).

SELECT Products.ProductNumber, ProductName, OrderDate FROM
Products LEFT NATURAL JOIN (Order_Details NATURAL JOIN Orders);

Display customers who have no sales rep (employees) in the same ZIP Code.

SELECT * FROM Customers LEFT JOIN Employees ON
CustZipCode=EmpZipCode WHERE EmpZipCode IS NULL;

• SELECT * FROM Customers WHERE CustZipCode IN (SELECT
CustZipCode FROM Customers EXCEPT SELECT EmpZipCode
FROM Employees);

Show me customers who have never ordered a Watch.

First solution uses EXCEPT (introduced later), second solution uses
LEFT JOIN with exclusion:
• SELECT CustomerID FROM Customers EXCEPT

SELECT CustomerID FROM Customers NATURAL JOIN Orders
NATURAL JOIN Order_Details NATURAL JOIN Products

WHERE ProductName LIKE "%Watch%" GROUP BY CustomerID;

• SELECT CustomerID FROM Customers LEFT JOIN
(SELECT CustomerID AS watch_customer FROM Orders
NATURAL JOIN Order_Details NATURAL JOIN Products
WHERE ProductName LIKE "%Watch%" GROUP BY CustomerID)
ON CustomerID=watch_customer
WHERE Watch_customer IS NULL;

Recipes.sqlite: List the number of recipes in each category (RecipeClassID)

SELECT RecipeClassDescription, COUNT(RecipeID) AS RecipeCount
FROM Recipe_Classes LEFT NATURAL JOIN Recipes GROUP BY RecipeClassID

Recipes: Print every pair of recipes and the number of ingredients they share in common

SELECT r1.RecipeTitle, r2.RecipeTitle,
COUNT(i2.IngredientID) AS common_ingredients
FROM
Recipes AS r1 CROSS JOIN Recipes AS r2
JOIN Recipe_Ingredients AS i1 ON r1.RecipeID = i1.RecipeID
LEFT JOIN Recipe_Ingredients AS i2 ON
r2.RecipeID = i2.RecipeID AND i1.IngredientID=i2.IngredientID

GROUP BY r1.RecipeID, r2.RecipeID
HAVING r1.RecipeID < r2.RecipeID
ORDER BY common_ingredients DESC;

Recap
Introduced different types of JOINs:
• INNER (default): prints all pairs of rows (one from first

table, one from second table) that satisfy the JOIN
predicate.
• LEFT: same as INNER, but adds rows from LEFT

table that never satisfied the JOIN predicate.
• LEFT with exclusion: only print rows from left table

that never satisfied the JOIN predicate.
• CROSS JOIN: print the cartesian project, meaning all

rows from the first table combined with all rows from
the second table. There is no “ON” to match rows.

