
1

CS-310 Scalable Software Architectures
Lecture 15:

Choosing a Database
Steve Tarzia



2

Last Time: Distributed DB Consistency
• Replication of  data ensures that a single failure does not lose data.
• The more nodes you have, the more likely a failure!

•However, replication introduces consistency problems.
• Tradeoff: must choose 2 of  Consistency, Availability and Partition Tolerance.

• A distributed DB client, at very least, would want to achieve:
• Montonic reads, monotonic writes, read your writes (together: linearizability).

• Ensure consistency by waiting for responses from multiple replicas. 
•Different quorum levels (all, majority, one) trade delay of  reads/writes 

and determine whether reads or writes are unavailable during recovery.
• Cassandra DB lets programmer choose the quorum level for each read/write.
• Other NoSQL databases are designed to use just one read/write strategy.



3

Recall the goals of  a Database:
• Scalability – work with data larger than computer’s RAM.
• Persistence – keep data around after your program finishes.
• Indexing – efficiently sort & search along various dimensions.
• Concurrency – multiple users or applications can read/write.
• Analysis – SQL query language is concise yet powerful.  Avoid transferring 

lots of  data.  Run analysis on the storage machines.
• Separation of  concerns – decouples app code from storage engine.

Also, allows apps to be stateless, allowing parallelism.
Less importantly:
• Integrity – restrict data type, disallow duplicate entries.
• Deduplication – save space, keep common data consistent.
• Security – different users can have access to specific data.



4Data storage options
Examples Use cases

SQL Relational DB MySQL, Oracle Structured data.  Transactional data.
Column-oriented DB Snowflake, BigQuery SQL queries for analytics on huge datasets (OLAP).

Search engine Elastic search Searchable text documents.
Document store MongoDB Semi-structured data (JSON docs).

Distributed cache Redis In-memory cache with expiration.  Very fast.
NoSQL DB Cassandra, Dynamo Huge data to be accessed in parallel.

Cloud object store S3, Azure Blobs Images, videos, & other static content.
Cluster filesystem Hadoop dist. fs. Files to be processed in huge parallel computation.

Networked filesystem 
(NAS)

NFS, EFS, EBS App is designed to write to local file system, but we 
want that storage to be scalable and shared.

With so many options, choosing the “right” storage option is difficult!
Dozens of  other DBs exist, but these examples are popular and representative examples.



5

SQL Relational Databases
• The most common, traditional solution.
•Data is organized into tables, with foreign keys to cross reference.
• The format of  the data (schema) is predefined.  Consistent, not flexible.

• SQL language run common data analyses inside the database:
SELECT category, avg(price) FROM products GROUP BY category;

• Running calculations on the storage machine helps performance.
Data transfer (I/O) is a bottleneck in most systems.
• Reduces data transfer between app and data store.

Above query just returns a short answer over the network.
• Supports transactions (sequence of  ops to be committed all or none).
•Works very well up to a certain size.
• Writes must happen on one “master” machine.
• Read-replicas give read scaling (w/delay).  Sharding can help write scaling.



6

Database transaction example: spending gift card balance
-- 1. start a new transaction

START TRANSACTION;

-- 2. get the gift card balance

SELECT @cardBalance:=balance FROM giftCards

WHERE cardId=23902;

-- 3. insert a new order for customer 145

INSERT INTO orders(orderDate, status,  

customerNumber)

VALUES('2021-02-22', 'In Process', 145);

-- 4. get the newly-created order id

SELECT @orderId:=LAST_INSERT_ID();

-- 5. Insert order line items
INSERT INTO orderdetails(orderNumber, product,

quantity, priceEach)

VALUES(@orderId,'S18_1749', 3, '136'),

(@orderId,'S18_2248', 5, '55');

-- 6. deduct from balance
UPDATE giftCards SET balance=(@cardBalance-683)

WHERE cardId=23902;

-- 7. end the transaction (commit changes)   
COMMIT;

Why must these steps be completed atomically (together)?
• Prevent card balance from being spent twice.
• Prevent clients from seeing the order without line items.
The first is a race condition, the second is an inconsistency.



7

Transactions on a distributed (NoSQL) DB?
• Transactions less common on NoSQL DBs because they are slow.
•Often, transactions are not necessary because a single key stores a lot 

of  related data that can be modified at once.
• Transaction can be implemented by locking the keys involved:

1. Lock the keys involved (the lock prevents reads/writes).
• All replicas must agree to the lock.
• Multiple competing lock requests may occur in parallel, but one must be 

chosen, so multiple rounds of  communication may be needed to agree.
2. Execute the transaction on all replicas.  Wait for all to confirm.
3. Unlock the keys involved (let reads/writes proceed).

• Reference: Google's Spanner OSDI 2012 paper

https://static.googleusercontent.com/media/research.google.com/en/archive/spanner-osdi2012.pdf


8

How to implement a distributed lock?
• A lock requires an atomic 

conditional write operation, like:
PUT("key", "new_val") IF 
GET("key") == "old_val";

• Many NoSQL databases support 
something like this (Cassandra, Mongo).

• Or if  you don’t care too much 
about scalability:
• Store your transactional data in a 

SQL Database.
• Or use a SQL Database to 

implement a lock used to control 
access in NoSQL.

NoSQL transaction to deduct $1 
from an account:

id=37; // my unique client id
while(GET("lock") != id) {
// get the lock if possible
PUT("lock", id)
IF GET("lock") == 0;

}
// do my 2-step transaction:
x = GET("balance");
PUT("balance", x – 1);

// release the lock
PUT("lock", 0);



9

Throughput/scaling limitations
Data store Examples Throughput limitations

SQL Relational DB MySQL, Oracle All writes to primary.  Read-replication adds delay.
Column-oriented DB Snowflake, BigQuery

Search engine Elastic search
Document store MongoDB

Distributed cache Redis
NoSQL DB Cassandra, Dynamo

Cloud object store S3, Azure Blobs
Cluster filesystem Hadoop dist. fs.

Networked filesystem NFS, EFS, EBS One machine, many disks (RAID).

All use a scalable data partitioning method, 
such as hashing.



10

Data abstractions
Data store Examples Data abstraction

SQL Relational DB MySQL, Oracle Tables, rows, columns
Column-oriented DB Snowflake, BigQuery Tables, rows, columns

Search engine Elastic search JSON, text
Document store MongoDB Key → JSON

Distributed cache Redis Key → value (lists, sets, etc.)
NoSQL DB Cassandra, Dynamo 2D Key-value (pseudo-cols)

Cloud object store S3, Azure Blobs K-V / Filename-contents
Cluster filesystem Hadoop dist. fs. K-V / Filename-contents

Networked filesystem NFS, EFS, EBS Filename-contents

Files with data "blobs"

Files may have some 
internal structure, but 
the storage API is not 
aware of  it and makes 
no use of  it.

Highly structured

Semi-structured



11

Column-oriented Relational Databases
Previously, we saw that:
• Read-Replication and Sharding allow lots of  parallel reads and writes.
• This is useful for OLTP applications (Online Transaction Processing).

OLAP (Online Analytics Processing) involves just a few huge queries
• Eg., Over the past three years, in which locations have customers been 

most responsive to our mailed-to-home coupons?
• Analytics queries involve scanning tables, not using indexes.
•Must be parallelized over many nodes.
• The workload is mostly reads, with occasional importing of  new data.
Column-oriented DBs are optimized for SQL analytics workloads.



12

Many choices for semi-structured, scalable stores!
Data store Examples Data abstraction

SQL Relational DB MySQL, Oracle Tables, rows, columns
Column-oriented DB Snowflake, BigQuery Tables, rows, columns

Search engine Elastic search JSON, text
Document store MongoDB Key → JSON

Distributed cache Redis Key → value (lists, sets, etc.)
NoSQL DB Cassandra, Dynamo 2D Key-value (pseudo-cols)

Cloud object store S3, Azure Blobs K-V / Filename-contents
Cluster filesystem Hadoop dist. fs. K-V / Filename-contents

Networked filesystem NFS, EFS, EBS Filename-contents

Semi-structured

• Best choice depends on the structure of  data being stored.



13

Distributed data store comparison
Copied from: https://kkovacs.eu/cassandra-vs-mongodb-vs-couchdb-vs-redis

https://kkovacs.eu/cassandra-vs-mongodb-vs-couchdb-vs-redis


14

MongoDB stores JSON objects
• Below, "_id" is the sharding key used for data partitioning:

{
_id: ObjectId("5099803df3f4948bd2f98391"),
name: { first: "Alan", last: "Turing" },
birth: new Date('Jun 23, 1912'),
death: new Date('Jun 07, 1954'),
contribs: [ "Turing machine", "Turing test", "Turingery" ],
views : NumberLong(1250000)

}



15

MongoDB (3.2) – a “document store”

•Main point: JSON document store.

• Best used: If  you like JSON.  If  documents change frequently, and 
you want to keep a history of  changes.

• For example: For most things that you would do with MySQL or 
PostgreSQL, but having predefined columns really holds you back.



16

MongoDB (3.2) – a “document store”
• Written in: C++
• Main point: JSON 

document store
• License: AGPL (Drivers: 

Apache)
• Protocol: Custom, binary 

(BSON)
• Master/slave replication 

(auto failover with replica 
sets)
• Sharding built-in
• Queries are javascript

expressions
• Run arbitrary javascript

functions server-side
• Geospatial queries

• Multiple storage engines 
with different performance 
characteristics
• Performance over features
• Document validation
• Journaling (efficiently 

keeping previous versions 
of  documents)
• Powerful aggregation 

framework
• Text search integrated
• GridFS to store big data + 

metadata (not actually a FS)
• Has geospatial indexing
• Data center aware

• Best used: If  you need 
dynamic queries. If  you 
prefer to define indexes, 
not map/reduce functions. 
If  you need good 
performance on a big DB. 
If  documents change 
frequently, and you want to 
keep a history of  changes.

• For example: For most 
things that you would do 
with MySQL or 
PostgreSQL, but having 
predefined columns really 
holds you back.



17

ElasticSearch also stores JSON documents
• But it's designed to index every word in the document and to handle advanced queries:
{

"date": "2020-04-15",

"txt": "$1,000 in donations buy lunch for ambulance, victim assistance workers ... WATERTOWN, 
N.Y. (WWNY) - Two anonymous donations at a downtown Watertown restaurant are buying first responders 
lunch. Vito's Gourmet received the donations totaling $1,000 from people who wanted to give back to 
the community. On Wednesday, owner Todd Tarzia delivered gift certificates to Guilfoyle Ambulance 
and the Victims Assistance Center for each of its employees. \u201cOne of the donors in particular 
specifically designated first responders as who they wanted the lunch to go to and we thought, well, 
geez, first responders don\u2019t all sit around a lunch table, especially in the world with the 
virus right now so what can we do to get lunch to them on their schedule. So we decided to make up 
gift certificates for amounts that\u2019s enough for everyone to have lunch,\u201d said Tarzia. \"To 
get a gift like this is just so thoughtful and our people are going to be very thankful for this,\" 
said Bruce Wright, CEO, Guilfoyle Ambulance. …",

"title": "$1,000 in donations buy lunch for ambulance, victim assistance workers",

"lang": "en",

"url": "https://www.wwnytv.com/2020/04/15/donations-buy-lunch-ambulance-victim-assistance-
workers/"

}

• How could you use a simple Distributed Hash Table (eg., Redis or Cassandra) to implement an 
index of  all the words in this document?  User wants to search for "Watertown AND gift".
• An inverted index. For each word in document, store this document id under the word key.



18

ElasticSearch – a “search engine”

•Main point: Advanced Search

• Best used: When you have objects with (flexible) fields (or plain text), 
and you need search by all words in the document, or you need to 
construct complex search queries (AND, OR, NOT, …)

• For example: Full-text document search, a leaderboard system that 
depends on many variables.



19

ElasticSearch (0.20.1) – a “search engine”
• Written in: Java
• Main point: Advanced 

Search
• License: Apache
• Protocol: JSON over 

HTTP (Plugins: Thrift, 
memcached)
• Stores JSON documents
• Has versioning
• Parent and children 

documents
• Documents can time out
• Very versatile and 

sophisticated querying, 
scriptable

• Write consistency: one, 
quorum or all
• Sorting by score (!)
• Geo distance sorting
• Fuzzy searches 

(approximate date, etc) (!)
• Asynchronous replication
• Atomic, scripted updates 

(good for counters, etc)
• Can maintain automatic 

"stats groups" (good for 
debugging)

• Best used: When you 
have objects with 
(flexible) fields, and you 
need "advanced search" 
functionality.

• For example: A dating 
service that handles age 
difference, geographic 
location, tastes and 
dislikes, etc. Or a 
leaderboard system that 
depends on many 
variables.



20

Cassandra rows (NoSQL, 2d key-value store)

Details: https://tech.ebayinc.com/engineering/cassandra-data-modeling-best-practices-part-1/

Columns are defined 
separately for each 

row!

Each row's value is a map of  
"columns" to value.  Column names 
are indexed within the row.

Row key is the hashing key that determines 
on which nodes the row is stored.

https://tech.ebayinc.com/engineering/cassandra-data-modeling-best-practices-part-1/


21

Cassandra bridge information example

https://www.researchgate.net/publication/301630614_A_NoSQL_data_management_infrastructure_for_bridge_monitoring

https://www.researchgate.net/publication/301630614_A_NoSQL_data_management_infrastructure_for_bridge_monitoring


22

Cassandra – a “NoSQL database”

•Main point: Store huge datasets.

• Best used: When you need to store data so huge that it doesn't fit on 
server, but still want a friendly familiar interface to it.

• For example: Web analytics, to count hits by hour, by browser, by IP, 
etc. Transaction logging. Data collection from huge sensor arrays.



23

Cassandra (2.0) – a “NoSQL database”
• Written in: Java
• Main point: Store huge 

datasets in "almost" SQL
• License: Apache
• Protocol: CQL3 & Thrift
• CQL3 is very similar to 

SQL, but with some 
limitations that come from 
the scalability (most 
notably: no JOINs, no 
aggregate functions.)
• Querying by key, or key 

range (secondary indices are 
also available)
• Tunable trade-offs for 

distribution and replication 
(N, R, W)

• Data can have expiration 
(set on INSERT).
• Writes can be much faster 

than reads (when reads are 
disk-bound)
• Map/reduce possible with 

Apache Hadoop
• All nodes are similar, as 

opposed to Hadoop/HBase
• Very good and reliable 

cross-datacenter replication
• Distributed counter 

datatype.
• You can write triggers in 

Java.

• Best used: When you 
need to store data so 
huge that it doesn't fit 
on one server, but still 
want a friendly familiar 
interface to it.

• For example: Web 
analytics, to count hits 
by hour, by browser, by 
IP, etc. Transaction 
logging. Data collection 
from huge sensor 
arrays.



24

DynamoDB is a 2D key-value store, like Cassandra
• Partition Key (like Cassandra's row key) is hashed to find partition.
• Sort Key (optional) allows efficient range queries within the partition key.
• Together, the Partition and Sort keys form the Primary Key.

• Attributes are key-value pairs stored under the Primary Key.

Reference: https://aws.amazon.com/blogs/database/choosing-the-right-dynamodb-partition-key/

Compare to Cassandra:

https://aws.amazon.com/blogs/database/choosing-the-right-dynamodb-partition-key/


25

Redis DB/cache values
• All data is stored in RAM (not just disk), for high performance.
• Redis understands many types of  data values:
• allows operations like "add to a set" that modify (or get) part of  a value.



26

Distributed Caches
• For example: Redis, Memcached, ElastiCache, Riak

• Originally developed in order to reduce load on relational databases.
• Cache responses to frequent DB requests or other materialized application data.
• Always support timed expiration of  data.

• Use the same basic key-value abstraction as NoSQL distributed DBs.
• Store data across many nodes.
• Have the same data consistency issues as NoSQL databases.
• Often optimized to do everything in-memory,
• but most also store data persistently to disk.

So… distributed caches and NoSQL databases are very similar.



27

Comparison
NoSQL Database

• Items are permanent/persistent.
• All items are stored on disk

(some are cached in RAM).
• Scale is the primary goal.

Distributed Cache

• Items expire.
• Items are stored in RAM

(though maybe persisted to disk).
• Speed is the primary goal.
• RAM capacity is limited.
• Once capacity is reached, start 

evicting oldest/least-used items.



28

Comparison
CDN / Reverse Proxy Cache

• Cache common HTTP responses.
• Transparent to the application.
• Just configure the cache's origin

Distributed Cache

• Cache common's used data that 
contributes to responses.
• For example:
• A leaderboard in header of  ever 

HTML page.
• Session information for the user.



29

Redis (V3.2) – a “cache”

•Main point: Blazing fast storage.

• Best used: For rapidly changing data with a foreseeable database size 
(should fit mostly in memory).  Also, for caching data than can be 
rebuilt from another data store.

• For example: To store real-time stock prices. Real-time analytics. 
Leaderboards. Real-time communication. And wherever you used 
memcached before.



30

Redis (V3.2) – a “cache”
• Written in: C
• Main point: Blazing fast
• License: BSD
• Protocol: Telnet-like, binary 

safe
• Disk-backed in-memory 

database,
• Master-slave replication, 

automatic failover
• Simple values or data structures 

by keys
• but complex operations like 

ZREVRANGEBYSCORE.
• INCR & co (good for rate 

limiting or statistics)

• Bit and bitfield operations (eg.
to implement bloom filters)

• Has sets (also union/diff/inter)
• Has lists (also a queue; blocking 

pop)
• Has hashes (objects of  multiple 

fields)
• Sorted sets (high score table, 

good for range queries)
• Lua scripting capabilities
• Has transactions
• Values can be set to expire (as 

in a cache)
• Pub/Sub lets you implement 

messaging
• GEO API to query by radius (!)

• Best used: For rapidly 
changing data with a 
foreseeable database 
size (should fit mostly in 
memory).

• For example: To store 
real-time stock prices. 
Real-time analytics. 
Leaderboards. Real-time 
communication. And 
wherever you used 
memcached before.



31

Filesystem choices
Data store Examples Data abstraction

SQL Relational DB MySQL, Oracle Tables, rows, columns
Column-oriented DB Snowflake, BigQuery Tables, rows, columns

Search engine Elastic search JSON, text
Document store MongoDB Key → JSON

Distributed cache Redis Key → value (lists, sets, 
etc.)

NoSQL DB Cassandra, Dynamo 2D Key-value (pseudo-cols)
Cloud object store S3, Azure Blobs K-V / Filename-contents
Cluster filesystem Hadoop dist. fs. K-V / Filename-contents

Networked filesystem NFS, EFS, EBS Filename-contents
Files with 
arbitrary data



32

Networked file system
• Eg., NFS (unix), SMB (Windows).
•Managed by the OS.
• Provides a regular filesystem interface to 

applications by mounting the remote drive.

•Not too useful in modern applications, but 
may be necessary if  your app is built to 
work directly with a local file system.
•Modern apps should instead interact with 

cloud-based storage services.

App Server

App

Filesystem
~/out.txt /mnt/nfs-client/ibdata1

OS NFS 
module

File Server

NFS service

Network request

Filesystem
/var/lib/nfs-server/ibdata1

Some folders 
map to a remote 

filesystem



33

Cloud object store (S3)
• A flexible general-purpose file store for cloud apps.
• Managed by cloud provider.  Capacity available is "unlimited."
• Provides a network API for accessing files (maybe REST).
• In other words, app accesses files like a remote database.
• Often provides a public HTTP GET interface to access files:
• Can be easily connected to CDN or urls used directly



34

S3 example for hosting media files on web
• https://stevetarzia.com/localization

Browser view:

HTML:
<li><p><a href="mobisys11_batphone_v1.0.tar.gz">Matlab
batphone scripts and data v1.0 (1.2MB)</a> (may require some 
toolkits to run).  Please report any bugs or problems to 
me.</li>

<li><p><a href="mobisys11_scripts_v1.0.tar.gz">Matlab audio 
scripts v1.0 (0.4MB)</a> (unfortunately, requires several 
toolkits to run).  Please report any bugs or problems to me.  
The following data is needed for these scripts:

<ul><li><p><a href="https://s3-us-west-
2.amazonaws.com/starzia/www/mobisys11_recordings_passive.tar.
gz">basic recordings (4.0 GB)</a>  

<li><p><a href="https://s3-us-west-
2.amazonaws.com/starzia/www/mobisys11_recordings_HVAC_off.tar
.gz">HVAC off recordings (1.6 GB)</a>  

<li><p><a href="https://s3-us-west-
2.amazonaws.com/starzia/www/mobisys11_recordings_lectures.tar
.gz">lecture noise recordings (4.4 GB)</a></ul>

https://stevetarzia.com/localization


35

Hadoop File System (HDFS)
•When you need to use Hadoop/Spark to do distributed processing.
•Data is too big to move it for analysis.
• Allows data to reside on the same machines where computation 

happens, thus making processing efficient.

•Hadoop distributed filesystem and its distributed processing tools were 
designed to work together.



36

Recap – Choosing a data store
Data store Examples Data abstraction

SQL Relational DB MySQL, Oracle Tables, rows, columns
Column-oriented DB Snowflake, BigQuery Tables, rows, columns

Search engine Elastic search JSON, text
Document store MongoDB Key → JSON

Distributed cache Redis Key → value (lists, sets, etc.)
NoSQL DB Cassandra, Dynamo 2D Key-value (pseudo-cols)

Cloud object store S3, Azure Blobs K-V / Filename-contents
Cluster filesystem Hadoop dist. fs. K-V / Filename-contents

Networked filesystem NFS, EFS, EBS Filename-contents

Files with data "blobs"

Highly structured

Semi-structured

Your choice depends mainly on the structure of  data and pattern of  access.


