EECS-317 Data Management and
Information Processing

Lecture 1 — Course Logistics &
Modeling Data with Tables

Steve Tarzia

Spring 2019

Northwestern

What is/are Data?

EECS-317 1n a nutshell

* Learn how to handle real-wortld, comzplex, messy data with
SQL relational databases:

* A powertful foundational technology
* Like a filesystem, but better
* (easy queries, indexing, concurrency, crash tolerance)
* Roughly speaking “Data Science” is:
* Data management (#bzs course!)

* Statistics (eg.,, IEMS-304 Statistical Methods for Data Mining, or EECS-349)
* Visualization (eg., PSYCH-245 Presenting Ideas and Data)

You’ll learn to answer questions (about the past) using complex data sets

Data are not just numbers

* “Simple” data sets are just arrays or matrices of numbers:
* Time-series of stock price data
* matrix ot pixel colors in an image

* 3D “matrix” of atmospheric temperatures in a weather simulation.

* Complex data also represent relationships
* For example, the course scheduling information at Northwestern
* It’s not just a sequence of numbers.
* It’s is a complex web of students, professors, courses, classrooms, grades, etc.
* This course will teach you how to handle such data.

Things you cannot do with Excel and Matlab

* Model complex data relationships
* Spreadsheets and matrices are very limiting formats
* Every row has a fixed number of attributes (columns)
* Can’t model one-to-many and many-to-many relationships
* You can try using multiple spreadsheet tabs or multiple matrices for different
types of data, but linking them is difficult
* Enforce data integrity constraints
* Spreadsheet cells can have all kinds of weird data
* Matlab matrices cannot easily handle anything other than numbers

* Keep data and analysis separate

A C D E F G
1
2
3 Company Name Invoice Date Delivery Date Amounts
4 |Jenny 01.09.2007 1900/01/00 2057
5 01.11.2007 1900/01/00 2669
6 |Jenny Total 2669 Unwanted
7 |Sam 1900/01/01 1900/01/00 1426 Rows
8 1998/01/01 01.01.1998 1185
9 Gaps that 1998/01/01 1900/01/00 2359
10 need to be 1998/01/01 01.06.1998 1886
11 filled in 1998/01/01 1900/01/00 2359
12 2000/07/01 01.07.2000 2486
13 |Sam Total 9342
14 Unwanted
15 Page 1 Rows
16
17 Peter 2000/01/01 1900/01/00 2385
18 1975/04/01 1900/01/00 0
19 2000/04/01 1900/01/00 0,000 et ey
20 2005/06/01 1900/01/00 7 293.07 working
21 1993/07/01 1900/01/00 42 717 .42
22 1993/07/01 01.07.1993 55 872.63
23 Dates not 01.08.2000 1900/01/00 40 176.80
24 working 01.09.2000 1900/01/00 1585
25 01.10.2001 1900/01/00 1384
26 01.10.2004 01.10.2004 01518

)
J

Nd 4N AT

Nd 4N AT 'ﬂl\l’"

SQL database example

Recipe_Ingredients
¥ RecipelD
v RecipeSegqNo
IngredientlD
MeasureAmountID
Amount

Recipe_Classes ’ Recipes ‘ ’
¥ RecipeClassiD - ¥ RecipelD 22
RecipeClassDescription _L RecipeTitle
RecipeClassiD —
Preparation
Notes
Ingredient_Classes 5 ‘ Ingredients)
¥ IngredientClassID § IngredientiD ¥
IngredientClassDescription _L IngredientName
IngredientClassiD
MeasureAmountID —

'd

Measurements

¥ MeasureAmountiD
MeasurementDescription

* This is the data seherza — how 1t’s organized, not the recipe data itself.

* First design the structure of the data, then fill it in.

Questions to be answered from the recipe DB

* How many steps are in the “Chocolate chip cookie™ reciper
* What are the titles of the recipes that have seatood ingredients?
* Do any recipes use the same ingredient twice?

* Which recipe has the greatest number of steps?
* Htc.

PATSTAT: European
Patent Office’s

International Patent
Database

e 29 cross-referenced
tables

e 6 DVDs of data

e 119GB of CSV files
atter unzipping

* This example has bot
complex structure an
lots of data entries.

3.2

Title, abstract

Relations between applications

Logical model diagram

TLS202_APPLN_TITLE

PK,FK1

APPLN_ID

APPLN_TITLELG [0

APPLN_TITLE

TLS203_APPLN_ABSTR

PK,FK1

APPLN_ID
APPLN_ABSTRACT_LG
APPLN_ABSTRACT

TLS204_APPLN_PRIOR

TLS209_APPLN_IPC

APPLN_ID
IPC CLASS SYMBOL
IPC_CLASS_LEVEL
IPC_VERSION
IPC_VALUE
IPC_POSITION
IPC_GENER_AUTH

PKFK1
PK

TLS210_APPL_N_CLS

TLS222_APPLN_JP_CLASS

TLS216_APPLN_CONTN

PK.FK1
PKFK2

APPLN_ID

CONTN_TYPE

FK1—

—FKZ—\

PK,FK1 |
PK,FK2 N FK1
PRIOR_APPLN_SEQ_NR
./ K —_—
. FK2!
TLS205_TECH_REL |
PKFK1 | APPLN_ID N
PKFK2 | TECH REL APPLN FK2

PKFK1
PK

PK JP_CLASS_SYMBOL

APPLN_ID
JP_CLASS_SCHEME

PK.FK1 [APPLN_ID
PK

TLS223_APPLN_DOCUS

TLS224_APPLN_CPC

PKFK1 [APPLN ID

PK CPC_CIASS_SYMBOL

PK
CPC_VERSION
CPC_VALUE
CPC_POSITION

CPC_GENER_AUTH

Family citations

(product 14.24.1: PATSTAT Legal Status; to be purchased separately)

Legal Events

Reference tables

PKFK1 | APELN_ID
PK

DISCONTINUED

\ 4 TLS229_APPLN_NACE2
TLS201_APPLN < PKFK1 | APPLN_ID
PK.
PK [APPLN ID .
APPLN_AUTH WEIGHY)
* APPLN_NR
TLS228_DOCDB_FAM_CITN APPLN_KIND TLS215_CITN_CATEG
FK1I—p] APPLN_FILING_DATE TLS230_APPLN_TECHN_FIELD P
PKFK1 | DOCDB_FAMILY_ID APPLN_FILING_YEAR PKFK1 Cal TUBLN D
PKFK2 |CITED_DOCDB_FAMILY_ID » APPLN_NR_EPODOC < PKFK1 | APPLNID PK mg TN_CATEG
APPLN_NR_ORIGINAL PK
see Note B IPR_TYPE N WEIGHT
INTERNAT_APPLN_ID .
INT_PHASE
REG_PHASE
| TLS212_CITATION
NAT_PHASE P SHEee
EARLIEST_FILING_DATE (4 PKFK1 | PAT PUBLN ID
TLS231_INPADOC_LEGAL_EVENT * - EARLIEST_FILING_YEAR . PK TN
EARLIEST_FILING_ID
- ! TLS211_PAT_PUBLN CITN_ORIGIN
PKFK1 | APPLN_ID * ——FK1—p EARLIEST_PUBLN_DATE — FK2 CITED_PAT_PUBLN_ID
PK = EARLIEST_PUBLN_YEAR |ggsee Note A— PK | PAT_PUBLN_ID [—FK1— FKa CITED_APPLN_ID
EVENT_TYPE * EARLIEST_PAT_PUBLN_ID N PUBLN_AUTH . PAT_CITN_SEQ_NR
FK2 EVENT_AUTH * GRANTED PUBLN_NR <2 FK3 CITED_NPL_PUBLN_ID
FK2 EVENT_CODE * DOCDB_FAMILY_ID PUBLN_NR_ORIGINAL NPL_CITN_SEQ_NR
EVENT_PUBLN_DATE * INPADOC_FAMILY_ID PUBLN_KIND . CITN_GENER_AUTH
EVENT_EFFECTIVE_DATE * DOCDB_FAMILY_SIZE FK1 | APPLNID
EVENT_TEXT * NB_CITING_DOCDB_FAM PUBLN_DATE
REF_DOC_AUTH * NB_APPLICANTS PUBLN_LG FK3 1"
REF_DOC_NR* NB_INVENTORS PUBLN_FIRST_GRANT
REF_DOC_KIND * PUBLN_CLAIMS
REF_DOC_DATE * T TLS214_NPL_PUBLN
REF_DOC_TEXT *
PARTY_TVPE * 1 PK | NPL_PUBLN_ID
PARTY_SEQ_NR * . L FKi NPL_TYPE
PARTY NEW * | NPL_BIBLIO
PARTY OLD * NPL_AUTHOR
SPC_NR* TLS207_PERS_APPLN TLS227_PERS_PUBLN NESILE
SPC_FILING_DATE * NPL_TITLE2
SPC_PATENT_EXPIRY_DATE * PKFK2 | PERSON_ID PK.FK2 |PERSON_ID NPL_EDITOR
SPC_EXTENSION_DATE * PKFK1 | APPLN_ID PKFK1 | PAT_PUBLN_ID ugt-:g;b“EME
SPC_TEXT * PK APPLT_SEQ _NR PK APPLT_SEQ NR -
DESIGNATED_STATES * PK INVT_SEQ_NR PK INVT_SEQ_NR RERSEU BAPIATE
EXTENSION_STATES * T T z:t_zggb“sfggﬁ”g
FEE_COUNTRY * -
FEE_PAYMENT_DATE * FK2 * FK2 * NPL_PAGE_FIRST
FEE_RENEWAL_DATE * v \ 4 ﬁﬁt-i.’??%ﬁm.;
EE] 5 ¥ A
LAPSE_COUNTRY * TLS206_PERSON & TLS906_PERSON TLS226_PERSON_ORIG NPL_DOI
LAPSE_DATE * NPL_ISBN
LAPSE_TEXT * PK | PERSON_ID PK NOL_ISSN
e ATEICOUNR PERSON_NAME FK1 | PERSON_ID ONLINE_AVAILABILITY
REINSTATE_DATE * PERSON_ADDRESS SOURCE ONLINE_CLASSIFICATION
REINSTATE TEXT * PERSON_CTRY_CODE SOURCE_VERSION ONLINE_SEARCH_DATE
CLASS_SCHEME * LR NAME_FREEFORM
CLASS_SYMBOL * NUTS_LEVEL LAST_NAME
= DOC_STD_NAME_ID FIRST_NAME
DOC_STD_NAME MIDDLE_NAME
a1 PSN_ID ADDRESS_FREEFORM
PSN_NAME ADDRESS_1
PSN_LEVEL ADDRESS_2
A 4 PSN_SECTOR — ADDRESS_3
TLS803_LEGAL_EVENT_CODE * HAN_ID v
PK | EVENT AUTH*® i - gg:g:ﬁ
HAN_HARMONIZED STREET
PK | EVENT CODE * i
EVENT_IMPACT * 2IP. CODE
EVENT_DESCR* S
EVENT_DESCR_ORIG * PERSONICTRUICODE
LECG_NAME * el
LECGTDESCR " :g?g:\mcg_cmv_cong
TLS801_COUNTRY TLS901_TECHN_FIELD_IPC TLS902_IPC_NACE2 TLS904_NUTS
PK | CTRY_CODE PK PK |IPC PK | NUTS3
ISO_ALPHA3 TECHN_FIELD_NR PK | NOT_WITH_IPC NUTS3_NAME
ST3_NAME TECHN_SECTOR PK | UNLESS_WITH_IPC
STATE_INDICATOR TECHN_FIELD PK
CONTINENT NACE2_WEIGHT
EU_MEMBER NACE2_DESCR
EPO_MEMBER
OECD_MEMBER

Classifications

Industries, Technical fields

Publications, citations

Applicants, inventors

Ditticulties in plain Python, R, C++, Java, etc.
* Working with data that 1s larger than the computer’s RAM (scalability)

* Keeping your data around after your program finishes (persistence)

* BEfficiently searching through lots of data (izdexing)

* Basily filtering and summarizing data (guerying)

* Sharing data between multiple applications (concurrency)

Computation and data management typically use different tools.

* Many systems use both SQL and a general-purpose language.

The Goal: Easy & Clean Descriptive Analytics

Answer a wide variety of complex questions using the same database:

* Where did our 10 biggest customers live in 20077

SELECT customer.name, customer.city, customer.province FROM
customer JOIN order ON order.customer == customer.id
JOIN order_item ON order_item.order == order.id
JOIN product ON order item.product = product.id
WHERE order.placed >= “2007-01-01” AND order.placed < “2008-01-01"
GROUP BY customer.id
ORDER BY SUM(order_item.qty * product.price) DESC

LIMIT 10;

\ J
Y

This is code in the SQL language.

* How many widgets are left in stock?

* What is the average price of the chairs we sell?

Database Management Systems (DBMSs)

* A DBMS i1s a data management software that allows users to define
databases, load them with data, and query them.

* Eg., Oracle, MS SQL Server, MySQL, PostgreSQL, (SQLite, Access)
* Often run on a remote, multi-user server

* Typically you need to know the hostname and have a username and password.

* May be connected to one or more software applications or may stand
alone.

* Client libraries exist for every common programming language
* But you usually query the database using the SQL language

* You purchase/download a DBMS, then use it to create your own
databases.

Course Outline

* SQL relational databases: * Getting data from the real world:

* Numeric formats
* Binary, integers, tloats, precision
* Dates and times

* Structured Query Language (SQL)

* Select, create table, update, delete . T di
* Joining tables €Xt encodings

* Subqueries & temporary tables * ASCII, UTF-8, special characters

* Indexes and execution plans ° Organizing data in files
* CSV, XML, JSON

* Messy data

* Missing entries, fuzzy matching

* Data modelling

* One-to-many, many-to-many .
relationships * Regular expressions

* Integrity & foreign key constraints * Data APIs
* Web scraping

Prerequisites

* Very few.
* You should have done some programming in some language.

* | assume you have used spreadsheets.

NOTE:

* Computer Science and Computer Engineering students will not get
credit for this course, except as an unrestricted elective.

* They should take EECS-339 instead.

Questions about course
content?

Course Logistics

* All materials and HW submission will be on Canvas
* Lecture slides and videos will be posted (Panopto section in Canvas)
* Ask your questions on Piazza (not by email)

* TA is Panitan Wongse-Ammat

* Peer Mentors (like TAs):
* Amanda Demopoulos, Moli Mesulam, Keren Zhou, Tianhao Zhang

* Exams will be open book and open notes (no sharing books or papers)

* Midterm Exam is Thursday May 2°¢ during class.
* Final Exam is Thurs June 6™ or Friday June 147

Office hours

* TA/PM office hours in Mudd 3303:
* Monday: 1:30-3:30pm
* Tuesday: 12-2pm
* Wednesday: 1:30-5pm
* Prof. Tarzia’s office hours (in Mudd 3225):

* Mon 1-3pm, Tues 3:30-4:30pm,
Wed 3-5pm, Thurs 3:30-4:30pm

Optional Reference Books

Hernandez “Database Design for Viescas & Hernandez “SQL Queries
Mere Mortals” (330 on Amazon) for Mere Mortals” ($32 on Amazon)

2 A e
Michael J. Hernandez vy John L. Viescas
seeword by Ken Gétz Foreword by Keith W, |

DATABASE
DESIGN SQL QUERIES

FOR MERE MORTALS P> FOR MERE MORTALS

THIRD EDITION

FOURTH EDITION

A Hands-On Guide to Relati I Database Desi
D e AT S e ArHands-On Guide to Data Manipulation in S

Software-Independent Approach!

Software-Independent Approach!
vork with datat fiware such s Access, MS SOLS,

Grading

* Homework (6 X 6.67% = 40%), including a final project.
* Midterm exam (25%)
* Final exam (35%o)

Tentattive Homework

* HW 1, 2, 3: SQL quertes
* Write SQL queries to perform analytics on a small, local database (SQLite).
* Wire more advanced queries.

* Connect to a large, remote database.

* HW 4: Getting data

* Numeric types, regular expressions

* HW 5, 6: Database design project

* Design a data model from scratch to model a data domain of your choice.
* Load data & perform queries.

Questions about logistics?

Why use a relational databaser

* Scalability — work with data larger than computer’s RAM

* Persistence — keep data around after your program finishes

* Indexing — etficiently sort & search along various dimensions
* Integrity — restrict data type, disallow duplicate entries

* Deduplication — save space, keep common data consistent

* Concurrency — multiple users or applications can read/write
* Security — different users can have access to specific data

* “Researchability” — SQL allows you to concisely express analysis

Tables are the main concept in relational DBs

Table name

4 Columns
1 Becky G. 1131 Poe Road Houston
Novick
3 Rows 2 Pamela C. 3554 College Greenville
Tweed View
3 Danny C. Bost | 1720 Gateway | Brattleboro
Ave

DB design process answers these questions:

 What tables do we need?

* How to logically separate
the data?

* What columns? 1 Becky G. 1131 Poe Houston
* Data types for columns? Novick Road
* How will rows be uniquely 2 Pamela C. | 3554 College Greenville
identified? Tweed View
* Are some columns 3 Danny C. 1720 Brattleboro
optional? Bost Gateway Ave

e How will tables be linked?

Sometimes we start with one redundant table and break it
down to reflect the logical components

11 Bob Industrial Eng. Tech 100 1-1000
20 Betsy Computer Sci. Ford 100 1-5003
21 Fran Industrial Eng. Tech 101 1-1000
22 Frank Chemistry Tech 102 1-1000
35 Sarah Physics Mudd 200 1-2005
40 Sam Materials Sci. Cook 10 1-3004
54 Pat Computer Sci. Ford 102 1-5003

This 1s called Normalization

11 Bob 1
20 Betsy 2
21 Fran 1
22 Frank 4
35 Sarah 5
40 Sam 7
54 Pat 2

1 Industrial Eng. 1
2 Computer Sci. 2
4 Chemistry 1
5 Physics 4
7 5

Materials Sci.

* Removes redundancy
* Save space

* Edit values in one place, so duplicates don’t become inconsistent

* Tables can be populated separately

1 Tech 1-1000
2 Ford 1-5003
4 | Mudd 1-2005
5 Cook 1-3004
6 | Garage 1-6001

* But, you are adding a new 74 column for each table

Tables

* Represent objects, events, or relationships
* Each of its rows must be uniquely identifiable
* Has attributes that the DB will store in columns

* Can refer to rows in other tables
* Obyects: people, places, or things
* Events: usually associated with a specific time. Can recur.

* Relationships: associations

Designing a set of tables 1s called data modelling, and 1t’s best learned by
example.

Database Schema defines the data’s structure

* Also called a data model
* [t’s metadata — data about data

* Defines the tables, including:
* Columns in each table (both the name and #pe)
* Primary Key for each table
* Foreign Keys that link tables

11 | Bob 100 1
20 | Betsy 100 2
21 | Fran 101 1
22 | Frank 102 4
35 | Sarah 200 5
40 | Sam 10 7
54 | Pat 102 2

DB Design diagram:

1 Industrial Eng. 1 1

2 | Computer Sci. 2 2 | Ford 1-5003
4 Chemistry 1 4 | Mudd 1-2005
5 Physics 4 / 5 | Cook 1-3004
7 | Materials Sci. 5 / 6 | Garage | 1-6001

Online retail example

Some columns are just internal references

name order customer name
description product totalCost streetAddress
price quantity placedTime city
inventoryQty shippedTime province
trackingNumber postalCode
country

Can make the model more complex

Basic steps

e Create table:

* Table has a name
* Table has certain named & #ped columns.

* Add rows to table

* Each row gives exactly one value to each
column (except optional columns can take a
null or empty value in a row).

* Write queries to fetch data from the table.

id | name

room

depart-
ment

Recap

* Complex data are more than just streams of numbers!

° Data model or schema defines the data’s structure

e It’s a list of Zables, each with a fixed number of colunins
* Data rows are added after the data model 1s designed.

* These are called Relational or SOI. databases.

* Can represent much more complex data than a simple spreadsheet.

TODO:
* Maybe buy or print a SQL book.

* Download DB browser for SQLite http://sglitebrowser.org/
* Open and view the sample databases on Canvas (.sqlite files)

http://sqlitebrowser.org/

