
1

CS-310 Scalable Software Architectures
Lecture 19:

Distributed Computing
Steve Tarzia



2

Last time – Computing Platforms
• Virtual Machines let multiple tenants share a single physical server.
• Apps can be distributed as a VM disk image.

• Containers create a consistent environment for your application.
• Distribute as an image (like a VM disk image, but more lightweight),
• Or as source code + a Dockerfile (a blueprint for the image).

• Serverless functions are code that is staged in the cloud, ready to run:
• They are automatically deployed and run on one or more VMs on demand.
Pros: • Gives more dynamic & fine-grained scalability than container/VM.

• Uses as many machines as needed, when needed.  (zero to 1000s!)
Cons: • “Cold start” delay of  several seconds (to copy code & launch).

• Function runtime is often limited (eg., 15 minutes for Lambda).



3

Easy vs. Hard scalability problems
Easy:
•Handle independent requests from millions of  customers.
• Assume the data is already available to service the requests.
• Trivially parallelizable – use horizontal scaling to divide and conquer.

Hard:
• Perform a calculation using all the data from millions of  customers.
• Eg., build a recommendation system from Amazon order history.
• Requires lots of  coordination, housing data on the compute nodes.
•Must use MapReduce, Spark, etc.
• Luckily, it’s OK if  the calculation takes several hours.



4

“Big Data” problems
• Let’s say you need to run analyses of  10 petabytes of  data each day:
• 1 Petabyte = 1024 Terabytes = 1024*1024 Gigabytes ≈ 1015 bytes 
• Theoretically, a single computer can do this in no less than:

1016 bytes / (80 * 109 bytes/sec) = 125,00 seconds = 35 hours.
PCI express v4 max bandwidth

• However, in practice you’ll find the performance is even slower than this.
• To speed up an analysis you must use many machines to work on the 

problem in parallel.
• The analysis is somehow split into pieces (subproblems)
• Each machine works on subproblems that contribute to the final answer.
• Subproblem results are redistributed to contribute to final solution.
• Parallel data analysis is an active area of  research in industry and academia.



5

Distributed computing
•Data & analysis are distributed across many machines.
•No one machine has direct access to all the data.
•Machines must communicate over a network to share 

data and intermediate results.
•We need some special way to define these analyses.

Data 
slice

Compute 
task

Data 
slice

Compute 
task

Data 
slice

Compute 
task

Data 
slice

Compute 
task

Data 
slice

Compute 
task

Data 
slice

Compute 
task

User 
program

Master
node

Communication Network



6

Example: Find the largest sales order
1. Distribute instructions to all the machines (nodes).
2. Each node computes its own maximum.
3. Intermediate results are sent to a single node.
4. Maximum of  the maximums is calculated.

Data 
slice

Data 
slice

Data 
slice

Data 
slice

Data 
slice

Data 
slice

User 
program

Master
node

Communication Network

User 
program

User 
program

User 
program

User 
program

User 
program

User 
program

Jan. 
orders

Feb. 
orders

Mar. 
orders

Apr. 
orders

May 
orders

Jun. 
orders



7

Example: Find the largest sales order
1. Distribute instructions to all the machines (nodes).
2. Each node computes its own maximum.
3. Intermediate results are sent to a single node.
4. Maximum of  the maximums is calculated.

Jan. 
orders

Max=
$32,344

Feb. 
orders

Max= 
$54,321

Mar. 
orders

Max= 
$10,302

Apr. 
orders

Max= 
$31,204

May 
orders

Max= 
$4,291

Jun. 
orders

Max= 
$33,201

Communication Network

Master
node



8

Example: Find the largest sales order
1. Distribute instructions to all the machines (nodes).
2. Each node computes its own maximum.
3. Intermediate results are sent to a single node.
4. Maximum of  the maximums is calculated.

Jan. 
orders

Max=
$32,344

Feb. 
orders

Max= 
$54,321

Mar. 
orders

Max= 
$10,302

Apr. 
orders

Max= 
$31,204

May 
orders

Max= 
$4,291

Jun. 
orders

Max= 
$33,201

Communication Network

Master
node

Max=
$32,344

Max= 
$54,321Max= 

$10,302

Max= 
$31,204Max= 

$4,291Max= 
$33,201



9

Example: Find the largest sales order
1. Distribute instructions to all the machines (nodes).
2. Each node computes its own maximum.
3. Intermediate results are sent to a single node.
4. Maximum of  the maximums is calculated.

Jan. 
orders

Max=
$32,344

Feb. 
orders

Max= 
$54,321

Mar. 
orders

Max= 
$10,302

Apr. 
orders

Max= 
$31,204

May 
orders

Max= 
$4,291

Jun. 
orders

Max= 
$33,201

Max of  
monthly 
maxes = 
$54,321

Communication Network



10

Maximum aggregator is trivially parallelizable
•Most of  the work can be done with no coordination.
• Very little communication is required.

•What other calculations are easy to parallelize?
• Sum, min, max, mean,   search/grep, etc. 

•How would you parallelize median calculation if  data is distributed?
• Hint: first look up the basic (sequential) quickselect algorithm.
• Can be parallelized by sharing pivot value and size of  subset set ≤ pivot.
• One node (leader) chooses a pivot, shares with all other nodes.
• Each node rearranges its data into two sets: L (≤ pivot) and R (> pivot).
• Nodes send (|L|) to the leader.  Leader chooses a new pivot either greater or less than 

the previous pivot, depending on whether on sum(|L|) < n/2.
• Repeat on subset L or R (as appropriate) until sum(|L|) == n/2

STOP
and

THINK

https://en.wikipedia.org/wiki/Quickselect


11

Basic features of  distributed computing
• Input data is split among many nodes.
• Code must be distributed to many connected nodes.
•Many rounds of  communication may be needed for an algorithm.

• A distributed algorithm can be written from scratch in any language by: 
• reading/writing memory and files, and
• making network connections to other nodes to communicate.

•However, distributed computing frameworks have been developed 
to manage the common tasks required by all big data analyses.
• Eg.: MapReduce/Hadoop, Dryad, Spark, MPI, OpenMP.
• Computing frameworks require you to follow their own patterns, but by doing 

so you gain many powerful features (analogous to using a DB for storage).



12

Hadoop is a distributed computing platform
• It’s a type of  computing cluster for storing data and running analyses.
•Main components are:
• HDFS – Hadoop Distributed File System for storing the data to be analyzed and 

also for storing intermediate and final results.
• Data is distributed across all the nodes (machines) in the cluster.
• HDFS is closely coupled to the analysis engine.
• Moving/querying the data would be too slow, so we run analysis on the storage cluster.

• MapReduce – a programming model for defining the parallel analysis steps.
• Analysis is usually written in Java, but other languages are possible (Python, R, etc.)
• Analysis is defined in terms of  two main operations – Map and Reduce.
• Based on a 2004 Google article: https://research.google/pubs/pub62/

https://research.google/pubs/pub62/


13

MapReduce
MapReduce is a framework for parallel processing imposing a certain pattern:
• First, Map does something, producing many intermediate results.
• Later, Reduce aggregates the intermediate results.
• The framework handles the distribution of  intermediate results, job 

scheduling, etc.  Programmer just implements Map and Reduce.

Input

Key-value pairs

Map tasks Reduce tasks

Output



14

MapReduce programming model
• Input & Output: each a set of  key/value pairs
• Programmer’s task is to define just two functions that will complete the 

work in parallel:

map(in_key, in_value) -> List(⟨out_key, intermediate_value ⟩)

• Processes input key/value pair
• Usually key=filename, value=line of  text

• Produces a set of  intermediate pairs

reduce(out_key, Iterator(intermediate_value)) -> list(out_value)

• Combines all intermediate values for a particular key
• Produces a set of  merged output values (usually just one)



15

MapReduce example: frequency of  words
map(String input_key, String input_value):

// input_key: document name
// input_value: document contents
for each word w in input_value:
return List(⟨w, 1⟩);

reduce(String output_key, Iterator intermediate_values):
// output_key: a word
// output_values: a list of counts
int result = 0;
for each v in intermediate_values:
result += v;

return List(result);  // implicitly, output_key is also part of  the output.



16Counting words example

Splitting and shuffling steps are done automatically by the Hadoop runtime system

map(String input_key,
String input_value):
// input_key: document name
// input_value: document contents
for each word w in input_value:

return (w, "1");

reduce(String output_key,
Iterator intermediate_values):

// output_key: a word
// output_values: a list of counts
int result = 0;
for each v in intermediate_values:

result += v;
return result;

Map Output

Reduce Output



17

Communication between many nodes
The inter-node communication is 
handled entirely by:
• The shuffle step, and
• The distributed file system 

splitting the data across the 
compute nodes.
• The input files stored on each 

node will be assigned to that 
node's mapper.  This drastically 
reduces communication overhead.

The user code does not do any 
explicit communication.



18

The Hadoop framework provides:
• The Hadoop Distributed File System (HDFS) for distributing input 

and output data among many nodes.
• Input to a program is usually a folder with files distributed on many nodes.
• Again, the output of  the program is a series of  files written to a folder.

• A runtime system to manage job scheduling and coordination:
• Many copies of  your program are made (forked) and run on many nodes.
• One node is set to be the “master.”  It assigns work (input data) to workers.
• Workers (mappers and reducers) write results to HDFS and notify the master.

• A scalable, distributed sorting algorithm for the “shuffling” step.
• All the intermediate data (produced by the mappers) must be sorted by the key

so all data for a single key can be sent to one reducer.



19

To see lots of  examples of  MapReduce programs:
• https://research.google/pubs/pub62/

MapReduce tips:
• You can chain multiple MapReduces:

(map1, reduce1, map2, reduce2)
• For complex problems, think about specifying a series of  intermediate 

results.

https://research.google/pubs/pub62/


20

Spark improves on MapReduce/Hadoop ideas
• Spark is very similar to Hadoop/MapReduce, but it solves some 

performance issues and its programs are easier to write and read.
•Hadoop is slowed by using the filesystem too much.
• Recall that disk latency is 10M× greater than memory.

• Every Hadoop step uses the disk; it stores all of  the following on disk:
• Inputs to Map.
• Intermediate values output by Map.
• Reduce results.

•Why?  Writing to disk simplifies data sharing and fault tolerance.
•Many iterations of  MapReduce may be needed to solve a task (eg., 

PageRank).  This is messy to write and involves a lot of  disk activity.



21

Spark innovations
• User writes a driver program which can have an arbitrary number of  

steps.  Analysis can also be run interactively for data exploration.
•More parallel operations are available (not just Map and Reduce):
• flatMap (like Hadoop map), map (one to one), filter (return a subset).
• reduceByKey (like Hadoop reduce), reduce (to one node).
• forEach (process Scala collection items in parallel),

collect (send all elements back to the driver node)
•Operations to improve performance:
• A cache operation to keep a data set in memory between parallel tasks.
• accumulators with results only visible to the driver.

Allows parallel processing 
without HDFS.



22

Resilient Distributed Datasets (RDDs)
• The most important innovation of  Spark is to represent intermediate values 

as reproducible objects instead of  saving to disk.
• RDDs are either:
• A filename referring to something stored in HDFS.
• A reference to an in-memory collection (eg., List) in the driver program.
• The result of  a parallel transformation of  another RDD (eg., map, filter).
• A save or cache action applied to an RDD.  This does not change the data.

• An intermediate result might be represented as:
• myList[400:500].map(i -> sqrt(i))   //myList is in driver memory
• textFile("data0032.txt").map(line -> line.split(" ")).filter(w -> w=="Steve") 

• If  node processing either of  the data above crashes, the in-memory copy is lost L
• However, it can be re-generated from the lines above by re-running the fraction of  

the analysis that led to that data.  J
• Data is ephemeral (in memory-only) but data provenance is safeguarded. 

If  the driver program crashes 
the analysis will fail anyway. 



23

Spark example: Text Search
val file = spark.textFile("hdfs://...")
val errs = file.filter(_.contains("ERROR"))
val ones = errs.map(_ => 1)
val count = ones.reduce(_+_)

• The first three lines all define new RDDs.
• errs and ones are can be lazy-evaluated: for efficiency, don't run the 

filter and map until we know the final destination of  the data.



24

Example: Logistic Regression (ML classification)
// Read points from a text file and cache them
val points = spark.textFile(...)

.map(parsePoint).cache()

// Initialize w to random D-dimensional vector
var w = Vector.random(D)

// Run multiple iterations to update w
for (i <- 1 to ITERATIONS) {

val grad = spark.accumulator(new Vector(D))

points.foreach(p -> {  // Runs in parallel
val s = (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y

grad += s * p.x

})

w -= grad.value

}

• Find a hyperplane w
that best separates 
two sets of  points.
• Solve with gradient 

descent.
• cache operation keeps 

points in memory 
through many 
iterations.
• Each training point 

contributes to 
gradient in parallel 
through accumulator.



25

Traditional Parallel Computing
• Scientists have done large parallel computations starting decades before 

“big data” trends and the Internet.
• However, the tools they use are very different.
• Use clusters of  machines with special low-latency networking.
• Called “Supercomputing” or “High Performance Computing” (HPC).

• Data is stored on different nodes than where computing is done.
• Programming is done in C or Fortran.
• Parallelization is done with:
• OpenMP – to automatically parallelize loops, etc.
• MPI – programmer uses gather, scatter, etc., to distribute intermediates.

• Fault tolerance is a major problem in large supercomputing application 
because they can have ~100,000 machines (~10M cores). 



26

Recap
• To efficiently analyze large data sets, it's important to merge 

computation and storage on the same machines.  Minimize transfers.
•Hadoop is an open-source implementation of  MapReduce.
• A framework for parallel computing on Big Data problems.
• Requires programmer to somehow express analysis as Maps and Reduces.
• HDFS distributes input and output data files on the compute nodes.

• Spark improves performance by storing intermediate results in 
memory.
• Resilient Distributed Datasets enable this.
• Syntax is richer, leading to code that is easier to write and read.  Multiple steps 

can be expressed easily.
• It's easier for beginners to get started.  Need not store inputs in HDFS.



27

Architectural concepts in this class:
Computing Platforms:
• Virtual Machines
• Containers.
• Serverless functions.

Programming Models:
• Stateless (micro)services.
• MapReduce/Spark.

Network-level optimization:
• HTTP caches.
• CDNs (Content Delivery Networks).

Coordination:
• Load balancers.
• REST APIs.
• Distributed Message Queues.
• Push Notifications, WebSockets.

Data storage:
• SQL Relational DBs.
• NoSQL DBs.
• Distributed file systems.
• Browser cookies, auth tokens.



28

Class Recap
• The Goal: to learn enough to build your own scalable startup product. 

Bypass the “on the job training” or self-study usually required.
To Explore this Further:
• CS-345 Distributed Systems
• Shared-nothing distributed systems, consistency (NoSQL databases)

• CS-340 Intro to Computer Networking
• Application layer protocols (HTTP, REST APIs)

• CS-343 Operating Systems
• Processes and threads
• Performance of  storage vs RAM

• CS-339 Intro to Databases
• Mostly covers relational database internals.


