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Distributed DB Consistency
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Last Time: NoSQL databases
•Data partitioning is necessary to divide write load among nodes.
• Should minimize references between partitions.
• Can be treated as a graph partitioning problem.
• SQL sharding was a special case of  data partitioning, done in app code.

•NoSQL databases make partitioning easy by eliminating references.
•Without references, data becomes denormalized.
• Duplicated data consumes more space, can become inconsistent.

•Distributed NoSQL databases are very scalable, but they provide 
only a very simple key-value abstraction.  One key is indexed.
•Distributed Hash Table can implement a NoSQL database.
• The hash space is divided evenly between storage nodes.
• Client computes hash of  key to determine which node should store data.
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Hash-based partitioning of  distributed DB
• aka, a Distributed Hash Table.
• Each cluster node is responsible for a 

range of  hash values corresponding to
an equal chunk of  data
•Hash the key to determine

where the (key, value) is stored.
• To find data, client must have:
• A list of  all nodes.
• hash ranges assigned to each node

• Sharing this node/range info is
a distributed consensus problem.

Node 0 stores hash values 
00000000-3FFFFFF

Node 1 stores
hash values
40000000-7FFFFFF

Node 2 stores hash values 
80000000-BFFFFFF

Node 3 stores hash values 
C0000000-FFFFFFF
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A Shared Nothing architecture
• Each request is handled by one node.
• There are no bottlenecks!

• Both throughput and capacity
are directly proportional to
the number of  nodes.

•DHTs can scale to thousands
of  nodes.

Node 0 stores hash values 
00000000-3FFFFFF

Node 1 stores
hash values
40000000-7FFFFFF

Node 2 stores hash values 
80000000-BFFFFFF

Node 3 stores hash values 
C0000000-FFFFFFF

But what about 
reliability?
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Making the DHT robust
•Having Many nodes means a high 

chance of  a node failure, so we must 
replicate data to avoid data loss.
• Create some overlap in the hash 

ranges covered by nodes.
• Node 0: 0-7
• Node 1: 3-F
• Node 2: 0-3 and 8-F
• Node 3: 0-7 and C-F

•Other schemes are possible,
but this one is simple and effective.

Node 0 is assigned the hash values 
00000000-3FFFFFF, but also stores 
replicas of  data for the two next partitions.

40000000-7FFFFFF 
is also on Node 0

80000000-BFFFFFF 
is also on Node 0

0

2

1
3



6

Consistency
•Whenever data is replicated, there is a possibility of  inconsistency.
• Eg., an update was sent to three replicas, and one of  them gets it first:

•What happens if  we try to read while replicas are inconsistent?

Put x=2

Didn’t get the change yet, 
still think x=1

Got it! x=2

Communication and 
queueing delays are 
unpredictable.  We can send 
messages, but don’t know 
exactly when they’ll arrive.

Get x Query returns inconsistent answers!2 1 1
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CAP Theorem
The most famous result in distributed systems theory.
It says that a distributed system cannot achieve all three of  the following:
• Consistency: reads always get the most recent write (or an error).
• Availability: every request received a non-error response.
• Partition tolerance: an arbitrary number of  messages between nodes can be 

dropped (or delayed).

In other words:
• When distributed DB nodes are out-of-sync (partitioned), we must either accept 

inconsistent responses or wait for the nodes to resynchronize.
• To build a distributed DB where every request immediately gets a response that is 

globally correct, we need a network that is 100% reliable and has no delay.

"Pick Two"
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Client-centric consistency models
• The CAP theorem gives us a tradeoff  between consistency & delay.
• Inconsistency is bothersome.  It can cause weird bugs.
• Fortunately, delay is usually something our apps can handle.
• If  we really need both consistency and timeliness, then we must go 

back to a centralized database (probably a SQL relational DB).

•Distributed (NoSQL) DB designs give different options for handling 
the consistency/delay tradeoff.
•We'll consider a client connecting to the DB cluster.
•What consistency properties might we want to ensure? STOP

and
THINK
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Client-centric consistency properties
Monotonic Reads
• If  a client reads the value of  x, later reads of  x by that same client will 

always return the same value or a more recently written value.
Read your Writes
• If  a client writes a value to x, later reads of  x by that same client will 

always return the same value or a more recently written value.
Monotonic Writes
• If  a client writes twice to x, the first write must happen before the 

second. 

"More recently written" 
can include any write by 

another client.
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Failing the Monotonic Read property
Definition of  Monotonic Reads:

• If  a client reads the value of  
x, later reads of  x by that same 
client will always return the 
same value or a more recently 
written value.

How might it fail?
• Read from two different 

nodes during an incomplete 
write.

How to prevent this problem?
•Make client connect to same node 

for every request.
•Or delay the second request…

STOP
and

THINK

Get x

Client

Distributed DB

Get x Put x=1

1

3

2

Write has 
not yet 
reached 
replica.
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Failing to Read your Writes
Definition of  Read your Writes:

• If  a client writes a value to x, later 
reads of  x by that same client will always 
return the same value or a more 
recently written value.

• If  the system allows you to write on 
one node and read from another, you 
can get the old value if  you read too 
quickly.
• Again, to fix this problem, stick with 

one node or "slow down."

Put x=1

Client

Distributed DB

Get x Write has 
not yet 
reached 
replica.STOP

and
THINK
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Failing the Monotonic Writes property
Definition of  Monotonic Writes:

• If  a client writes twice to x,
the first write must happen before
the second.  

• The second write can occur on 
a node before the first arrives.
•Does this matter?
• Not unless the writes are cumulative.  (eg., an increment operation)
• Note that including a sequence number or timestamp would prevent the 

delayed write x=1 from being accepted on the third node.
• Solution: same as before.

Put x=1

Client

Distributed DB

Put x=2 Write has 
not yet 
reached 
replica.

1

2STOP
and

THINK
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Two alternatives for achieving Consistency
Set some rules for client and replication behavior to achieve consistency.
1. Make client send all requests to one replica node.
• Pro: Simplicity.
• Con: Consistency problems arise when a node fails.
• Client must switch to another node, and the consistency problems are again possible.
• Note: if  don't care about fault tolerance, then avoid replication to get consistency.

MongoDB does not replicate data and thus has Consistency and Partition Tolerance 
but lacks Availability because a failed node causes downtime (CAP).

2. Make client wait until the the read or write is synchronized across 
the whole system.
• For efficiency, we only care about the single key/value being synchronized.
• How do we know when the value is synchronized?
• Simplest approach is for the client to send the request to all nodes and wait!

STOP
and

THINK
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Waiting for Consistency
Monotonic Read:

Get x

Client

Get x

Put x=1

1

3

2

Write is 
slow to 
reach last 
replica.

• Read your Write:

Wait until all 
three give the 
same value.

Second get has been 
delayed enough to 
get the new value

Put x=1

Client

Get x
2

1

Wait until all 
acknowledge 
the write.

Get has been 
delayed enough to 
get the new value
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Waiting for Consistency with Quorums
• A set of  solutions for consistency in distributed DBs.
• A quorum is a minimum percentage of  a committee needed to act.

•Wait for an acknowledgement of  consistent data from a certain 
number of  replicas before considering the read/write completed.
• Prevents progress until the replicas have a certain degree of  consistency.

• We send requests to all nodes but wait for the prescribed # of  responses.

Write Quorum Read Quorum Optimized for
All One Fast reads

Majority Majority Balanced read/write 
performance

One All Fast writes
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Majority-read, majority-write example (three nodes)
• Client wants to write X=1.
• Sends three write requests to three replicas.
• When an acknowledgement from two replicas is received it can proceed.
• The third/last write proceeds in the background.

• Client reads X
• Sends three read requests to three replicas.
• At this point, one of  the replicas may still have old data, but that’s OK!
• Client will be satisfied when it receives two responses.
• If  they're different, use the most recent one.

(Every write is timestamped by the client.)

• Because writes are not finished until at least two acknowledge, there is 
at most one old value being stored.  At least one of  two must be new.
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Single-read, unanimous-write example
• Client wants to write X=1.
• Sends three write requests to three replicas.
• Must wait until all three replicas acknowledge before proceeding.

• Client reads X
• Sends three read requests to three replicas.
• At this point, all three replicas must have received my previous write!
• Client will be satisfied when it receives any one response.
• Note that the responses from different nodes may be different (due to partial 

writes from other clients), but all will reflect data state after my own write.
• Choose the latest value.

•Notice that writes are slow (max latency of  the 3),
but reads are fast (min latency of  the 3).



18

Question: What happens if  a DHT replica fails?
Example 1: write and read quorum of  two 
(of  three replicas).
• Client performs a write, gets two ACKs and 

proceeds.
• At this point, replicas store two new values, and 

one old value.
• Now one of  the written-to replicas fails!
• Can read and writes proceed?
• Yes.  Two different values will be read, but client 

can choose the most recent one.
• The 3rd write will eventually be received, and two 

copies made available.

Put x=2

Didn’t get 
the change 

yet, still 
think x=1

Got it! x=2 Got it! x=2

Boom!

Replacement joins 
ASAP and requests lost 

data from replicas
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Question: What happens if  a DHT replica fails?
Example 2: write quorum of  three
(read quorum of  one)
• A replica fails!
• Can reads and writes proceed?
• Client performs a write, and cannot get 

three ACKs.
• Write is impossible!  (but reads can proceed)
• Part of  the system is stalled, temporarily.

• The write can be retried after a 
replacement joins the DHT and gets 
copies of  all the data.

Put x=2

Got it! x=2No one to 
receive?!

Got it! x=2

Boom!

Replacement joins 
ASAP and requests lost 

data from replicas
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Reminder: Why is this scalable?
• My consistency examples showed only three nodes == three replicas.
• This was not a scalable system because all nodes stored all data.
• In practice you can have a very large number N of  nodes, and a constant number 

of  replicas for each data key.
• Hashing will map each data key to a subset (often 3) of  the N nodes.
• Quorum only apply to replica nodes.  "Write to all" means all replicas (3 nodes).

Put x=2

Get x

Put y=5

Get y

Distributed DB

Put z=7

Get z

Why use more 
than 3 replicas?
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Another way of  looking at consistency
• A distributed system is linearizable if  the partial ordering of  distributed 

actions is preserved.
• The distributed actors each know the order of  their own actions.
• This certain knowledge must never be contradicted by the distributed system.
• This creates a partial ordering of  all the events in the distributed system

• For example:
• if  Anita does A, B, C (in that order)
• and Sam does S, T, U, (in that order)
• Then no one should see B before A, nor U before T, etc.

• Every observed serialization of  the parallel activity must be agreeable 
to the individual actors.  Observations will vary across the system.
• There are all valid: (A, B, C, S, T, U) (S, A, B, T, U, C) (S, T, U, A, B, C)

These happen concurrently
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Consistency is a subtle topic, with many models.

https://jepsen.io/consistency
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For more info on this fascinating topic
• CS-345 Distributed Systems
• Chapter 7 of  Distributed Systems by van Steen and Tanenbaum.
• Part II (and Chapter 9 in particular) of  the Designing Data Intensive 

Applications book by Kleppmann.
• We covered the client-centric view of  consistency.
• Other models take a data-centric view.

• It’s a nice mixture of  CS theory and real system design.

https://www.distributed-systems.net/index.php/books/ds3/


24

NoSQL databases use DHTs or similar schemes
• Amazon DynamoDB
• Apache Cassandra
• ElasticSearch
•MongoDB (hashed sharding option)

Distributed filesystems can also use DHTs
• Filename/path is the key.
• Value is the file’s contents.
•Hadoop HDFS, Google File System (Colossus, BigTable), Amazon S3
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Recap: Distributed DB Consistency
• Replication of  data ensures that a single failure does not lose data.
• The more nodes you have, the more likely a failure!

•However, replication introduces consistency problems.
• Tradeoff: must choose 2 of  Consistency, Availability and Partition Tolerance.

• A distributed DB client, at very least, would want to achieve:
• Montonic reads, monotonic writes, read your writes (together: linearizability).

• Ensure consistency by waiting for responses from multiple replicas. 
•Different quorum levels (all, majority, one) trade delay of  reads/writes 

and determine whether reads or writes are unavailable during recovery.
• Cassandra DB lets programmer choose the quorum level for each read/write.
• Other NoSQL databases are designed to use just one read/write strategy.


