
1

CS-310 Scalable Software Architectures
Lecture 17:

Twitter Design Exercise
Steve Tarzia

2

Summarizing the quarter so far!
Finally, we have an end-to-end view of a basic scalable architecture!

(for services, at least)
• Frontend: Client connects to “the service” via a load balancer.
• Really, the client is being directed to one of many copies of the service.
• Global LBs (DNS and IP anycast) have no central bottlenecks.
• Local LBs (Reverse Proxy or NAT) provide mid-level scaling and continuous

operation (health checks & rolling updates).
• Services: Implemented by thousands of clones.
• If the code is stateless then any worker can equally handle any request.
• OS/VM can be abstracted away: develop serverless functions or containers.

• Storage: Distributed data stores can handle many requests in parallel.
• NoSQL DBs are implemented as distributed hash tables (shared nothing).
• SQL databases can scale (but not infinitely) with read-replicas or sharding.

3

Twitter design example
• Imagine it’s represented by a SQL database with three tables.

4

Original/simplest design
•When a tweet arrives, just copy it to the tweets table. Writes are fast.
•What about reading a user’s feed?
• JOIN tweets and follows table.
• Reads are slower than writes :(

SELECT tweets.*, users.* FROM tweets JOIN
users ON tweets.sender_id = users.id JOIN
follows ON follows.followee_id = users.id
WHERE follows.follower_id = current_user

5

Why is building my twitter feed slow?

• It reads from three different tables:
• Users, Follows, Tweets.

•More importantly, the tweets in my feed
are scattered throughout the Tweets table.
• Disks and RAM are both much better at

reading large blocks of contiguous data.
• If the Tweets table is sharded, it reads

from multiple shards.

id sender text time
1 12 just setting … 2020…

2 4 Hey y'all, … 2021…

3 843 eating this … 2021…

4 12 What are … 2021…

5 234 Found a … 2021…

6 523 Picard manag… 2021…

7 4 in my car… 2021…

STOP
and

THINK

Tweets

6

Second Twitter design
• Pre-build feeds. Schema is denormalized – each tweet is duplicated and

stored on all follower's feeds. Store feed data in a NoSQL database.
• Each tweet (write) now requires writing to many user feeds (maybe millions!)
• Do we want to make tweeting slow for people with 10 million followers?

7

The slow celebrity tweet

• A celebrity's tweet triggers 10M database writes, so the request could
take up to a full minute to complete!
• Solution?

1. Do the writes asynchronously.
2. Store celebrity tweets differently.

STOP
and

THINK

Twitter
phone

app

Twitter
backend

POST

200 OK DB10M insertions

8

• First design used a relational database and did a JOIN to build feeds.
• But pre-building each user’s feed will make reads much faster.
• Also, allows us to use a NoSQL database, putting all of a given user’s data in

one place that’s easy to find (using a distributed hash table).
• Each tweet must be duplicated to all followers. Do this asynchronously.

Our theoretical Twitter architecture 2.0

Feed DB
(NoSQL)

9

The common case (reading a feed) is synchronous and efficient.
1. Validate the authentication token and get the userId.
2. Query a NoSQL database for the feed, with the userId as the key.
• All of the users’ data is on one set of replicas (maybe 3 nodes) so it’s scalable.

3. Build and return a JSON object to the client.

Getting your feed

GET /feed

[{“author”:”
person1”,
tweet:
“hello world
I like to
twt!”},…]

Fetch feed data
for user X

Auth token matches user X

Feed DB
(NoSQL)

10

Review
• NoSQL databases can be

designed as shared-nothing
distributed systems.
• Clients can find servers without

consulting a centralized resource.
• Servers need not coordinate

with each other.
• Each request involves a constant number of servers

Thus, regardless of the number of clients or servers:
• The number of clients that can be handled scales directly with the number

of servers. This is perfect scalability.
There is no overhead for growing the system.

To handle larger crowds, just keep
adding more ticket booths.
Sales are independent, so this is a
shared-nothing distributed system.

11

Twitter feeds in a NoSQL database
•We must somehow store everything using the key-value abstraction.
•Keys are users, value includes the latest feed data and other items that

are commonly needed.
•Hash the key (user) to assign each user’s data to set of replicated

storage nodes:

Notice that a tweet now requires writing to all
of the followers’ feeds! Data is duplicated!
This is called denormalization.

12

Twitter in a Relational Database
• A relational database would give a more logical design.
•Data is normalized, without any duplication.
• A JOIN is done to build a user’s feed:

• If the system gets large, we must partition the data into multiple
storage nodes, and this presents a problem in the Tweets table.

13

Partitioning the Tweets table

• For scalability, we want to JOIN to only involved a few partitions.
• Follows table can be reasonably partitioned:
• Place follow rows in the same partition as the follower’s user row.

• However, Tweets must be quickly accessible to all followers.
• Followers can be many and diverse, & distributed on many partitions.
• Assigning a tweet from user 3 to partition 1 is great for SteveTarzia, but it’s

probably not the ideal placement for most of the other followers.

Green: partition 1 We cannot avoid
conflicts when
assigning tweets to
partitions! 😞

14

Data partitioning problem
•We want to split the data into

partitions (storage nodes) such
that:
• Related data is on the same node.
• Thus, queries can be served by one

(or a few) nodes.
•However, human social networks

are not orderly, there are lots of
random connections.
• Thus, the table of Twitter

“follower” data cannot be cleanly
partitioned.
• Any balanced partitioning of the

graph will lots of edge crossings.
A random graph, representing a set of people (red dots)
with random twitter follow relationships (black edges)

15

Twitter storage tradeoff
Relational Design:
• Writes are fast/simple.
• Cannot handle lots of data/users.
• Reads are slower.
Pre-built Feeds:
• Can use NoSQL,

so much more scalable.
• Duplicates tweets.
• Very wasteful for celebrities with millions of followers.

• Writes are slow.
• Celebrities’ tweets may not reach all user feeds within 5 seconds.
• Lots of publication work is done.

How can Twitter get
the best features of

both designs? STOP
and

THINK

16

Hybrid Design – Twitter 3.0
• Pre-build feeds for most users.
• But celebrity tweets are stored in a small relational database.
• Fetch a user feed in two steps:
• Get normal-user tweets from pre-built NoSQL feed.
• Query relational database read-replica to get recent tweets from any celebrities

that the user is following.
• Celebrity tweets are relatively rare, so a single primary SQL database

can handle these writes.
• Many read-replicas handle the reads.

17

Twitter Architecture Recap
• Twitter's storage design choices offer a tradeoff between:
• Relational DB: space-efficient, fast writes, but slow reads.
• NoSQL DB: duplicative, slow writes, but fast reads.

• A hybrid design is ideal:
• Most users are consumers (reads > writes): put their tweets in NoSQL.
• Celebrities are different (writes > reads): put their tweets in SQL.

