EECS-317 Data Management and
Information Processing

Lecture 5 — OUTER JOINs and
CROSS JOINSs

Steve Tarzia

Spring 2019

Northwestern

Announcements

* HW2 is due on Monday.

l.ast Lecture

* [llustrated GROUP BY
* Introduced JOINs
* Detault type of JOIN is the INNER JOIN

* Combines rows from two tables using a join predicate, which usually
specifies that two columns must be equal.

* Multiple JOINs can be combined
* Must refer to columns as Zable.column

* Can use AS to give a table an alias for use in the statement

* Do this when joining a table two or more times, to distinguish each copy of
the table.

INNER JOIN review

In output,
* multiple
11 | Bob 100 1 1 | Industrial Eng 1 matc 1€§ lleads
20 | Bewsy | 100 2 2 | Computersci. | 2 to multiple
rOWS.
21 Fran 101 1 4 Chemistry 1
1 - ’ * no matches
S1CS
SELECT * FROM staff JOIN department y . leads to no
ON staff.departmentId=department.id 1 Materials Sci. 5 rows

11 Bob 100 1 1 Industrial Eng; 1
11 Bob 100 1 1 Physics -
11 Bob 100 1 1 Materials Sci. 5
20 Betsy 100 2 2 Computer Sci. 2
21 Fran 101 1 1 Industrial Eng; 1
21 Fran 101 1 1 Physics 4
21 Fran 101 1 1 Materials Sct. 5

NATURAL JOIN

* A shorthand notation to make some JOINs shorter to express.

* NATURAL JOIN matches rows using whatever columns have
identical names.

For example:
SELECT * FROM Orders JOIN Order Details
ON Orders.OrderNumber=Order Detalls.OrderNumber;

_ J
Becomes: Y

SELECT * FROM Orders NATURAL JOIN Order Details;

Designing your data model NATURAL-ly

* Consistent column naming allows you to use NATURAL JOIN:S.

* This 1s a reason to avoid generic column names like “id” or “name”

7

Customers
¥ CustomerlD

CustFirstName
CustLastName
CustStreetAddress
CustCity
CustState
CustZipCode
CustAreaCode
CustPhoneNumber

-~

Employees

¥ EmployeelD
EmpFirstName
EmpLastName
EmpStreetAddress
EmpCity
EmpState
EmpZipCode
EmpAreaCode
EmpPhoneNumber
EmpBirthDate

~

Orders
¥ OrderNumber
OrderDate
ShipDate
CustomerID
EmployeelD

o

7

o
Order_Details 1
¥ OrderNumber I
0 0o
¥ ProductNumber
QuotedPrice
QuantityOrdered
o0
-
Categories

¥ CategorylD
CategoryDescription

Products

¥ ProductNumber
ProductName
ProductDescription
RetailPrice
QuantityOnHand
CategoryID

)

Product_Vendors
¥ ProductNumber
¥ VendorID
WholesalePrice
DaysToDeliver

°_°L,

Vendors

¥ VendorlD
VendName
VendStreetAddress
VendCity
VendState
VendZipCode
VendPhoneNumber
VendFaxNumber
VendWebPage
VendEMailAddress

CROSS JOIN is like the cartesian product of two sets

AxB * Take every element (row) of
the first set (table) and
combine it with every element

A B
/—\ /\ of the second set.
.‘ o [f first set has N elements

i and second set has M

X

elements, then cartesian
product has N-M elements.

‘ * There 1s no “ON” expression

to limit results:

e SELECT * FROM Orders
Cartesian Product of Two Sets. CROSS JOIN

Order Details;

-
_/

@

e
d
A
L

ON functions exactly like WHERE

These two expressions are actually equivalent:

* SELECT * FROM Orders JOIN Order Detaills
ON Orders.OrderNumber=0Order detaills.OrderNumber;

* SELECT * FROM Orders CROSS JOIN Order Details
WHERE Orders.OrderNumber=Order details.OrderNumber;

* However, using ON may be more etficient because it tells the DBMS
to avoid building the full N-M cartesian product, and just match rows
according to a rule.

* [t’s also makes the join easier to think about, by separating the filtering
and JOINing predicates.

Different
JOINSs

e TNNER JOIN
constructs a table of
all pairs of matching
rows from two tables.

e TNNER is the default.

* Usetul for foreign keys
(numeric 1dentifiers)

* However, there are
many other ways to
JOIN tables if you
don’t require
matching,

SQL JOINS

SELECT <sclect list>
FROM TableA A
LEFT JOIN TableB B
ON A.Key = B.Key

SELECT <select list>
FROM TableA A
RIGHT JOIN TableB B
ON A.Key = B.Key

SELECT <select_list>
FROM TablcA A
INNER JOIN TableB B
ON A.Key = B.Key

SELECT <select_list>
FROM TableA A

SELECT <select_list>
FROM TableA A

RIGHT JOIN TableB B

ON A.Key = B.Key

WHERE A.Key IS NULL
SELECT <select_list>

FROM TablcA A

FULL OUTER JOIN TableB B

ON A.Key = B.Key
WHERE A.Key IS NULL
OR B.Key IS NULL

LEFT JOIN TableB B

ON A.Kcey = B.Key

WHERE B.Keyv IS NULL
SELECT <sclect list>
FROM TableA A

FULL OUTER JOIN TableB B
ON A.Key = B.Key

@® C L. Moffatt, 2008

LEFT JOIN

* LEFT JOIN includes all rows in the first table (/eft-hand side)
and just the matching rows in the second table (right-hand side).

(standard)
LEFT JOIN INNER JOIN

All rows from

First table \

Matching rOws

/ from Second table

SELECT <select list> SELECT <select_list>
FROM TableA A FROM TablcA A
LEFT JOIN TableB B INNER JOIN TableB B

ON A.Key = B.Key ON A.Key = B.Key

LEFT JOIN output

* Like all JOINs, LEFT JOIN prints columns from the left table
followed by columns from the right table.

* However, with LEFT JOIN, some rows will have NUL.L values 1n the
right table columns, meaning that no match was found in the right

table.
* When to use LEFT JOIN?

* To supplement a table with additional information that may be available for
some rows, but not available for all the rows.

* Betsy and Frank have NULLSs in
the right haft of the output
because no matching department

* In other words no pair of rows

was found to satisfy the ON
staff.departmentld=department.id

id | name room departmentld id name buildingld

11 Bob 100 1 1 | Industrial Eng. 1

20 Betsy 100 NULL 2 | Computer Sci. 2

21 | Fran 101 1 5 Physics 4 was found.
22 | Frank 102 99999 7 | Materials Sci. 5

35 Sarah 200 5

40 Sam 10 7

54 Pat 102 2

SELECT * FROM staff LEFT JOIN department ON staff.departmentId=department.id;

staff.id | statf.name | staff.room | staff.departmentld | department.id | department.name department.buildingld
11 Bob 100 1 1 Industrial Eng; 1
20 Betsy 100 NULL NULL NULL NULL
21 Fran 101 1 1 Industrial Eng; 1
22 Frank 102 99999 NULL NULL NULL
35 Sarah 200 5 5 Physics 4
40 Sam 10 7 7 Materials Sci. 5
54 Pat 102 2 2 Combputetr Sci. 2

LEFT JOIN with Grouping

* When computing an aggregation on a many-to-one relationship, LEFT
JOIN includes rows from the parent table with no children.

In ClassScheduling:slite, count the classes taught by each faculty
member:
* If you want this report to include faculty members teaching zero classes, you
must use LEFT JOIN:

SELECT StaffID, ClassID,
COUNT (ClassID) AS num classes
FROM Faculty NATURAL LEFT JOIN Faculty Classes
GROUP BY StaffID; N

* Note that "COUNT (*) ” would return “1” for faculty members with no
classes, because there would still be one unmatched row from the left table.

RIGHT JOIN i1s symmetrical to LEFT

* Includes all rows from right table and matching rows from left table

* Reordering the tables makes a RIGHT JOIN a LEFT JOIN, so it 1s
not necessary to use the RIGHT JOIN syntax.

RIGHT JOIN LEFT JOIN

All rows from

/ 2nd table

Matching rows

from 15t table \

SELECT <select list> SELECT <select list>
FROM TableA A FROM TableA A
RIGHT JOIN TableB B LEFT JOIN TableB B

ON A.Key = B.Key ON A.Key = B.Key

LEFT JOIN with exclusion

e [ncludes rows from a table that must not match
another table.

* Usetul for finding rows lacking something.

* Just add a WHERE clause to look for NUIL.L values in
the right-hand side of the joined table

* For example, to determine which faculty members

SELECT <select_list> should be assigned a class:

S * SELECT * FROM Faculty NATURAL LEFT
ON AKey = BKey JOIN Faculty Classes

WHERE B.Keyv IS NULL WHERE ClaSSID IS NULL;

e Which classrooms are unused?

* SELECT * FROM Class Rooms NATURAL LEFT
JOIN Classes WHERE ClassID IS NULL,

FULL OUTER JOINs are not available in MySQL or SQLite

* You can ewulate FULL OUTER JOIN with the UNION of two

queties.

SELECT <select_list>
FROM TableA A
RIGHT JOIN TableB B
ON A.Key = B.Key

SELECT <select_list>
FROM TablcA A
INNER JOIN TableB B
ON A.Key = B.Key

SELECT <select_list> SELECT <select_list>
FROM TableA A FROM TableA A

LEFT JOIN TableB B RIGHT JOIN TableB B
ON A.Key = B.Key ON A.Key = B.Key
WHERE B.Key IS NULL WHERE A.Key IS NULL

SELECT <select list>
FROM TableA A
LEFT JOIN TableB B
ON A.Key = B.Key

@ C.L. Moffatt, 2008

SalesOrders.sqlite: List all products and the dates for any orders (of that product).

SELECT Products.ProductNumber,

Products LEFT NATURAL JOIN

-

Customers
¥ CustomerlD

CustFirstName
CustLastName
CustStreetAddress
CustCity
CustState
CustZipCode
CustAreaCode
CustPhoneNumber

-~

Employees
¥ EmployeelD

EmpFirstName
EmplLastName
EmpStreetAddress
EmpCity
EmpState
EmpZipCode
EmpAreaCode
EmpPhoneNumber
EmpBirthDate

-

Orders
¥ OrderNumber
OrderDate
ShipDate
CustomerID
EmployeelD

il

ProductName,

Order_Details

¥ OrderNumber

¥ ProductNumber
QuotedPrice
QuantityOrdered

Products
¥ ProductNumber
ProductName
ProductDescription
RetailPrice
QuantityOnHand
CategorylD

J

OrderDate FROM
(Order Details NATURAL JOIN Orders);

”

Product_Vendors
¥ ProductNumber
¥ VendorlD
WholesalePrice
DaysToDeliver

1.

Categories
¥ CategorylD
CategoryDescription

(Vendors

¥ VendorlD
VendName
VendStreetAddress
VendCity
VendState
VendZipCode
VendPhoneNumber
VendFaxNumber
VendWebPage
VendEMailAddress

Display customers who have no sales rep (employees) in the same ZIP Code.

SELECT * FROM Customers LEFT JOIN Employees ON
CustzZipCode=EmpZipCode WHERE EmpZipCode IS NULL;

Customers

¥ CustomerlD
CustFirstName
CustLastName
CustStreetAddress
CustCity
CustState
CustZipCode
CustAreaCode
CustPhoneNumber

Employees

¥ EmployeelD
EmpFirstName
EmplastName
EmpStreetAddress
EmpCity
EmpState
EmpZipCode
EmpAreaCode
EmpPhoneNumber
EmpBirthDate

7

Orders
¥ OrderNumber
OrderDate
ShipDate
CustomerID
EmployeelD

Order_Details
¥ OrderNumber
¥ ProductNumber
QuotedPrice
QuantityOrdered

i

Categories
¥ CategorylD
CategoryDescription

Products
¥ ProductNumber
ProductName
ProductDescription
RetailPrice
QuantityOnHand
CategorylD

]

Product_Vendors
¥ ProductNumber
¥ VendorlD
WholesalePrice
DaysToDeliver

|.._I8

Vendors

¥ vendorlD
VendName
VendStreetAddress
VendCity
VendState
VendZipCode
VendPhoneNumber
VendFaxNumber
VendWebPage
VendEMailAddress

Show me customers who have never ordered a Watch.

First solution uses EXCEPT (introduced later), second solution uses
LEFT JOIN with exclusion:

e SELECT CustomerID FROM Customers EXCEPT
SELECT CustomerID FROM Customers NATURAL JOIN Orders
NATURAL JOIN Order Detailils NATURAL JOIN Products
WHERE ProductName LIKE "SWatch%" GROUP BY CustomerlD;

e SELECT CustomerID FROM Customers LEFT JOIN
(SELECT CustomerID AS watch customer FROM Orders
NATURAL JOIN Order_DetailS NATURAL JOIN Products
WHERE ProductName LIKE "SWatch%" GROUP BY CustomerID)
ON CustomerID=watch customer Cﬂwbrf? orderedWakeh
WHERE Watch customer IS NULL; 777 >

Recipes.sqlite: List the number of recipes in each category (RecipeClassID)

SELECT RecipeClassDescription,

COUNT (RecipelID)

AS RecipeCount

FROM Recipe Classes LEFT NATURAL JOIN Recipes GROUP BY RecipeClassID

s ™
Recipe_Classes

¥ RecipeClassID
RecipeClassDescription

7~

Ingredient_Classes

¥ IngredientClassID
IngredientClassDescription

’”

Recipes
¥ RecipelD e
RecipeTitle
RecipeClassID —
Preparation
Notes
4 g
1 Ingredients
¥ IngredientID =
IngredientName
IngredientClassID
MeasureAmountID —

Recipe_Ingredients

¥ RecipelD

¥ RecipeSeqNo
IngredientID
MeasureAmountID
Amount

s

Measurements

¥ MeasureAmountID
MeasurementDescription

Recipes: Print every pair of recipes and the number of ingredients they share in common

SELECT rl.RecipeTitle, r2.RecipeTitle,
COUNT (12.IngredientID) AS common ingredients
FROM

Recipes AS rl CROSS JOIN Recipes AS r2

JOIN Recipe Ingredients AS il ON rl.RecipelID = il.RecipelD

LEFT JOIN Recipe Ingredients AS 12 ON

r2.RecipelD = IZ.RecipeID AND 1l1.IngredientID=12.IngredientID

GROUP BY rl.RecipelD, r2.RecipelD
HAVING rl.RecipelID < r2.RecipelD
ORDER BY common ingredients DESC;

N o N

Recipe_Classes Recipes Recipe_Ingredients
? RecipeClassID - ¥ RecipelD -~ ¥ RecipelD
RecipeClassDescription RecipeTitle ¥ RecipeSeqNo
RecipeClassID — IngredientID
Preparation MeasureAmountID
Notes Amount

= Measurements

Ingredient_Classes

. (Ingredients ¥ MeasureAmountID

¥ R ? IngredientlD - MeasurementDescription
IngredientClassDescription IngredientName

IngredientClassID
MeasureAmountID

Recap

Introduced different types of JOINSs:

* INNER (default): prints all pairs of rows (one from first
table, one from second table) that satisty the JOIN
predicate.

* LEFT: same as INNER, but adds rows from LEFT
table that never satisfied the JOIN predicate.

* LEFT with exclusion: only print rows from left table
that never satistied the JOIN predicate.

* CROSS JOIN: print the cartesian project, meaning all
rows from the first table combined with all rows from
the second table. There 1s no “ON” to match rows.

WHERE B.Key IS NU
A B
X
Cartesian Product of Twt

