
EECS-317 Data Management and
Information Processing

Lecture 2 – Structured Query
Language (SQL)

Steve Tarzia
Spring 2019

Please take a
copy of the 3

handouts before
sitting down

Announcements
• First HW assignment was posted, due April 15th (a Monday).
• First “reading” assignment was also posted:
• Complete Datacamp’s Intro to SQL for Data Science.
• You actually should do this first, before the homework.

•Office hours will be held in the Wilkinson Lab (Tech M338)

Last lecture: Data Modeling with Tables
• Complex data are more than just streams of numbers!
•Data model or schema defines the data’s structure
• It’s a list of tables, each with a fixed number of columns
• Data rows are added after the data model is designed.
• Within a row, each column may store only one value.
• A column may refer to a row in another table.

• These are called Relational or SQL databases.
• Can represent much more complex data than a simple spreadsheet.
• Eliminate data redundancy:

Saves space and allows updates to happen in one place
• Allows objects, events, and relationships to be added separately

Last lecture (continued)
• Introduced data model diagrams, but did not go into much detail.

product

id
name

description

price

inventoryQty

orderItem

id
order
product
quantity

order

id
customer
totalCost

placedTime

shippedTime

trackingNumber

customer

id
name

streetAddress

city

province

postalCode

country

DB Browser for SQLite

Structured Query Language (SQL)
• The standard programming language for relational databases
• Each DB Management System (DBMS) has its own dialect
• In this course we will be using SQLite’s and MySQL’s variants of SQL

• SQL is a declarative language (most other languages are imperative)
• You describe the results you want to see
• You do not describe the detailed steps necessary to gather those results
• The DBMS cleverly determines an execution plan behind the scenes to carry

out your requested analysis.

•We will be using a client program to connect to the DBMS and
running SQL statements interactively:
• run one statement and look at the results before running another one

SELECT gets data

SELECT FirstName, LastName FROM customers WHERE City = "Paris";

Columns to print Table to examine Filter

Result is a table with two rows:

FirstName LastName
Camille Bernard
Dominique Lefebvre

Filtering, sorting, and limiting
We can use more complex filters:
SELECT FirstName, LastName FROM customers

WHERE City = "Chicago"
AND (State = "Illinois"

OR State = "IL");

Get all columns, sort the results (descending) and limit the results to just
the first ten rows:
SELECT * FROM tracks ORDER BY UnitPrice DESC LIMIT 10;

Arithmetic
Your SELECT statements can include arithmetic

SELECT 1+1;
SELECT ABS(COS(PI()));
SELECT Name, UnitPrice / (Milliseconds/1000/60)

AS PricePerMinute FROM tracks;

Check your DBMS’s documentation for the specific math functions.

Syntax diagrams
• Any path from start to end is a

valid statement.
• Choose which arrows to follow
• The rectangles refer to other

diagrams.
• Used by our SQL book
• Used by SQLite online docs:

https://sqlite.org/lang.html

https://sqlite.org/lang.html

Syntax grammars

• A set of rules for building
all possible statements
• Used by MySQL docs
• Optional items are in

square braces: []
• Pipe character for “or”:
this | that
• Curly braces for a required

choice: {one | two}
• ... for repetition
• Lowercase italics for things

defined elsewhere.

SELECT
[ALL | DISTINCT | DISTINCTROW]

[HIGH_PRIORITY]
[STRAIGHT_JOIN]
[SQL_SMALL_RESULT] [SQL_BIG_RESULT]
[SQL_BUFFER_RESULT]
[SQL_CACHE | SQL_NO_CACHE][SQL_CALC_FOUND_ROWS]

select_expr [, select_expr ...]
[FROM table_references

[PARTITION partition_list]
[WHERE where_condition]
[GROUP BY {col_name | expr | position}

[ASC | DESC], ... [WITH ROLLUP]]
[HAVING where_condition]
[ORDER BY {col_name | expr | position}

[ASC | DESC], ...]
[LIMIT {[offset,] row_count | row_count OFFSET offset}]
[PROCEDURE procedure_name(argument_list)]
[INTO OUTFILE 'file_name'

[CHARACTER SET charset_name]
export_options

| INTO DUMPFILE 'file_name'
| INTO var_name [, var_name]]

[FOR UPDATE | LOCK IN SHARE MODE]]

Grouping
The GROUP BY clause combines multiple rows and lets you perform
aggregation math functions.
SELECT AlbumId,

SUM(Milliseconds/1000/60) AS AlbumMinutes
FROM tracks GROUP BY AlbumId ORDER BY AlbumMinutes;

Result:

AlbumId AlbumMinutes
340 0.86300000
345 1.11065000
318 1.68821667
… …

SQLite
• A lightweight and easy-to-setup database management system
• Similar to Microsoft Access, but free and more portable
• Can handle very large databases (terabytes)
• The whole database is stored in a single file (.db or .sqlite)
• But SQLite does not handle remote access from multiple users

A good choice for an individual needing to set up his/her own database.
•Download a version of it from sqlitebrowser.org

http://sqlitebrowser.org/

SQLite SELECT Syntax
For example:
SELECT FirstName, LastName
FROM customers WHERE City =
"Paris";

SELECT queries are series of filtering & manipulation steps

1. The FROM expression gives the starting point – a full table.
The final result will be a subset or aggregation of this.

2. The WHERE expression keeps only those rows passing some test
This expression can be very complex, but it must be something than can be evaluated on
each row, one at a time.

3. GROUP BY combines rows if something about them is the same
4. The SELECT result-columns are computed, including aggregation.

At this point we have thrown out the columns we don’t need.

5. HAVING expression keeps only the aggregated rows passing a test.
6. ORDER BY sorts what’s left.
7. LIMIT truncates the results to just a certain number of rows.

SELECT steps (abbreviated)

1. FROM chooses the table of interest
2. WHERE throws out irrelevant rows
3. GROUP BY identifies rows to combine
4. SELECT tells what values to return (allowing math and aggregation)
5. HAVING throws out irrelevant rows (after aggregation)
6. ORDER BY sorts
7. LIMIT throws out rows based on their position in the results

Each step gets closer to the specific result you want.

What’s the average price of a bike car rack?
1. FROM chooses the table of

interest
2. WHERE throws out irrelevant

rows
3. GROUP BY identifies rows to

combine
4. SELECT tells what values to

return (allowing math and
aggregation)

5. HAVING throws out irrelevant
rows (after aggregation)

6. ORDER BY sorts
7. LIMIT throws out rows based

on their position in the results

Products table has the price info,
so we start there:

SELECT * FROM Products

This placeholder will
change in step 4.

What’s the average price of a bike car rack?
1. FROM chooses the table of

interest
2. WHERE throws out irrelevant

rows
3. GROUP BY identifies rows to

combine
4. SELECT tells what values to

return (allowing math and
aggregation)

5. HAVING throws out irrelevant
rows (after aggregation)

6. ORDER BY sorts
7. LIMIT throws out rows based

on their position in the results

We only need the bike rack
products, so we filter on
CategoryID = 5

SELECT * FROM Products
WHERE CategoryID = 5;

What’s the average price of a bike car rack?
1. FROM chooses the table of

interest
2. WHERE throws out irrelevant

rows
3. GROUP BY identifies rows to

combine
4. SELECT tells what values to

return (allowing math and
aggregation)

5. HAVING throws out irrelevant
rows (after aggregation)

6. ORDER BY sorts
7. LIMIT throws out rows based

on their position in the results

A GROUP BY statement is not
needed because we will group
all of the rows together.

SELECT * FROM Products
WHERE CategoryID = 5

What’s the average price of a bike car rack?
1. FROM chooses the table of

interest
2. WHERE throws out irrelevant

rows
3. GROUP BY identifies rows to

combine
4. SELECT tells what values to

return (allowing math and
aggregation)

5. HAVING throws out irrelevant
rows (after aggregation)

6. ORDER BY sorts
7. LIMIT throws out rows based

on their position in the results

We want the RetailPrice column,
and we want to aggregate all
the rows with the average
function

SELECT
AVG(RetailPrice)
FROM Products WHERE
CategoryID = 5

Recipes.sqlite (download it from Canvas)

• Print an alphabetically sorted list of ingredients (hint: ORDER BY).
•How many times is butter used as an ingredient?
•How many ingredients are in the Yorkshire Pudding recipe?
•What percentage of ingredients are vegetarian? Vegan?
•How many recipes have multi-word names? Nine-letter names?

Print an alphabetically sorted list of ingredients (hint: ORDER BY).

How many times is butter used as an ingredient?

How many ingredients are in the Yorkshire Pudding recipe?

What percentage of ingredients are vegetarian?

How many recipes have multi-word names? Nine-letter names?

Recipes.sqlite (answers)
• Print an alphabetically sorted list of ingredients (hint: ORDER BY).

SELECT IngredientName FROM Ingredients ORDER BY IngredientName;

• How many times is butter used as an ingredient?
SELECT COUNT(*) FROM Recipe_Ingredients WHERE IngredientID=47;

• How many ingredients are in the Yorkshire Pudding recipe?
SELECT COUNT(*) FROM Recipe_Ingredients WHERE RecipeID=10;

• What percentage of ingredients are vegetarian?
SELECT 100.0* COUNT(*)/(SELECT COUNT(*) FROM Ingredients)
FROM Ingredients WHERE IngredientClassID NOT IN (2, 10);

• How many recipes have multi-word names? Nine-letter names?
SELECT COUNT(*) FROM Recipes WHERE RecipeTitle LIKE "% %";
SELECT COUNT(*) FROM Recipes WHERE RecipeTitle LIKE "_________";
SELECT COUNT(*) FROM Recipes WHERE LENGTH(RecipeTitle) = 9;

Recap: SQL Basics
• Showed syntax diagram for SELECT.
•Described my 7-step process for

building a SELECT query.
• Start with a short query:

SELECT * FROM some_table
• Gradually refine the results, making the

query more complex.
• Choose table, filter, choose columns,

apply mathematic operations, sort, etc.

•Demonstrated how to build a query to
answer a few questions about recipes.

