(CS-310 Scalable Software Architectures
Lecture 17:

Twitter Design Exercise

Steve Tarzia

Summarizing the quarter so far!

Finally, we have an end-t0-end view ot a basic scalable architecture!
(for services, at least)

* Frontend: Client connects to “the service” via a load balancer.
* Really, the client is being directed to one of many copies of the service.
* Global LLBs (DNS and IP anycast) have no central bottlenecks.
* Local LBs (Reverse Proxy or NAT) provide mid-level scaling and continuous
operation (health checks & rolling updates).
* Services: Implemented by thousands of clones.
* I the code is stateless then any worker can equally handle any request.
* OS/VM can be abstracted away: develop serverless functions or containers.

* Storage: Distributed data stores can handle many requests in parallel.
* NoSQL DBs are implemented as distributed hash tables (shared nothing).
* SQL databases can scale (but not infinitely) with read-replicas or sharding.

Twitter design example

* Imagine it’s represented by a SQL. database with three tables.

SX) currently logged-in tweets table

user: 17055506 id sender _id text timestamp

20 12 just setting up 1142974214

/ my twttr

follower id followee id

> 17055506 12 ~] =

follows table

users table

id screen_name profile_image

A 12 jack 1234567.jpg

Original /simplest design

* When a tweet arrives, just copy it to

* What about reading a user’s feed?
* JOIN tweets and follows table.

* Reads are slower than writes :(

currently logged-in
user: 17055506

follower _id followee_id

follows table

users table

the tweets table. Writes are fast.

SELECT tweets.*, users.* FROM tweets JOIN
users ON tweets.sender id = users.id JOIN
follows ON follows.followee i1d = users.id
WHERE follows.follower 1d = current user

tweets table

id sender_id text timestamp

20 12 just setting up 1142974214

/’ my twttr

id screen_name

profile_image

12 jack

1234567.jpg

Why 1s building my twitter feed slow?

Tweets

843
12

234
523

~ & o1 B~ W N =

just setting ..
Hey y'all, ...
eating this ...

What are ...

Found a ...

Picard manag...

n my car...

2020..

2021...
2021...
2021...
2021...
2021...
2021...

e [t reads from three different tables:

* Users, Follows, Tweets.

* More importantly, the tweets in my feed
are scattered throughout the Tweets table.

* Disks and RAM are both much better at
reading large blocks of contiguous data.

* [f the Tweets table is sharded, it reads
from multiple shards.

Second Twitter design

* Pre-build feeds. Schema is denormalized — each tweet is duplicated and
stored on all follower's feeds. Store feed data in a NoSQL database.

* Hach tweet (write) now requires writing to zany user feeds (maybe millions!)

* Do we want to make tweeting slow for people with 10 million followers?

Fan-out: deliver tweet to » Get home timeline
Tweets for recipient 1)
each follower (up to 31M (website, API) ®
followers per user) T7|Ts|T3|T1 ¢ X
User posts tweet All tweets Tweets for recipient 2
/Ci ™ Tg|T7(T6|T5|T4|T3|T2| T > Tg|Te|T51€ i

Tweets for recipient 3

o
3
o
~
o
A
>0

The slow celebrity tweet

POST
Twitter | Twitter s
phone 200 OK backend [————
app

* A celebrity's tweet triggers 10M database writes, so the request could
take up to a full minute to complete!
+ Solution?
THIN
1. Do the writes asynchronously.
2. Store celebrity tweets differently.

Our theoretical Twitter architecture 2.0

\M\'\\ POST /4week |Tubrer |

Sseemagl

o\ AST

" 200 OK

Movly eadh

* First design used a relational database and did a JOIN to build feeds.

* But pre-building each user’s teed will make reads much faster.

* Also, allows us to use a NoSQL database, putting all of a given user’s data in
one place that’s easy to find (using a distributed hash table).

* Each tweet must be duplicated to all followers. Do this asynchronously.

Getting your feed

Fetch feed data
for user X

[{“author”:”
personl”,
tweet:
“hello world
I like to
twt !}, ..]

Feed DB
(NoSQL)

<.
' /%Mou
DB

The common case (reading a feed) is synchronous and efficient.

1. Validate the authentication token and get the userld.
2. Query a NoSQL database for the feed, with the userld as the key.

* All of the users’ data is on one set of replicas (maybe 3 nodes) so it’s scalable.

3. Build and return a JSON object to the client.

Review

* NoSQL databases can be
designed as shared-nothing
distributed systems.

e Clients can find servers without
consulting a centralized resource.

e Servers need not coordinate
with each other.

* Fach request involves a constant number of servers

Thus, regardless of the number of clients or servers:

To handle larger crowds, just keep
adding more ticket booths.

Sales are independent, so this is a
shared-nothing distributed system.

* The number of clients that can be handled scales directly with the number

of servers. This is petfect scalability.
There is no overhead for growing the system.

Twitter feeds 1n a NoSQIL. database

* We must somehow store everything using the key-value abstraction.

* Keys are users, value includes the latest feed data and other items that
are commonly needed.

* Hash the key (user) to assign each user’s data to set of replicated
storage nodes:

¥ey VZASCE —
Sheve. i%" €. __ 1% t@
bk [tee 1%
Notice that a tweet now requires writing to all Alice R _ ~
of the followers’ feeds! Data is duplicated! BOS’ N I
This is called denormalization. 5%: e ~
Kate —
.,gnu,\m:\w [.,m — e \/\&
DV TT S (—— =
| - T | @

Twitter 1n a Relational Database

* A relational database would give a more logical design.
* Data is normalized, without any duplication.
* A JOIN is done to build a user’s feed:

\\Ser , Tollew s TweeN ¢
r' X Woe. { |ocakion 1 F*)\\wef \%\\‘a\»eQ_ & s daxe | 4xt
el ‘ —1 28 \® =3 2 2eig-ro =B\ | A Mae
28 5335@974\ Evensron S == Aty AN £ [2omeie-to it a .
1B Ry 22 Q120 | Ny T R [3 [ee 0| W Ak
335] 6ok 65 | Roughen “{QB 1= \ 3 | zome0013| s Lomme
V = k & NQW O'; . L‘ 2 \} -172~10 ‘; \\\‘g. -
?- 3 « %\)W 'a‘ i & 3‘“)® i 3 - A\ “\ 20\% -lo s] wetah de,
/ 4 !1 Study 2mu Fueas m | O \oo3 20 |0 vt -0 Yark ot
B T % ¥ B \ ”i’“&”““’”’"l’”“ 'i g

* If the system gets large, we must partition the data into multiple
storage nodes, and this presents a problem in the Tweets table.

13

Partitioning the Tweets table

Tollew s TweeN ¢
Wser . 4
o N vode loeakion Fo\\@ne:r‘ | o\owed & N, daxe | {4kt
o ‘ " —>| 28 \® =3 B IR L R A R R S I, »
Green: partition 1 | RS} SHIEIAreT e s] he TR I 3 (et fWkb o ¢ cannot avor
| © [yew 23 Cwreado ~ “2¢ 1 38 %\:;-:g 2 | 2oi9-10 04| Wy Ak conflicts when
3726] okt ove)S | Boughon ‘“{2{) 2 \\ 3 | Rel-RoiB | Sew e ocioning tweets to
, M&w' o5 A - ' 2o\ V@0 N\ s =
? 3 [gywm-rax F York " |3 N :l\ iy 1] ke mne partitions! &
AN i R I NS 20 | 7010 -0 Yot et
4 s » l (=] l
| a few partitions.

* For scalability, we want to JOIN to only involved

* Follows table can be reasonably partitioned:
* Place follow rows in the same partition as the follower’s user row.

* However, Tweets must be quickly accessible to all followers.
* Followers can be many and diverse, & distributed on many partitions.

* Assigning a tweet from user 3 to partition 1 is great for SteveTarzia, but it’s
probably not the ideal placement for most of the other followers.

14

Data partitioning problem

* We want to split the data into
partitions (storage nodes) such
that:

e Related data 1s on the same node.

* Thus, queries can be served by one
(or a few) nodes.

-

A’ N
ol o A

\
\Q\

’
[}
a1
L
-
o~

<=

»
o

21\ |
e

However, human social networks
are not orderly, there are lots of
random connections.

* Thus, the table of Twitter

“follower” data cannot be cleanly
partitioned.

A random graph, representing a set of people (red dots) ° AﬂY balanced partitioning of the
with random twitter follow relationships (black edges) h will lot fed .
grapn will 10ts 01T €age Crossings.

= B ——, AN
NG ‘, "; -
"L ;~4’
T R
‘:o_,"'_"-'e " s (‘,,
] -
SNy R3e “o,t

Twitter storage tradeoff How can Tiwitter get

the best features of

both designs? /stop

Relational Design: and

Uall!

* Writes are fast/simple.
e Cannot handle lots of data/users.

e Reads are slowetr.

Pre-built Feeds:
* Can use NoSQL,

so much more scalable.

* Duplicates tweets.
* Very wasteful for celebrities with millions of followers.

 Writes are slow.

* Celebrities’ tweets may not reach all user feeds within 5 seconds.
* Lots of publication work is done.

Hybrid Design — Twitter 3.0

* Pre-build feeds for most users.

* But celebrity tweets are stored in a small relational database.

* Fetch a user feed in two steps:
* Get normal-user tweets from pre-built NoSQL feed.

* Query relational database read-replica to get recent tweets from any celebrities
that the user is following,

* Celebrity tweets are relatively rare, so a single primary SQL database
can handle these writes.

* Many read-replicas handle the reads.

16

Twitter Architecture Recap

* Twitter's storage design choices offer a tradeoff between:
* Relational DB: space-efticient, fast writes, but slow reads.
* NoSQL DB: duplicative, slow writes, but fast reads.

* A hybrid design is ideal:
* Most users are consumers (reads > writes): put their tweets in NoSQL.
* Celebrities are different (writes > reads): put their tweets in SQL.

17

