
1

CS-310 Scalable Software Architectures
Lecture 16:

Asynchronous Processing
Steve Tarzia

2

Recap – Choosing a data store
Data store Examples Data abstraction

SQL Relational DB MySQL, Oracle Tables, rows, columns
Column-oriented DB Snowflake, BigQuery Tables, rows, columns

Search engine Elastic search JSON, text
Document store MongoDB Key → JSON

Distributed cache Redis Key → value (lists, sets, etc.)
NoSQL DB Cassandra, Dynamo 2D Key-value (pseudo-cols)

Cloud object store S3, Azure Blobs K-V / Filename-contents
Cluster filesystem Hadoop dist. fs. K-V / Filename-contents

Networked filesystem NFS, EFS, EBS Filename-contents

Files with data "blobs"

Highly structured

Semi-structured

Your choice depends mainly on the structure of data and pattern of access.
• Transactions are easy on SQL DBs, available but slow on some NoSQL DBs

3

Ways to couple services
• Responses are important because:
• Responses acknowledge that the request was

received.
• Responses may contain data that the client needs.
• Responses may indicate a failure which the client

must somehow react to (perhaps by retrying).
• So far, we have examined synchronous APIs.
• The client waits for the server to finish

processing, hence the two are synchronized.
• Also called a blocking request.
• This follows the pattern of HTTP and REST,

which fetch documents/data.

Client Server

Tim
e passes dow

nw
ard

Send a request

Calculate the
response

Send response

4

But what if the request is really long?
• For example, a request

may involve lots of other
services.
• The client may not care to

wait until delivery of the
message is verified.

Client
Sender’s

Mail Server

Tim
e passes dow

nw
ard

Send an email

Email received

Mail
Relay

Send an email

Email received

Receiver’s
Mail Server

Send an email

Email received
This request
takes a long

time to handle

5

Asynchronous Alternative
•Maybe it’s OK to just

acknowledge that the
request was received, and
finish the work later.

• Pro: Allows client to
quickly move one.
• Con: Client does not learn

whether the request
succeeded.

Client
Sender’s

Mail Server

Tim
e passes dow

nw
ard

Send an email

OK, I’ll tr
y!

Mail
Relay

Send an email

Email received

Receiver’s
Mail Server

Send an email

Email received

6

Synchronous to Asynchronous – what changed?
• In both cases, a response was sent to the client.
• Both styles can be implemented with HTTP/REST.
• The difference is just the meaning of the requests and responses:

Synchronous style:
• Request: Deliver an email. • Response: Delivery acknowledged.

Asynchronous style:
• Request: Send an email. • Response: Attempt acknowledged.

7

What if client needs to know the results?
• The previous example was a fire and forget request, but sometimes the

client wants asynchronous access to the results.
• Client wants to proceed immediately, but later will want to know

whether request succeeded or to get response data.
•How can we support this?

STOP
and

THINK

8

Option 1: Request Record
• Server can store a request record in a DB and return the unique id.
•When done, the server updates the request record in the DB.
• Client can later check on the results using the request id.
• Request à Response examples:
• POST /messageAttempt à {“email_id”: 4390293}
• GET /message/status/4390293 à {“status”: pending}
• GET /message/status/4390293 à {“status”: failed,

“error”: “invalid address”}

9

Option 2: Callback to Client
• Client provides a callback function (webhook)

where it expects to receive a response.
• This only works if the client can listen for

responses (always running, not NATed, etc.)

• Request à Response examples:
• Client sends: POST /messageAttempt

{"callback": "http://3.3.3.3:80/messageComplete"}
… time passes …
• Backend sends: POST /messageComplete

Client
Sender’s

Mail Server

Tim
e passes dow

nw
ard

Send an email

OK, I’ll tr
y!

Email received

10

Option 3: Side channel for feedback
•Often, we let clients send "fire and forget"

requests when failure is rare.
•When failure occurs, report the error to another

system.
For example:
• Send customer an email if an order placed

online fails (item was out of stock).
• Log an error for dev/ops or customer support

staff to review.

Client
Sender’s

Mail Server

Tim
e passes dow

nw
ard

Purchase book

OK, I’ll tr
y!

Email
: charge

failed

11

Requests that would benefit from asynchronicity?
• Transfer a file over a network.
• Fetch a file from tape storage.
• Create a virtual machine (eg., EC2 on AWS)
• Purchase a shopping cart (ecommerce)
• Book a flight, concert, or sports ticket.
• LinkedIn connection request.
• Send a mobile push notification to another user.
• Send a text/SMS message.
• Copy tweet to 8 million follower’s feeds.
• Google search: user clicked a particular search result
• Amazon.com: user searched for “dog toothbrush”

These use a different service (email)
to communicate the response.

These will be used to
refine the recommendation
system. It’s not urgent.

STOP
and

THINK

12

Message Queues provide asynchronicity & decoupling
• If client doesn’t care about the response status, it can just put the

request on a queue.

• Adding a message to a queue is very fast because it’s just a data copy,
without any parsing of the message or business logic.
• Prevents slowdown of upstream service due to downstream

congestion. Can handle short bursts of traffic beyond system capacity.

13

Message Queues store requests ready to be handled
• Putting a message on a queue is like making an API request.
• The content of the message defines the request.

Message format == API
• The rules for formatting messages are a contract like an app's API.

14

Queue terminology
• Producer: pushes/publishes/produces messages.
• Consumer: pulls/pops/consumes/subscribes-to messages.

•Optionally, a message queue can be partitioned into several virtual
queues by assigning a topic to each message.
• Consumers may subscribe to just one or a subset of the topics.

Producer Consumer

15Client posts request

• API service receives request.
• Sends a request to auth. service to check that user token is valid.
• Puts a tweet-creation job on a queue, to be processed later.
• Sends “success” response back to user.
• Is this premature?

16

• Publication service fetches a job. It’s a “publish tweet” job.
•Gets a list of followers to receive the tweet.
• Add the new tweet to all of the followers’ feeds. (Maybe millions!)
•Queue another task to notify each of the @mentions and followers

with alerts enabled. Notifications are not critical and may be slow.

Later, the Publication service handles the request

17

• There may be between zero and millions of notification tasks in the
queue associated with the original tweet.
•Notification service dequeues each one and handles it.
•What happens if there is a failure?
• Retry a few times, and then give up. The original tweeter does not care.

Finally, the Notification service alerts users

18

Tradeoffs
• Tightly coupled (synchronous) services are simpler to design & build.
• Loosely coupled (asynchronous) services can be faster, but either
• Failures must be unimportant and ignored, or
• Errors might be stored in a DB and somehow checked later.

It can be very difficult to sensibly react to an error at a later time.
• Errors might lead to some kind of an alert to user later (email?).

19

Decoupling helps scaling
•Msg Queues are a simple kind of database – store work requests.
•Many producers and many consumers can connect to the queue.
• Basic queues run on one machine & distributed queues run on clusters.
• Like a load balancer, a queue allows work to be distributed.
• Producer and consumers can be scaled separately, as needed.
•Queue smooths demand peaks by deferring work.

Producer
Producer

Producer
ProducerProducer

Producer
ProducerConsumerMessage Queue

20

Active and passive queues
Passive Queue

• The queue accepts and stores
messages until they are requested.
• Queue is a specialized DB.
• Maybe implemented as a DB table.

• Consumers must periodically
request messages (poll).
• Producer pushes and consumer

pulls.

Active Queue

•Queue knows where to send
messages.
•Queue actively pushes messages

out to subscribers.
• Subscribers must listen for

messages.
• Producer pushes and queue

pushes to consumer.

Some queue software supports both modes of operation.

21

Queues at different architectural levels
• In-app queue: an app can define its own queue to store work that it

will do later, perhaps in a different thread.
• For example, Java ExecutorService includes a work queue.

• Separate queueing app: a process that listens for pushes/fetches on a
network connection.
• Often it can run as a process on the same VM as the application pushing to it.

In this case, the push’s network communication is local.
• For example, Netflix’s Suro.

•Distributed message queue: a cluster of nodes that together
implement a robust, scalable queue.
• Allows all work to go to “one big queue.”
• For example, ActiveMQ, Kafka, RabbitMQ, AWS SQS

https://www.baeldung.com/java-executor-service-tutorial
https://medium.com/netflix-techblog/announcing-suro-backbone-of-netflixs-data-pipeline-5c660ca917b6
https://jack-vanlightly.com/blog/2017/12/4/rabbitmq-vs-kafka-part-1-messaging-topologies

22

Pros and Cons
• In-app queue:
• Pros: Simple. No separate app to deploy.
• Cons: Usually not stored on disk. App crash/reboot may drop queued msgs.

• Separate queueing app:
• Pros: Can reside on existing app VM. Can write queued msgs to a file.
• Cons: Scalability is limited to one machine. Machine/disk failure drops msgs.

•Distributed message queue:
• Pros: Massively scalable. Messages are replicated on many nodes.

Provides a single point of coordination for many producers and consumers.
• Cons: Complexity.

Consistency side effects: eg., on RabbitMQ must chose delivery guarantee to be
either “at least once” or “at most once” but cannot get “exactly once.”

23

Eg., Kafka
• It’s actually a distributed

commit log, not a queue.
• Messages are kept after reading.

• Like a DHT, data is partitioned
onto multiple nodes.
•Multiple “Topics” are like

separate queues.
• Uses Zookeeper for consumers

to agree on point in the log to
start reading.

24

Back pressure
•What happens if a queue "fills up?"
• It should be possible for the queue to give an error response to the

producer trying to add to it.
• This is a bad thing because it will stall the service.
•DevOps/Operations staff should monitor size of queues to anticipate

these problems.

Ordering
•Distributed queue cannot guarantee strict FIFO ordering of messages.
• Tip: If multiple messages must be ordered, send one big message.

25

Message Queues are backend creatures
• Like databases, messages queues are not designed to accept public

requests or connections from thousands of clients.
• Your frontend should not connect directly to a Message Queue.

26

Recap – Message Queues.
• Services can be tightly or loosely coupled (synchronous or async.)
• Results from asynchronous calls are less apparent.
• (fire-and-forget, request record, or callback)

• APIs can be asynchronous.
•Queues can be used to decouple systems.
• Acts as a kind of deferred-work load balancer.
• Allows producers and consumers to be scaled separately.

•Queues are useful at many levels:
• In-app queues
• Separate queueing apps
• Distributed message queues.

