(CS-310 Scalable Software Architectures
Lecture 13:

Distributed NoSQL Databases

Steve Tarzia

Last Time: Push Notifications

* Traditional web/app design uses a client-server model, but sometimes
we want to push data to client instead of client always pulling.

* Asynchronously sending data to clients can be a challenge.

* Mobile OSes have special push notification services.

* Allows a single connection to be shared by all apps on the phone.
* Allows notifications to be delivered even if app is not running.

* Web browsers can use Websockets or Long-polling.

* In both cases, client 1s connected to one machine and service must somehow
relay messages to that connection.

Recall from Lecture 9: Scaling SQI. Databases

* Read replicas horizontally scale databases for reading.
* Writes are done in one place and propagated to many replicas.
* Data on a given replica may lag behind master, but it's self-consistent.
* Works well if writes are much less common than reads.

* Horizontal scaling of writes suggests data partitioning.

* Each data row/element is assigned a single "home" (or a constant number).
* If not, each node must accept all writes, which is not scalable.

* Sharding is data partitioning for SQI./relational DBs.

* Works well for queries that can be handled within a single shard.

* Sharding divides data along just one dimension, so inevitably some queries
will involve all the nodes, and thus will not be scalable.

Review ot Sharding:

* Splits data among many machines.
* Accept writes on all machines.

* But the data partitioning 1s done manually.

* Programmer chooses a sharding key or rule, and to write code that joins
results from the different shards.

* Works well for queries that can be handled within a single shard.

* It we keep the relational model, with normalized data, many queries
will involve all the nodes, so scaling is limited.

* NoSQL databases all solve this problem by denormalizing data,
meaning that data is duplicated to isolate queries to one node.

Normalized data

* A normalized relational database has no
duplication of data.

* References (foreign keys) point to shared data.

* Eg., at right, the Philanthropy industry is
shared by many LinkedIn users.

* In effect, many users are related to each other by
all being linked to that industry

* To optimally partition the rows into shards, we

could solve a balanced graph partitioning
problem.

g

users table
user_id first_name | last_name summary
251 Bill Gates Co-chair of ... blogger.
... line | region_id | industry_id photo_id
wrapped | ¢ us:91 1319 57817532
/ regions table industries table
id / region_name id industry_name

Financial Services

us:7 {Greater Boston Area

us:91 | Greater Seattle Area

Construction

Philanthropy

positions table

\ user_id job_title organization
458 * 251 Co-chair Bill & Melinda GatesF...
457 ! 251 Co-founder, Microsoft
Chairman
education table
id user_id school_name start end
807 ? 251 Harvard University 1973 1975
806 l 251 Lakeside School, NULL NULL
Seattle
contact_info table
id user_id type url
155 ? 251 blog http://thegatesnotes.com
156 ! 251 twitter | http://twitter.com/BillGates

Graph partitioning model for DB sharding

Partition 1 Partition 2 * Nodes represent database rows.

anws
an® .
-
-

* Edges represent references (foreign keys)

Task: assign the rows to shards
(partition the nodes),

Such that:

* Total edges between partitions 1s minimized.

(Need to fetch data from another shard for a JOIN 1s
minimized.)

Edges between partitions o]
imply data transfers * Nodes per partition is roughly balanced.

between nodes. (Data stored on each shard 1s balanced.)

Reference: Facebook's social graph sharding: https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson

https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson

Partitioning challenges

Partition 1 Partition 2

LA A
.c" e,
"
-

Edges between partitions
imply data transfers

between nodes.

* Solving this problem is NP-complete.
(But we can approximately solve it fairly well.)

* This model's cost function 1s too simplistic:
e Some rows are fetched more often.

* An edge can pull data transitively from lots of nodes.
Ie., the cost of a reference can vary dramatically.

* Even with an o%timal partitioning, we still have
data references between partitions.

* How does the data (graph structure) atfect the
solution quality?
* Random interconnections hurt. i
* Nodes with high degree (many edges) hurt. Qb
* Structured, independent relationships are easy.
* Nodes with one edge (spurs) are easy.

The jump trom SQL to NoSQL

SQL sharding

* Eliminating the edges (references) would make
the data partitioning problem triviall

* Foreign keys (references) and JOINs
(dereferences) are fundamental to SQL. and
relational databases.

* Removing the ability to create references gives

us 2 NoSQL database.

* Instead of following references with JOINS,
we store denormalized data, with copies ot
referenced data.

From Normalized ... to Denormalized Data
NoSQL

SQL

users table
user_id first_name | last_name summary
251 Bill Gates Co-chair of ... blogger.
... line | region_id | industry_id photo_id
wrapped | ¢ us:91 1319 57817532
/ regions table industries table
id region_name id industry_name

43 Financial Services

Greater Seattle Area

us:7 |/Greater Boston Area
us:91

48 Construction

1

user_id

value

31 Philanthropy

positions table

id \ user_id job_title organization
458 * 251 Co-chair Bill & Melinda GatesF...
457 ! 251 Co-founder, Microsoft

Chairman
education table

id user_id school_name start end
807 ? 251 Harvard University 1973 1975
806 l 251 Lakeside School, NULL NULL

Seattle

251

"first_name": "Bill",
"last_name:" "Gates",
"summary": "Co-chair of ... blogger.",
"region": "Greater Seattle Area",
"industry": "Philanthropy",
"photo_id": 57817532,
"positions": |
{ "job_title": "Co-chair",
"organization": "Bill & Melinda ..." },
{ "job_title": "Co-founder, Chairman",
"organization": "Microsoft" }
I,
"education™: |
{ "school_name": "Harvard University",
"start": 1973,
"end": 1975 }

{ "school_name": "Lakeside School, ..."}

NoSQL rationale

key value
user251 | {

One key is indexed.

"first_name": "Bill",

80-chair of ... blogger.",
"region": "Greater Seattle Area",
"industry": "Philanthropy",
"photo_id": 57817532,
"positions": |
{ "job_title": "Co-chair",
"organization": "Bill & Melinda ..." },
{ "job_title": "Co-founder, Chairman",
"organization": "Microsoft" }
I,
"education™: |
{ "school_name": "Harvard University",
"start": 1973,
"end": 1975 }

{ "school_name": "Lakeside School, ..."}

]

user444

} Precise format of value
varies by NoSQL DB type.

{

first name: "Steve".

10

Why just one column?

* Without references, it's impossible to
define finite/fixed columns (a
schema).

* Consider "positions": we don't know
how many position columns to add.

* Some NoSQL DBs allow multiple
columns, but each row can have
different columns ("wide columns")

Why just one table?
* Some NoSQL DBs allow multiple

tables, but since rows can have any
format, it's kind of meaningless.

NoSQL DBs are key-value stores.

Hashing is the basis of distributed NoSQL DBs

* A hash1s an algorithm that takes a value and returns a pseudo-random

value derived from it.

* It’s a constant but unpredictable mapping
* A long sequence of arithmetic operations

5 1s a standard hash function:

“Steve” =2 f6e997429bf8cbhb7b3b98b310a9f7ca3l
“steve” 2 2666b87c682f5072f62bab0955d485ce
“Janice” = 3837607db4754c036425cblb2a71c8766
w17 =2 b026324c6904b2a%cb4b88d6d61c81dl
“Steve” =2 f6e997429bf8cbhb7b3b98b310a9f7ca3l

tale of two cities.txt (806,8786/9617’6262‘67”2)
~ 7 2> 3abb56b74562a714a5638£94446581977

* The same input always gives the same output
* Length of the input can vary, but output has tfixed length

This hash is
case sensitive

Hash Table

* Stores (key, value) pairs
* This abstract data type 1s called a dictionary, or map.

* For example:
e A word and its definition.

* “word” =2 “a single distinct meaningful element of speech or writing, ...

b

2

* “hash” = “a dish of cooked meat cut into small pieces and cooked again, ...

* A database table’s primary key and the rest of the columns in the row:
* StaffID > [StfFirstName, Stfl.astName, StfStreetAddress, StfCity, StfState, ...]
* 98005 =2 [“Suzanne”, “Viescas”, “15127 NE 24th, #383”, ...]
« 98007 > [“Gary”, “Hallmark”, “Route 2, Box 203B”, ...]

b)

key

value

12

Hash Table mechanics

* Hash the key to determine the address where the value is stored

Keys Key-Value Records
000
. 001 Lisa Smith 521-8976
John Smith
000
Lisa Smith 872
873 John Smith 521-1234
874 | Sandra Dee 521-9655
Sam Doe
872
Sandra Dee 872
998 Sam Doe 521-5030
999

* If the address is already filled, then use the next open slot

* This 1s called a collision and there are other strategies besides “linear probing”

Hash Indexes 1n SQL databases

A hash table is an alternative to a search tree
* It lets you find the data in one step!

* However, it does not support efficient range queries.
* A hash table scatters data randomly, so walking though a range 1s difficult.

Tree-based table index Hash-based table index
Qeimary Key Tndex (ssN) Rerson Keys Key-Value Records
—enr | FestNare | laskame. [bitwYear 000
e Ave. | Sondes 190
u 2 Y qﬂ \”Q Kadvioski 2002, : 001 Lisa Smith 521-8976
Shuel Be- R YA¥H | John Smith
oy) L ‘ 000
\o,\N> ¢ .
Jeve's) Lisa Smith 872
E | 873 John Smith 521-1234
_@500068D) 0 d‘? = - - AP AT 874 | Sandra Dee | 521-9655
| Sam Doe 873
a‘\«Nums arte .
in daw dowom Jeve .
| Sandra Dee 872
998 Sam Doe 521-5030
999

Distributed Hash Table

Fach cluster node 1s responsible for a range of hash values

Fach client gets the list of nodes and the range assigned to each.

* When querying for a key's value, client computes the key hash to

Keys

John Smith

Lisa Smith

Sam Doe

Sandra Dee

000
001
000

872
873
874
872

872
998
999

Key-Value Records

Lisa Smith

521-8976

John Smith

521-1234

Sandra Dee

521-9655

Sam Doe

521-5030

determine which node to query for the data:

0w

Hash of the key

partitions the data

Node 1 stores hash values 000-332

Node 2 stores hash values 333-665

Node 3 stores hash values 666-999

15

16

DHT is a NoSQL. database

* NoSQL databases are distributed key-value stores
* Like one big table with just a primary key

* They have a map/dictionary interface, do not support SQL queties.
* You can only:

What
* geta value for a key. Jise 1h
* puta value for a key. scalability?
* Fach operation only atfects the node(s) storing that key '

STOP

and

* Very scalable! (can grow large without slowing down)

* [f we wanted to support full SQL, JOINs would have to pull data
from many nodes in the cluster and performance would be slow.

Ul

Distributed, shared-nothing architecture

* Create a cluster of computers connected to each other.

e Fach node in the cluster stores a fraction of the data set.

* Distributed database examples:
* MongoDB, Cassandra, Amazon DynamoDB,; ...

* Distributed filesystems also use the same basic idea:

* Hadoop HDFS, Google File System (Colossus, BigTable), Amazon S3, ...

17

NoSQIL. downsides :(

key

value

user251

{

"first_name": "Bill",
"last_name:" "Gates",

"summary": "Co-chair of ... blogger.",

"region": "Greater Seattle Area",
"industry": "Philanthropy",
"photo_id": 57817532,
"positions": |

I,

{ "job_title": "Co-chair",
"organization": "Bill & Melinda ..." },

{ "job_title": "Co-founder, Chairman",
"organization": "Microsoft" }

"education™: |

]
b

{ "school_name": "Harvard University",
"start": 1973,
"end": 1975 }

{ "school_name": "Lakeside School, ..."}

user444

{

"first name": "Steve".

* Just one indexed column (the key).
* Because index is built with hash-based
partitioning,
* Denormalized data is duplicated.
* Wastes space.
* Cannot be edited in one place.
* Bg,, "Greater Seattle Area" is repeated in
many user profiles instead of "region:91"
* References are possible, but:

* Following the reference requires another
query, probably to another node.

* There is no constraint checking
(refs can become invalid after delete).

18

19

Normalization thought experiment

key

value

user251

{ "first_name": "Bill",
"last_name'": "Gates",
"summary": "Co-chair of ... blogger.",
"region": "us:91"
"industry": 131
"photo_id": 57817532,
"positions": [458, 457],
"education": [807, 806] }

reg:us:91

{ "region_name": "Greater Seattle Area" }

ind:131

{ "industry_name": "Pilanthropy"

pos:458

{ "user_id": 251,
"job_title": "Co-chair",
"organization": "Bill and Melinda Gates ..." }

pos:457

{ "user_id": 251,
"job_title": "Co-founder, Chairman",
"organization": "Microsoft"

edu:807

{ "user_id": 251,
"school_name": "Harvard University",
"start": 1973,
"end": 1975 }

* What happens if we try to store
normalized data, like this, in a

NoSQL database?
* Is it possibler

* Why 1sn't it done?

* It's possible, but you would need
many serial queries to many different
DB nodes to fetch the uset's profile.

* References are not enforced by the
schema, so they can become broken.

20

Summary

* Data partitioning is necessary to divide write load among nodes.
* Should minimize references between partitions.
* Can be treated as a graph partitioning problem.
* SQL sharding was a special case of data partitioning, done in app code.

* NoSQL databases make partitioning easy by eliminating references.

* Without references, data becomes denormalized.
* Duplicated data consumes more space, can become inconsistent.

* NoSQL databases are very scalable, but they provide only a very
simple key-value abstraction. One key 1s indexed.

* Distributed Hash Table can implement a NoSQL database.

* The hash space is divided evenly between storage nodes.
* Client computes hash of key to determine which node should store data.

