(CS-310 Scalable Software Architectures
Lecture 14:

Distributed DB Consistency

Steve Tarzia

Last Time: NoSQIL. databases

* Data partitioning is necessary to divide write load among nodes.
* Should minimize references between partitions.
* Can be treated as a graph partitioning problem.
* SQL sharding was a special case of data partitioning, done in app code.

* NoSQL databases make partitioning easy by eliminating references.

* Without references, data becomes denormalized.
* Duplicated data consumes more space, can become inconsistent.

* Distributed NoSQL databases are very scalable, but they provide
only a very simple key-value abstraction. One key is indexed.

* Distributed Hash Table can implement a NoSQL database.

* The hash space is divided evenly between storage nodes.
* Client computes hash of key to determine which node should store data.

Hash-based partitioning of distributed DB
* aka, a Distributed Hash Table.

* Each cluster node is responsible for a
range of hash values corresponding to
an equal chunk of data

Node 0 stores hash values

00000000-3FFFFFF

* Hash the key to determine
where the (key, value) is stored

Node 3 stores hash values

=% | C0000000-FFFFFFF

Node 1 stores
hash values

~ 5= 40000000-7FFFFEL

* To find data, client must have:
* A list of all nodes.
* hash ranges assigned to each node

* Sharing this node/range info is

a distributed consensus problem. ~ | Node 2 stores hash values

80000000-BFFFFFF

A Shared Nothing architecture

* Each request is handled by one node.

e There are no bottlenecks!

Node 0 stores hash values

00000000-3FFFFFF

* Both throughput and capacity
are directly proportional to
the number of nodes.

Node 3 stores hash values

~ % C0000000-FFFFFFF

Node 1 stores
hash values

40000000-7FFFFEFE

—

e DH'T's can scale to thousands
of nodes.

But what about s
. TP ~_ = | Node 2 stores hash values
reliability: A 80000000-BFFFFEL

Maklﬂg thfi D HT T ObUSt Node 0 15 assigned the hash values

00000000-3FFFFFE, but also stores
replicas of data for the two next partitions.

* Having Many nodes means a high
chance of a node failure, so we must

replicate data to avoid data loss.
* Create some overlap in the hash
ranges covered by nodes.

* Node 0: 0-7
* Node 1: 3-F
* Node 2: 0-3 and 8-F
* Node 3: 0-7 and C-F

* Other schemes are possible,
but this one 1s simple and effectt

40000000-7FFFFFF
1s also on Node 0

80000000-BFFFFFF
1s also on Node 0

Consistency

* Whenever data is replicated, there 1s a possibility of inconsistency.

* Eg., an update was sent to three replicas, and one of them gets it first:

Put x=2

\

Communication and

N
>~ queueing delays are
@ @é @é | unpredictable. We can send
messages, but don’t know

Got it! x=2 Didn’t get the change yet, €X3Cﬂ}7 when they’ﬂ arrive.
still think x=1

[

Get X 2

/

111

* What happens if we try to reac

Query returns inconsistent answers!

| while replicas are inconsistent?

CAP Theorem

The most famous result in distributed systems theory.
It says that a distributed system cannot achieve a// 7)ree ot the following:

* Consistency: reads always get the most recent write (or an error).
* Availability: every request received a non-error response.
* Partition tolerance: an arbitrary number of messages between nodes can be

dropped (or delayed).

In other words:

* When distributed DB nodes are out-of-sync (partitioned), we must either accept
inconsistent responses or wait for the nodes to resynchronize.

* To build a distributed DB where every request immediately gets a response that is
globally correct, we need a network that is 100% reliable and has no delay.

Client-centric consistency models

* The CAP theorem gives us a tradeoff between consistency & delay.
* Inconsistency is bothersome. It can cause weird bugs.
* Fortunately, delay is usually something our apps can handle.

* I we really need both consistency and timeliness, then we must go
back to a centralized database (probably a SQL relational DB).

* Distributed (NoSQL) DB designs give different options for handling
the consistency/delay tradeoft.

* We'll consider a client connecting to the DB cluster.

* What consistency properties might we want to ensure?

Client-centric consistency properties "More recently written”

can include any write by

another client.

Monotonic Reads —7_—

* [f a client reads the value of x, later reads of x by that same client will
always return the same value or a more recently written value.

Read your Writes

* It a client writes a value to x, later reads of x by that same client will
always return the same value or a more recently written value.

Monotonic Writes

* If a client writes twice to X, the first write must happen before the
second.

Failing the Monotonic Read property

Definition of Monotonic Reads:

* If a client reads the value of
X, later reads of x by that same
client will always return the
same value or a more recently

written value.

How might it fail? S

Ul

* Read from two different

nodes during an incomplete
write.

10

Distributed DB

Client 2 = .
Get x

Get x I:é@ Put x=1 ‘

© Write has
not yet
reached
replica.

How to prevent this problem?

e Make client connect to same node
for every request.

* Or delay the second request...

11

Failing to Read your Writes Disteibuted DB

Definition of Read your Writes:

. . Client =
* If a client writes a value to x, later
. . Put x=1
reads of X by that same client will always — Write has
return the same value or a2 more S < notyet
. reache
recently written value. STOP replica.

and

Ul

* It the system allows you to write on
one node and read from another, you
can get the old value if you read too
quickly.

* Again, to fix this problem, stick with
one node or "slow down."

12

Failing the Monotonic Writes property piuueans

Definition of Monotonic Writes:

. . . Client
* If a client writes twice to X,
the first write must happen before Put 71 .
. rite has

the second. STOP BN | Putx=2 not yet
TI:?:IK —_— reached
. lica.
* The second write can occutr on repnes

a node before the first arrives. =

* Does this matter?
* Not unless the writes are cumulative. (eg., an increment operation)

* Note that including a sequence number or timestamp would prevent the
delayed write x=1 from being accepted on the third node.

e Solution: same as before.

13

Two alternatives for achieving Consistency

Set some rules for client and replication behavior to achieve consistency.

1. Make client send all requests to one replica node.
* Pro: Simplicity.
* Con: Consistency problems arise when a node fails.

* Client must switch to another node, and the consistency problems are again possible.

* Note: if don't care about fault tolerance, then avoid replication to get consistency.

MongoDB does not replicate data and thus has Consistency and Partition Tolerance
but lacks Awvailability because a failed node causes downtime (C/P).

2. Make client wait until the the read or write 1s synchronized across
the whole system.

* For efficiency, we only care about the single key/value being synchronized.
* How do we know when the value is synchronized? (@

JHIN

* Simplest approach is for the client to send the request to all nodes and wait!

Waiting tor Consistency

Monotonic Read:

Put x=1

Wait until all
three give the

same value.

S Write 1s
slow to

Get x

reach last

replica.
Second get has been

delayed enough to
get the new value

* Read your Write:

Client

Put x=1

Wait until all
acknowledge

the write.

Get x

Get has been
delayed enough to
get the new value

14

15

Waiting tor Consistency with Quorums

* A set of solutions for consistency in distributed DB:s.
* A quorum is a minimum percentage of a committee needed to act.
* Wait for an acknowledgement of consistent data from a certain
number of replicas betore considering the read/write completed.
* Prevents progress until the replicas have a certain degree of consistency.

All One Fast reads

Majority Majority Balanced read/write
performance

One All Fast writes

* We send requests to all nodes but wait for the prescribed # of responses.

16

Majority-read, majority-write example (three nodes)

* Client wants to write X=1.
* Sends three write requests to three replicas.
* When an acknowledgement from two replicas is received it can proceed.
* The third/last write proceeds in the background.

e Client reads X

* Sends three read requests to three replicas.
* At this point, one of the replicas may still have old data, but that’s OK!
* Client will be satisfied when it receives two responses.

* If they're different, use the most recent one.
(Every write is timestamped by the client.)

* Because writes are not finished until at least two acknowledge, there is
at most one old value being stored. At least one of two must be new.

17

Single-read, unanimous-write example

* Client wants to write X=1.
* Sends three write requests to three replicas.
* Must wait until all three replicas acknowledge before proceeding,

e Client reads X

* Sends three read requests to three replicas.
* At this point, all three replicas must have received my previous write!
* Client will be satisfied when it receives any one response.

* Note that the responses from different nodes may be different (due to partial
writes from other clients), but all will reflect data state after my own write.

* Choose the latest value.

* Notice that writes are slow (max latency of the 3),
but reads are fast (min latency of the 3).

18

Question: What happens if a DHT replica tfails?

Example 1: write and read quorum of two Put x=2
(of three replicas).

* Client performs a write, gets two ACKs and
proceeds.

* At this point, replicas store two new values, and Gotitlx=2 Gotit/x=2 Didn’t get
one old value. the change

yet, still
* Now one of the written-to replicas fails! @ think x=1

* Can read and writes proceed? N
Replacement joins

* Yes. Two different values will be read, but client ASAP and requests lost
can choose the most recent one. data from replicas

* The 3 write will eventually be received, and two
copies made available.

19

Question: What happens if a DHT replica tfails?

Example 2: write quorum of three Put x=2
(read quorum of one)

* A replica tails!

- -

* Can reads and writes proceed?
Nooneto Gotitl x=2 Got 1t! x=2

* Client performs a write, and cannot get receive?!
three ACKSs.
* Write is impossible! (but reads can proceed) @

* Part of the system is stalled, Zemporarily.

Replacement joins
ASAP and requests lost

data from replicas

* The write can be retried after a
replacement joins the DHT and gets

copies of all the data.

20

Reminder: Why is this scalable?

* My consistency examples showed only three nodes == three replicas.
* This was not a scalable system because all nodes stored all data.

* In practice you can have a very large number N of nodes, and a constant number

of replicas for each data key.
* Hashing will map each data key to a subset (often 3) of the N nodes. than 3 replicas:

* Quorum only apply to replica nodes. "Write to all" means all replicas (3 nodes).

Put y=5

Gety

Distributed DB

21

Another way of looking at consistency

* A distributed system 1s linearizable if the partial ordering ot distributed
actions 1s preserved.
* The distributed actors each know the order of their own actions.
* This certain knowledge must never be contradicted by the distributed system.
* This creates a partial ordering of all the events in the distributed system

* For example:
* if Anita does A, B, C (in that order)

* and Sam does S, T, U, (in that order) } Lhese happen concurrently
* Then no one should see B before A, nor U before T, etc.

* Every observed serialization of the parallel activity must be agreeable
to the individual actors. Observations will vary across the system.

* There are all valid: (A, B, C,S, T, U) (§ A, B, T, U, C) (5§, T, U, A, B, C)

22

Consistency is a subtle topic, with many models.

Strict Serializable
Serializable Linearizable
Repeatable Snapshot Sequential
Read Isolation

f

Unavailable

Legend

Not available during some types of network failures. Some
or all nodes must pause operations in order to ensure safety.

Available on every non-faulty node, so long as clients only
talk to the same servers, instead of switching to new ones.

Available on every non-faulty node, even when the network
is completely down.

https://jepsen.io/consistency

For more 1info on this fascinating topic

* CS-345 Distributed Systems
* Chapter 7 of Distributed Systems by van Steen and Tanenbaum.

* Part II (and Chapter 9 in particular) of the Designing Data Intensive
Applications book by Kleppmann.

* We covered the client-centric view of consistency.

e Other models take a data-centric view.

* [t’s a nice mixture of CS theory and real system design.

23

https://www.distributed-systems.net/index.php/books/ds3/

NoSQL databases use DHTs or similar schemes

* Amazon DynamoDB

* Apache Cassandra

* ElasticSearch

* MongoDB (bashed sharding option)

Distributed filesystems can also use DHTs
* Filename/path is the key.

e Value is the file’s contents.

* Hadoop HDFES, Google File System (Colossus, BigTable), Amazon S3

24

25

Recap: Distributed DB Consistency

* Replication of data ensures that a single failure does not lose data.
* The more nodes you have, the more likely a failure!

* However, replication introduces consistency problems.
* Tradeoff: must choose 2 of Consistency, Availability and Partition Tolerance.

* A distributed DB client, at very least, would want to achieve:

* Montonic reads, monotonic writes, read your writes (together: linearizability).

* Ensure consistency by waiting for responses from multiple replicas.

* Different quorum levels (all, majority, one) trade delay of reads/writes
and determine whether reads or writes are unavailable during recovery.
* Cassandra DB lets programmer choose the quorum level for each read/write.

* Other NoSQL databases are designed to use just one read/write strategy.

