(CS-310 Scalable Software Architectures
Lecture 16:

Asynchronous Processing

Steve Tarzia

Recap — Choosing a data store

Data store Examples Data abstraction
SQL Relational DB MySQL, Oracle Tables, rows, columns
Column-oriented DB Snowflake, BigQuery Tables, rows, columns
Search engine Elastic search JSON, text
Document store MongoDB Key — JSON
Distributed cache Redis Key — wvalue (lists, sets, etc.)
NoSQL DB Cassandra, Dynamo 2D Key-value (pseudo-cols)
Cloud object store S3, Azure Blobs K-V / Filename-contents
Cluster filesystem Hadoop dist. fs. K-V / Filename-contents
Networked filesystem NTS, EFS, EBS Filename-contents

} Highly structured

Semi-structured

> Files with data "blobs"

-

Your choice depends mainly on the structure of data and pattern of access.
* Transactions are easy on SQL DBs, available but slow on some NoSQL DBs

Ways to couple services

* Responses are important because:

* Responses acknowledge that the request was
received.

* Responses may contain data that the client needs.

* Responses may indicate a failure which the client
must somehow react to (perhaps by retrying).

* So far, we have examined synchronous APIs.

* The client waits for the server to finish
processing, hence the two are synchronized.

* Also called a blocking request.

* This follows the pattern of HT'TP and REST,
which fetch documents/data.

presmumop sossed owi],

Calculate the
response

But what it the request is really long?

Sender’s Mail Receiver’s

Client Mail Server Relay Mail Serve:

* For example, a request
may involve lots of other s

. nd
services. W}

* The client may not care to o Tend g,
. . . CMajj
wait until delivery of the . \
message is verified.

This request

takes a long a cece ed
time to handle : TRty

premumop sassed owiT,

Asynchronous Alternative

, Sendet’s Mail Receiver’s
° Maybe it’s OK to just Client Mail Server Relay Mail Serve:
acknowledge that the s
request was received, and %}
finish the work later. S

-
. : gy
* Pro: Allows client to E w}
quickly move one. - ot
. A
* Con: Client does not learn 2 y
whether the request = e
A\
succeeded. s
v v \ 4

Synchronous to Asynchronous — what changed?

* In both cases, a response was sent to the client.
* Both styles can be implemented with HTTP/REST.

* The difference is just the meaning of the requests and responses:

Synchronous style:

* Reguest: Deliver an email. * Response: Delivery acknowledged.

Asynchronous style:

* Reguest: Send an email. * Response: Attempt acknowledged.

What if client needs to know the results?

* The previous example was a fire and forget request, but sometimes the
client wants asynchronous access to the results.

* Client wants to proceed immediately, but later will want to know
whether request succeeded or to get response data.

* How can we support this?

Option 1: Request Record

* Server can store a request record in a DB and return the unique id.
* When done, the server updates the request record in the DB.
* Client can later check on the results using the request id.

* Request =2 Response examples:
* POST /messageAttempt =2 {“email_id”: 4390293}
* GET /message/status/4390293 = {“status”: pending}
* GET /message/status/4390293 = {“status™: failed,

“error’: “invalid address”}

Option 2: Callback to Client

* Client provides a callback function (webhook)
where it expects to receive a response.

* This only works if the client can listen for
responses (always running, not NATed, etc.)

* Request =2 Response examples:

* Client sends: POST /messageAttempt
{"callback": "http://3.3.3.3:80/messageComplete" }

... lime passes ...

* Backend sends: POST /messageComplete

presmumop sassed owiT,

Sendet’s
Mail Server

Option 3: Side channel for feedback

* Often, we let clients send "fire and forget"
requests when failure 1s rare.

* When failure occurs, report the error to another
system.

For example:

* Send customer an email if an order placed
online fails (item was out of stock).

* Log an error for dev/ops or customer support
staff to review.

Client

presmumop sassed owiT,

P

UI'C]'IQSG book

o, T uy

10

Sendet’s
Mail Server

11

Requests that would benefit from asynchronicity?

STOP

e Transfer a file over a network. _and

* Fetch a file from tape storage.
* Create a virtual machine (eg., EC2 on AWYS)
* Purchase a shopping cart (ecommerce))

* Book a flight, concert, or sports ticket. > These use a different service (ematl)
to commmnicate the response.

* LinkedIn connection request.)
* Send a mobile push notification to another uset.
* Send a text/SMS message.

* Copy tweet to 8 million follower’s feeds.

* Google search: user clicked a particular search result .
refine the recommendation

} These will be used to

* Amazon.com: user searched for “dog toothbrush systern. 175 not urgent.

Message Queues provide asynchronicity & decoupling

* If client doesn’t care about the response status, it can just put the
request on a queue.

Tubrer

We\POST /dueek
Mo | AT

* Adding a message to a queue 1s very fast because it’s just a data copy,
without any parsing of the message or business logic.

* Prevents slowdown of upstream service due to downstream
congestion. Can handle short bursts of tratfic beyond system capacity.

12

Message Queues store requests ready to be handled

* Putting a message on a queue 1s like making an API request.

* The content of the message defines the request.
Message format == API

* The rules for formatting messages are a contract like an app's APL.

Ty

We\POST /fuweek
o To> AT

(¢

— ' 200 0K

13

Queue terminology

* Producer: pushes/publishes/produces messages.

* Consumer: pulls/pops/consumes/subscribes-to messages.

* Optionally, a message queue can be partitioned into several virtual
queues by assigning a topic to each message.
* Consumers may subscribe to just one or a subset of the topics.

Producer

?O ST /dweek |Tukrer
peL

Consumer

Wor¥ Quene

(<=

14

15

Client posts request

;u\“ (akrow
Serurte

agp AL

—"

YM\,‘\ POST /4uweek |Tubrer -

* API service receives request.
* Sends a request to auth. service to check that user token is valid.
* Puts a tweet-creation job on a queue, to be processed later.

* Sends “success” response back to uset.
* Is this premature?

16

Later, the Publication service handles the request

% (e - |
WHe e Pode it cakron

* Publication service fetches a job. It’s a “publish tweet” job.
* Gets a list of followers to receive the tweet.
* Add the new tweet to all of the followers’ teeds. (Maybe nillions!)

* Queue another task to notify each of the @mentions and followers
with alerts enabled. Notifications are not critical and may be slow.

17

Finally, the Notification service alerts users

V\'D\'i;('(&fﬁq Ruene

Sseesmgl

* There may be between zero and millions of notification tasks in the
queue associated with the original tweet.

* Notification service dequeues each one and handles it.

* What happens if there is a failure?

* Retry a few times, and then give up. The original tweeter does not care.

Tradeoffs

* Tightly coupled (synchronous) services are simpler to design & build.

* Loosely coupled (asynchronous) services can be faster, but either

* Failures must be unimportant and ignored, or

* Errors might be stored in a DB and somehow checked later.
It can be very ditficult to sensibly react to an error at a later time.

* Errors might lead to some kind of an alert to user later (email?).

18

19

Decoupling helps scaling

* Msg Queues are a simple kind of database — store work requests.

* Many producers and many consumers can connect to the queue.

* Basic queues run on one machine & distributed queues run on clusters.
* Like a load balancer, a queue allows work to be distributed.

* Producer and consumers can be scaled separately, as needed.

* Queue smooths demand peaks by deferring work.

Message Queue | =

Consumer

20

Active and passive queues

Passive Queue Active Queue
* The queue accepts and stores * Queue knows where to send
messages until they are requested. messages.

* Queue 1s a specialized DB.

* Queue actively pushes messages
* Maybe implemented as a DB table.

out to subscribers.
* Consumers must periodically
request messages (poll).

e Subscribers must listen for
messages.
* Producer pushes and consumer

pulls.

* Producer pushes and queue
pushes to consumer.

Some queue software supports both modes of operation.

21

Queues at different architectural levels

* In-app queue: an app can define its own queue to store work that it
will do later, perhaps in a different thread.

* For example, Java ExecutorService includes a work queue.

* Separate queueing app: a process that listens for pushes/fetches on a
network connection.

* Often 1t can run as a process on the same VM as the application pushing to it.
In this case, the push’s network communication 1s local.

* For example, Nettlix’s Suro.

* Distributed message queue: a cluster of nodes that together
implement a robust, scalable queue.

* Allows all work to go to “one big queue.”

* For example, ActiveMQ, Kafka, RabbitMQ, AWS SQS

https://www.baeldung.com/java-executor-service-tutorial
https://medium.com/netflix-techblog/announcing-suro-backbone-of-netflixs-data-pipeline-5c660ca917b6
https://jack-vanlightly.com/blog/2017/12/4/rabbitmq-vs-kafka-part-1-messaging-topologies

Pros and Cons

* In-app queue:
* Pros: Simple. No separate app to deploy.

* Cons: Usually not stored on disk. App crash/reboot may drop queued msgs.

* Separate queueing app:

* Pros: Can reside on existing app VM. Can write queued msgs to a file.

* Cons: Scalability is limited to one machine. Machine/disk failure drops msgs.

* Distributed message queue:

* Pros: Massively scalable. Messages are replicated on many nodes.
Provides a single point of coordination for many producers and consumers.
* Cons: Complexity.

Consistency side effects: eg., on RabbitMQ must chose delivery guarantee to be
either “at least once” or “at most once” but cannot get “exactly once.”

22

Fg., Katka

* [t’s actually a distributed
commit log, not a queue.

* Messages are kept after reading,

* Like a DHT, data 1s partitioned
onto multiple nodes.

* Multiple “Topics™ are like
separate queues.
* Uses Zookeeper for consumers

to agree on point in the log to
start reading.

Read at Offset

Service Consumer

Topic A
Partition 0
9
8 3 2 1
Producer 7
Partition 1
4
3 3 2 1
5
Partition N
Producer 7
3 3 2 1
2
NEW - oLD v
Topic B
Producer Partition O
\ 7
a 3 3 2 1
2
eCommerce _
Website Write
Partition 1 1
i
1
1
i
T Push Notification
Read at Offse Service Consumer
@

24

Back pressure

* What happens if a queue "fills up?"

* It should be possible for the queue to give an error response to the
producer trying to add to it.

* This 1s a bad thing because 1t will stall the service.

* DevOps/Operations staff should monitor size of queues to anticipate
these problems.

Ordering

* Distributed queue cannot guarantee strict FIFO ordering of messages.

* T7p: If multiple messages must be ordered, send one big message.

Message QQueues are backend creatures

* Like databases, messages queues are not designed to accept public
requests or connections from thousands of clients.

* Your frontend should not connect directly to a Message Queue.

25

Recap — Message QQueues.

* Services can be tightly or loosely coupled (synchronous or async.)

* Results from asynchronous calls are less apparent.

* (fire-and-forget, request record, or callback)

* APIs can be asynchronous.

* Queues can be used to decouple systems.
e Acts as a kind of deferred-work load balancer.

* Allows producers and consumers to be scaled separately.

* Queues are useful at many levels:
* In-app queues
* Separate queueing apps
* Distributed message queues.

26

