
1

CS-310 Scalable Software Architectures
Lecture 13:

Distributed NoSQL Databases
Steve Tarzia

2

Last Time: Push Notifications
• Traditional web/app design uses a client-server model, but sometimes

we want to push data to client instead of client always pulling.
• Asynchronously sending data to clients can be a challenge.
•Mobile OSes have special push notification services.
• Allows a single connection to be shared by all apps on the phone.
• Allows notifications to be delivered even if app is not running.

•Web browsers can use Websockets or Long-polling.
• In both cases, client is connected to one machine and service must somehow

relay messages to that connection.

3

Recall from Lecture 9: Scaling SQL Databases
• Read replicas horizontally scale databases for reading.
• Writes are done in one place and propagated to many replicas.
• Data on a given replica may lag behind master, but it's self-consistent.
• Works well if writes are much less common than reads.

•Horizontal scaling of writes suggests data partitioning.
• Each data row/element is assigned a single "home" (or a constant number).
• If not, each node must accept all writes, which is not scalable.

• Sharding is data partitioning for SQL/relational DBs.
• Works well for queries that can be handled within a single shard.
• Sharding divides data along just one dimension, so inevitably some queries

will involve all the nodes, and thus will not be scalable.

4

Review of Sharding:
• Splits data among many machines.
• Accept writes on all machines.
• But the data partitioning is done manually.
• Programmer chooses a sharding key or rule, and to write code that joins

results from the different shards.
•Works well for queries that can be handled within a single shard.
• If we keep the relational model, with normalized data, many queries

will involve all the nodes, so scaling is limited.
•NoSQL databases all solve this problem by denormalizing data,

meaning that data is duplicated to isolate queries to one node.

5

Normalized data
… line
wrapped• A normalized relational database has no

duplication of data.
• References (foreign keys) point to shared data.
• Eg., at right, the Philanthropy industry is

shared by many LinkedIn users.
• In effect, many users are related to each other by

all being linked to that industry
• To optimally partition the rows into shards, we

could solve a balanced graph partitioning
problem.

6

Graph partitioning model for DB sharding
• Nodes represent database rows.
• Edges represent references (foreign keys)

Task: assign the rows to shards
(partition the nodes),
Such that:
• Total edges between partitions is minimized.

(Need to fetch data from another shard for a JOIN is
minimized.)

• Nodes per partition is roughly balanced.
(Data stored on each shard is balanced.)

Edges between partitions
imply data transfers
between nodes.

Partition 1 Partition 2

Reference: Facebook's social graph sharding: https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson

https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson

7

Partitioning challenges
• Solving this problem is NP-complete.

(But we can approximately solve it fairly well.)
• This model's cost function is too simplistic:
• Some rows are fetched more often.
• An edge can pull data transitively from lots of nodes.

Ie., the cost of a reference can vary dramatically.
• Even with an optimal partitioning, we still have

data references between partitions.
• How does the data (graph structure) affect the

solution quality?
• Random interconnections hurt.
• Nodes with high degree (many edges) hurt.
• Structured, independent relationships are easy.
• Nodes with one edge (spurs) are easy.

Edges between partitions
imply data transfers
between nodes.

Partition 1 Partition 2

STOP
and

THINK

8

The jump from SQL to NoSQL
• Eliminating the edges (references) would make

the data partitioning problem trivial!
• Foreign keys (references) and JOINs

(dereferences) are fundamental to SQL and
relational databases.

• Removing the ability to create references gives
us a NoSQL database.
• Instead of following references with JOINs,

we store denormalized data, with copies of
referenced data.

SQL sharding

NoSQL partitioning

Super easy
to partition!

9
From Normalized … to Denormalized Data

… line
wrapped

user_id value

251 {
"first_name": "Bill",
"last_name:" "Gates",
"summary": "Co-chair of … blogger.",
"region": "Greater Seattle Area",
"industry": "Philanthropy",
"photo_id": 57817532,
"positions": [

{ "job_title": "Co-chair",
"organization": "Bill & Melinda …" },

{ "job_title": "Co-founder, Chairman",
"organization": "Microsoft" }

],
"education": [

{ "school_name": "Harvard University",
"start": 1973,
"end": 1975 }

{ "school_name": "Lakeside School, …"}
]

}

SQL NoSQL

10
NoSQL rationale
key value

user251 {
"first_name": "Bill",
"last_name:" "Gates",
"summary": "Co-chair of … blogger.",
"region": "Greater Seattle Area",
"industry": "Philanthropy",
"photo_id": 57817532,
"positions": [

{ "job_title": "Co-chair",
"organization": "Bill & Melinda …" },

{ "job_title": "Co-founder, Chairman",
"organization": "Microsoft" }

],
"education": [

{ "school_name": "Harvard University",
"start": 1973,
"end": 1975 }

{ "school_name": "Lakeside School, …"}
]

}

user444 {
first_name: "Steve",
last_name: "Tarzia",

Why just one column?
•Without references, it's impossible to

define finite/fixed columns (a
schema).
• Consider "positions": we don't know

how many position columns to add.
• Some NoSQL DBs allow multiple

columns, but each row can have
different columns ("wide columns")

Why just one table?
• Some NoSQL DBs allow multiple

tables, but since rows can have any
format, it's kind of meaningless.

NoSQL DBs are key-value stores.
Precise format of value

varies by NoSQL DB type.

One key is indexed.

11

Hashing is the basis of distributed NoSQL DBs
• A hash is an algorithm that takes a value and returns a pseudo-random

value derived from it.
• It’s a constant but unpredictable mapping
• A long sequence of arithmetic operations

• MD5 is a standard hash function:
• “Steve” à f6e997429bf8cb7b3b98b310a9f7ca30
• “steve” à 2666b87c682f5072f62bab0955d485ce
• “Janice” à 3837607db4754c036425cb1b2a7c8766
• “1” à b026324c6904b2a9cb4b88d6d61c81d1
• “Steve” à f6e997429bf8cb7b3b98b310a9f7ca30
• tale_of_two_cities.txt (806,878 characters)

à 3ab56b74562a714a5638f94446581977
• The same input always gives the same output
• Length of the input can vary, but output has fixed length

This hash is
case sensitive

12

Hash Table
• Stores (key, value) pairs
• This abstract data type is called a dictionary, or map.

• For example:
• A word and its definition.
• “word” à “a single distinct meaningful element of speech or writing, …”
• “hash” à “a dish of cooked meat cut into small pieces and cooked again, …”

• A database table’s primary key and the rest of the columns in the row:
• StaffID à [StfFirstName, StfLastName, StfStreetAddress, StfCity, StfState, ...]
• 98005 à [“Suzanne”, “Viescas”, “15127 NE 24th, #383”, …]
• 98007 à [“Gary”, “Hallmark”, “Route 2, Box 203B”, …]

key value

13

Hash Table mechanics
•Hash the key to determine the address where the value is stored

• If the address is already filled, then use the next open slot
• This is called a collision and there are other strategies besides “linear probing”

14

Hash Indexes in SQL databases
• A hash table is an alternative to a search tree
• It lets you find the data in one step!
• However, it does not support efficient range queries.
• A hash table scatters data randomly, so walking though a range is difficult.

Tree-based table index Hash-based table index

15

Distributed Hash Table
• Each cluster node is responsible for a range of hash values
• Each client gets the list of nodes and the range assigned to each.
•When querying for a key's value, client computes the key hash to

determine which node to query for the data:

Node 1 stores hash values 000-332

Node 3 stores hash values 666-999

Node 2 stores hash values 333-665

Hash of the key
partitions the data

16

DHT is a NoSQL database
•NoSQL databases are distributed key-value stores
• Like one big table with just a primary key
• They have a map/dictionary interface, do not support SQL queries.
• You can only:
• get a value for a key.
• put a value for a key.

• Each operation only affects the node(s) storing that key
• Very scalable! (can grow large without slowing down)

• If we wanted to support full SQL, JOINs would have to pull data
from many nodes in the cluster and performance would be slow.

What
limits the

scalability?
STOP
and

THINK

17

Distributed, shared-nothing architecture
• Create a cluster of computers connected to each other.
• Each node in the cluster stores a fraction of the data set.

•Distributed database examples:
• MongoDB, Cassandra, Amazon DynamoDB, …

•Distributed filesystems also use the same basic idea:
• Hadoop HDFS, Google File System (Colossus, BigTable), Amazon S3, …

18
NoSQL downsides :(
key value

user251 {
"first_name": "Bill",
"last_name:" "Gates",
"summary": "Co-chair of … blogger.",
"region": "Greater Seattle Area",
"industry": "Philanthropy",
"photo_id": 57817532,
"positions": [

{ "job_title": "Co-chair",
"organization": "Bill & Melinda …" },

{ "job_title": "Co-founder, Chairman",
"organization": "Microsoft" }

],
"education": [

{ "school_name": "Harvard University",
"start": 1973,
"end": 1975 }

{ "school_name": "Lakeside School, …"}
]

}

user444 {
"first_name": "Steve",
"last_name": "Tarzia",

• Just one indexed column (the key).
• Because index is built with hash-based

partitioning.
•Denormalized data is duplicated.
• Wastes space.
• Cannot be edited in one place.
• Eg., "Greater Seattle Area" is repeated in

many user profiles instead of "region:91"
• References are possible, but:
• Following the reference requires another

query, probably to another node.
• There is no constraint checking

(refs can become invalid after delete).

19

Normalization thought experiment
•What happens if we try to store

normalized data, like this, in a
NoSQL database?
• Is it possible?
•Why isn't it done?

• It's possible, but you would need
many serial queries to many different
DB nodes to fetch the user's profile.
• References are not enforced by the

schema, so they can become broken.

STOP
and

THINK

key value

user251 { "first_name": "Bill",
"last_name": "Gates",
"summary": "Co-chair of … blogger.",
"region": "us:91"
"industry": 131
"photo_id": 57817532,
"positions": [458, 457],
"education": [807, 806] }

reg:us:91 { "region_name": "Greater Seattle Area" }

ind:131 { "industry_name": "Pilanthropy"

pos:458 { "user_id": 251,
"job_title": "Co-chair",
"organization": "Bill and Melinda Gates …" }

pos:457 { "user_id": 251,
"job_title": "Co-founder, Chairman",
"organization": "Microsoft"

edu:807 { "user_id": 251,
"school_name": "Harvard University",
"start": 1973,
"end": 1975 }

20

Summary
•Data partitioning is necessary to divide write load among nodes.
• Should minimize references between partitions.
• Can be treated as a graph partitioning problem.
• SQL sharding was a special case of data partitioning, done in app code.

•NoSQL databases make partitioning easy by eliminating references.
•Without references, data becomes denormalized.
• Duplicated data consumes more space, can become inconsistent.

•NoSQL databases are very scalable, but they provide only a very
simple key-value abstraction. One key is indexed.
•Distributed Hash Table can implement a NoSQL database.
• The hash space is divided evenly between storage nodes.
• Client computes hash of key to determine which node should store data.

