
EECS-317 Data Management and
Information Processing

Lecture 4 – GROUP BY and
INNER JOINs

Steve Tarzia
Spring 2019

Announcements
• First HW assignment is due Monday night.

Last lecture: Integer division, aggregation, subqueries

•When dividing two integers, the result is always rounded down.
• You may have to multiply by 1.0 in your SQL formulas to convert to floats.

• COUNT, SUM, MIN, MAX, AVG are aggregation functions
• Operate on all rows unless GROUP BY is used.

• Subqueries can be used to replace a single value, list of values, or an
entire table in a parent query.
• Answered ten sample questions in class.

GROUP BY explained
• GROUP BY combines multiple rows into one row in the result.
• Rows with the same value for the grouping criterion are grouped.
• An aggregation function should be applied.

SELECT CategoryID, COUNT(*) AS category_count,
MAX(RetailPrice) AS most_expensive_price

FROM Products GROUP BY CategoryID;

The GROUP BY expression
“GROUP BY x” means:
• Each row in the output will represent many aggregated rows having

the same value for x.
• Thus, the number of rows in the result is the number of distinct values

taken by x (after the WHERE filtering).
• Usually it’s just the name of a column, but it can be an arbitrary

expression.

SELECT category, AVG(price)
FROM product GROUP BY category
Table “product”
id name price category
1 Quart Skim Milk 2.49 3
2 Rye Bread 1.99 1
3 1lb Butter 5.99 3
4 32oz Yogurt 4.99 3
5 Navel Orange (each) 0.89 2
6 Pineapple (each) 1.99 2
7 English Muffins 3.99 1
8 Spinach (bunch) 1.49 2
9 Carrots (lb bag) 0.99 2
10 Dozen Eggs 2.49 3

Output
category AVG(price)
1 2.99
2 1.34
3 3.99

This is a typical GROUP BY example.

SELECT price, COUNT(*)
FROM product GROUP BY price ORDER BY price
Table “product”
id name price category
1 Quart Skim Milk 2.49 3
2 Rye Bread 1.99 1
3 1lb Butter 5.99 3
4 32oz Yogurt 4.99 3
5 Navel Orange (each) 0.89 2
6 Pineapple (each) 1.99 2
7 English Muffins 3.99 1
8 Spinach (bunch) 1.49 2
9 Carrots (lb bag) 0.99 2
10 Dozen Eggs 2.49 3

Output
price COUNT(*)

0.89 1
0.99 1
1.49 1
1.99 2
2.49 2
3.99 1
4.99 1
5.99 1

This is a typical GROUP BY example.

SELECT category, price
FROM product GROUP BY category
Table “product”
id name price category
1 Quart Skim Milk 2.49 3
2 Rye Bread 1.99 1
3 1lb Butter 5.99 3
4 32oz Yogurt 4.99 3
5 Navel Orange (each) 0.89 2
6 Pineapple (each) 1.99 2
7 English Muffins 3.99 1
8 Spinach (bunch) 1.49 2
9 Carrots (lb bag) 0.99 2
10 Dozen Eggs 2.49 3

Output
category price

1 1.99
2 0.89
3 2.49

This GROUP BY is weird. L

It’s missing an aggregation
function (like SUM, MIN, etc.).
It prints a random price for each
category.

SELECT id, name FROM product GROUP BY id
Table “product”
id name price category
1 Quart Skim Milk 2.49 3
2 Rye Bread 1.99 1
3 1lb Butter 5.99 3
4 32oz Yogurt 4.99 3
5 Navel Orange (each) 0.89 2
6 Pineapple (each) 1.99 2
7 English Muffins 3.99 1
8 Spinach (bunch) 1.49 2
9 Carrots (lb bag) 0.99 2
10 Dozen Eggs 2.49 3

Output
id name
1 Quart Skim Milk
2 Rye Bread
3 1lb Butter
4 32oz Yogurt
5 Navel Orange (each)
6 Pineapple (each)
7 English Muffins
8 Spinach (bunch)
9 Carrots (lb bag)
10 Dozen Eggs

This GROUP BY is useless because id is
always different. L

SELECT AVG(price)
FROM product GROUP BY “hello”
Table “product”
id name price category
1 Quart Skim Milk 2.49 3
2 Rye Bread 1.99 1
3 1lb Butter 5.99 3
4 32oz Yogurt 4.99 3
5 Navel Orange (each) 0.89 2
6 Pineapple (each) 1.99 2
7 English Muffins 3.99 1
8 Spinach (bunch) 1.49 2
9 Carrots (lb bag) 0.99 2
10 Dozen Eggs 2.49 3

Output
AVG(price)
2.73

This GROUP BY is weird. L
“hello” is the same for every row,
so it always aggregates all rows to
one output row.

AVG would have given the same
result without any GROUP BY.

SELECT category=2, AVG(price)
FROM product GROUP BY category=2
Table “product”
id name price category
1 Quart Skim Milk 2.49 3
2 Rye Bread 1.99 1
3 1lb Butter 5.99 3
4 32oz Yogurt 4.99 3
5 Navel Orange (each) 0.89 2
6 Pineapple (each) 1.99 2
7 English Muffins 3.99 1
8 Spinach (bunch) 1.49 2
9 Carrots (lb bag) 0.99 2
10 Dozen Eggs 2.49 3

Output
category=2 AVG(price)

0 (false) 3.6566667
1 (true) 1.34

This is an advanced GROUP BY example.

It divides the rows into two groups, those
with category=2 in one group and
everything else in the other group.

Prints the average price of fruits &
vegetables vs the average price of other
foods.

What if you need to combine data from multiple tables?

1. FROM chooses the table of interest
2. WHERE throws out irrelevant rows
3. GROUP BY identifies rows to combine
4. SELECT tells what values to return (allowing math and aggregation)
5. HAVING throws out irrelevant rows (after aggregation)
6. ORDER BY sorts
7. LIMIT throws out rows based on their position in the results

A subquery can draw data from another table, but JOINs are a more
powerful way to use multiple tables.

JOINs create virtual tables from several tables
•Normalizing this staff directory left us with three tables
• This split eliminated redundant information, but now we have to look

in three different tables to answer some questions.

department

id name buildingId
1 Industrial Eng. 1

2 Computer Sci. 2

4 Chemistry 1

5 Physics 4

7 Materials Sci. 5

building

id name faxNumber
1 Tech 1-1000

2 Ford 1-5003

4 Mudd 1-2005

5 Cook 1-3004

6 Garage 1-6001

staff

id name room departmentId
11 Bob 100 1

20 Betsy 100 2

21 Fran 101 1

22 Frank 102 4

35 Sarah 200 5

40 Sam 10 7

54 Pat 102 2

What if we want to print the staff directory?

We can generate a virtual table like this with INNER JOIN

staff

id name department building room faxNumber
11 Bob Industrial Eng. Tech 100 1-1000

20 Betsy Computer Sci. Ford 100 1-5003

21 Fran Industrial Eng. Tech 101 1-1000

22 Frank Chemistry Tech 102 1-1000

35 Sarah Physics Mudd 200 1-2005

40 Sam Materials Sci. Cook 10 1-3004

54 Pat Computer Sci. Ford 102 1-5003

staff

id name room departmentId
11 Bob 100 1

20 Betsy 100 2

21 Fran 101 1

22 Frank 102 4

35 Sarah 200 5

40 Sam 10 7

54 Pat 102 2

department

id name buildingId
1 Industrial Eng. 1

2 Computer Sci. 2

4 Chemistry 1

5 Physics 4

7 Materials Sci. 5

SELECT * FROM staff JOIN department ON staff.departmentId=department.id

staff.id staff.name staff.room staff.departmentId department.id department.name department.buildingId
11 Bob 100 1 1 Industrial Eng. 1

20 Betsy 100 2 2 Computer Sci. 2

21 Fran 101 1 1 Industrial Eng. 1

22 Frank 102 4 4 Chemistry 1

35 Sarah 200 5 5 Physics 4

40 Sam 10 7 7 Materials Sci. 5

54 Pat 102 2 2 Computer Sci. 2

ON tells how rows are matched

How JOIN builds a composite table
SELECT * FROM staff JOIN department

ON staff.departmentId=department.id

staff.id staff.name staff.room staff.departmentId department.id department.name department.buildingId
11 Bob 100 1 1 Industrial Eng. 1

20 Betsy 100 2 2 Computer Sci. 2

21 Fran 101 1 1 Industrial Eng. 1

22 Frank 102 4 4 Chemistry 1

35 Sarah 200 5 5 Physics 4

40 Sam 10 7 7 Materials Sci. 5

54 Pat 102 2 2 Computer Sci. 2

Start with the first table (staff) Join with rows from the 2nd table (department)
that match according to the ON columns

Just print the columns we need
SELECT staff.id, staff.name, staff.room,

department.name, department.buildingId
FROM staff JOIN department

ON staff.departmentId=department.id

staff.id staff.name staff.room department.name department.buildingId
11 Bob 100 Industrial Eng. 1

20 Betsy 100 Computer Sci. 2

21 Fran 101 Industrial Eng. 1

22 Frank 102 Chemistry 1

35 Sarah 200 Physics 4

40 Sam 10 Materials Sci. 5

54 Pat 102 Computer Sci. 2

Reorder and rename the columns
SELECT staff.id AS staffID, staff.name AS name,

department.name AS department,
department.buildingId AS buildingId, staff.room AS room

FROM staff JOIN department
ON staff.departmentId=department.id

staffId name department buildingId room
11 Bob Industrial Eng. 1 100

20 Betsy Computer Sci. 2 100

21 Fran Industrial Eng. 1 101

22 Frank Chemistry 1 102

35 Sarah Physics 4 200

40 Sam Materials Sci. 5 10

54 Pat Computer Sci. 2 102

JOIN to the third table

SELECT staff.id AS staffId, staff,name, department.name AS department,
building.name AS building, staff.room AS room,
building.faxNumber AS faxNumber

FROM staff JOIN department
ON staff.departmentId=department.id
JOIN building ON department.buildingId=building.id

staffId name department building room faxNumber
11 Bob Industrial Eng. Tech 100 1-1000

20 Betsy Computer Sci. Ford 100 1-5003

21 Fran Industrial Eng. Tech 101 1-1000

22 Frank Chemistry Tech 102 1-1000

35 Sarah Physics Mudd 200 1-2005

40 Sam Materials Sci. Cook 10 1-3004

54 Pat Computer Sci. Ford 102 1-5003

Who teaches the largest class & what is the average grade?
• Instructor names are in Staff table
• Instructor→class assignments are in Faculty_Classes table.
• Class enrollments are in Student_Schedules table
• Can use two subqueries to answer the first part of the question:

• Get the largest class:
SELECT ClassID FROM Student_Schedules GROUP BY ClassID ORDER BY COUNT(*) DESC LIMIT 1;

• Get the instructor ID of that class:
SELECT StaffID FROM Faculty_Classes WHERE ClassID=…

• Get the instructor name:
SELECT StfFirstName, StfLastName FROM Staff WHERE StaffID=…

SELECT StfFirstName, StfLastName FROM Staff
WHERE StaffID=
(SELECT StaffID FROM Faculty_Classes WHERE ClassID=
(SELECT ClassID FROM Student_Schedules
GROUP BY ClassID ORDER BY COUNT(*) DESC LIMIT 1));

Who teaches the largest class & what is the average grade?
• Alternative approach:

Use JOINs to create a composite table listing instructors, classes, and their average grades:

SELECT Student_Schedules.ClassID, StfLastname, AVG(Grade)
FROM Student_Schedules
JOIN Faculty_Classes ON
Student_Schedules.ClassID=Faculty_Classes.ClassID

JOIN Staff ON
Faculty_Classes.StaffID = Staff.StaffID

GROUP BY Student_Schedules.ClassID
ORDER BY COUNT(*) DESC LIMIT 1;

staff

id name room departmentId
11 Bob 100 1

20 Betsy 100 2

21 Fran 101 1

department

id name buildingId
1 Industrial Eng. 1

2 Computer Sci. 2

4 Chemistry 1

1 Physics 4

1 Materials Sci. 5

Using INNER JOIN, what if rows don’t match one-to-one?
In output,
• multiple

matches leads
to multiple
rows.
• no matches

leads to no
rows

staff.id staff.name staff.room staff.departmentId department.id department.name department.buildingId
11 Bob 100 1 1 Industrial Eng. 1

11 Bob 100 1 1 Physics 4

11 Bob 100 1 1 Materials Sci. 5

20 Betsy 100 2 2 Computer Sci. 2

21 Fran 101 1 1 Industrial Eng. 1

21 Fran 101 1 1 Physics 4

21 Fran 101 1 1 Materials Sci. 5

SELECT * FROM staff JOIN department
ON staff.departmentId=department.id

(Recipes.sqlite) Print the recipe for Irish Stew (RecipeID = 1)

(Recipes.sqlite) Print the recipe for Irish Stew (RecipeID = 1)

SELECT RecipeSeqNo, Amount,
Measurements.MeasurementDescription, IngredientName

FROM
Recipe_Ingredients JOIN Ingredients
ON Recipe_Ingredients.IngredientId

= Ingredients.IngredientID
JOIN Measurements
ON Recipe_Ingredients.MeasureAmountID

= Measurements.MeasureAmountID
WHERE RecipeId=1
ORDER BY RecipeSeqNo;

What is the name of the recipe with the most ingredients?
(Can be done with either a subquery or a JOIN)

What is the name of the recipe with the most ingredients?

SELECT RecipeTitle, COUNT(*) AS numIngredients
FROM

Recipe_Ingredients JOIN Recipes
ON Recipes.RecipeID

= Recipe_Ingredients.RecipeID
ORDER BY numIngredients DESC
LIMIT 1
GROUP BY Recipes.RecipeID

(BowlingLeague.sqlite) Print a schedule of all the team matchups over the
whole season (Date, Location, TeamName, TeamName)

Print a schedule of all the team matchups over the whole season
(Date, Location, TeamName, TeamName)
SELECT TourneyDate, TourneyLocation, OddTeam.TeamName,

EvenTeam.TeamName
FROM
Tourney_Matches JOIN Tournaments
ON Tourney_Matches.TourneyID = Tournaments.TourneyID

JOIN Teams AS OddTeam
ON OddLaneTeamID=OddTeam.TeamID

JOIN Teams AS EvenTeam
ON EvenLaneTeamID = EvenTeam.TeamID

Print game results for Tournament #1, including bowler names, team
names, & raw score

Print game results for Tournament #1, including bowler
names, team names, & raw score
SELECT
Bowler_Scores.MatchID, GameNumber, TeamName,
BowlerFirstName || " " || BowlerLastName AS Bowler,
RawScore

FROM
Bowler_Scores JOIN Tourney_Matches

ON Bowler_Scores.MatchID = Tourney_Matches.MatchID
JOIN Bowlers

ON Bowlers.BowlerID = Bowler_Scores.BowlerID
JOIN Teams

ON Bowlers.TeamID = Teams.TeamID
WHERE TourneyId=1

