
1

CS-310 Scalable Software Architectures
Lecture 11:

Basic Architecture Design
Steve Tarzia

2

Last Time: Authentication
•Webservice requests are rarely open to the public.
• Each request must include an input that authenticates and identifies

the user.
• Passwords are the most common auth mechanism.
• Email/SMS (a trusted side channel of communication) can be used.
• Authentication tokens are strings randomly generated (and stored)

on the backend to verify user identity.
• Variations include session keys, cookies, and api keys.
• Often a separate microservice is dedicated to authentication (and other user

management tasks, like account creation).

3

Case Study: National Gun Violence Memorial
• https://gunmemorial.org
• Java servlet w/JSP, connecting to a SQL database, with S3 for images.

AWS deployment uses these services:
• Elastic Beanstalk
• EC2: Elastic Compute Cloud (Virtual Machines)
• RDS: Relational Database Service
• CloudFront (CDN)
• Route 53 (DNS)
• Simple Email Service (SES)

https://gunmemorial.org/

4NGVM architecture diagram

Web App
(Stateless &
Monolithic) SQL

Database

S3 file
store

CDN

Web
Scraper
(run by cron)

Web
Browser

gunviolence
archive.org

gunmemor
ial.org

media.gunmemorial.org

s3.amazonaws.com/gunmemorial-media

Email
(SMTP)
Server

Discourse
App

(open source)

SQL
Database

S3 file
store

talk.gunmemorial.org

Public
HTTP
server

DNS

Stripe &
Paypal

(donation
processors)

5

Monolithic web app API: Public Pages
HTML pages:
• GET /
• GET /[year]/[mon]/[day]/[name]
• GET /[year]/[mon]/[day]
• GET /about
• GET /search
… etc.

For full list of public pages, see:
http://gunmemorial.org/sitemap.txt
http://gunmemorial.org/sitemap.txt?start
Year=2020&endYear=2020

HTML Form and JS endpoints:
• POST /doLightCandle?victim=[id]
• POST /doPublicPostPhoto
• Body: multipart/form-data:

• victim (int)
• source (string)
• contact (string)
• mine (boolean)
• grant (boolean)
• sure (boolean)
• file (binary image data)

• POST /poll/doAnswerQuestion?...
• POST /poll/doModerateQuestion?...
• POST /doDonate?

stripeToken=[…]&amount=[cents]

Note that this API's
design does not follow

REST style. Paths specify
actions, not resources.

http://gunmemorial.org/sitemap.txt
http://gunmemorial.org/sitemap.txt?startYear=2020&endYear=2020

6

Monolithic web app API: Volunteers' Portal
HTML pages
• GET /sign-in (no cookie required, response sets a cookie)

• GET /admin
• GET /admin/victim_edit.jsp?id=[id]
• GET

/admin/photo_edit.jsp?photo=[id]
• GET /admin/moderate_photos.jsp
• GET /admin/moderate_answers.jsp
• GET /admin/victim_add.jsp
… etc.
In all these requests, require a cookie
to authenticate and identify the user.

HTML Form and JS endpoints:
• POST /admin/doAddVictim?...
• Query params:

• date (YYYY-MM-DD)
• city (string)
• province (two-letter abbreviation)
• name (string)
• gender (string)

• POST /admin/doChangePassword?
• POST /admin/doChoosePhoto?
• POST /admin/doEditPhoto?
• POST /admin/doDeleteVictim?

How to rewrite this following
REST design principles? Answer: DELETE /victim/{id}

7

SQL Database Schema (simplified)

victim

id

name (index)

date (index)

city (index)

province (index)

…

photo_candidate

id

victim (index)

photo_url

…

photo

id

victim (index)

source_url

source_title

width

height

…

primary_photo

victim

photo

…

article_link

url_hash

victim (index)

url

title

comment

id

victim (index)

category

comment

ip_address

…

moderation

comment (index)

up_or_down

ip_address

…

candle

victim (index)

date

ip_address

cookie
unique(victim, date, cookie)

session

id

user

expiry_time

cookie (unique)

volunteer

id

name

email (unique)

passwd_hash

active

…

edit_log

victim (index)

time

author (index)

description

global_property

key

value

Arrows are foreign keys, underlines are primary keys,
other keys described in italics.

8

S3 File Store details
• candidate_photo/[uuid].jpg
• photo/[photo_id].jpg
• photo_thumb/100/[photo_id].jpg
• photo_thumb/400/[photo_id].jpg
• photo_thumb/800w/[photo_id].jpg
• web_archive/[article_url_md5hash].html

Files have read-only public access at:
• https://s3.amazonaws.com/gunmemorial-media/...
• https://media.gunmemorial.org/...

ØUse a randomized uuid
to prevent public scan.

Ø100px-tall thumbnail
Ø400px-tall thumbnail
Ø800px-wide thumbnail
ØCopy of news article

HTML (in case original
article is taken down).

ØServed from Virginia.
ØUsing CDN (costs more).

https://s3.amazonaws.com/gunmemorial-media/
https://media.gunmemorial.org/

9

April 2020 monthly operating cost ($136 total)

CDN,
$55.79

Relational
DB

Service,
$28.77

Data
Transfer,
$24.33

EC2 Virtual
Machines,

$16.30

S3 File
Store,
$9.19

DNS,
$1.39

Traffic: (from Google Analytics).
Typically about 150 users on the site at any given time.

37k pageviews per $ cost

10CDN statistics in April

11

Stripe &
Paypal

(donation
processors)

Deployment sizing and monthly costs

Web App
(Stateless &
Monolithic) SQL

Database

S3 file
store

CDN

Web
Scraper
(run by cron)

Web
Browser

gunviolence
archive.org

gunmemor
ial.org

media.gunmemorial.org

s3.amazonaws.com/gunmemorial-media

Email
(SMTP)
Server

Discourse
App

(open source)

SQL
Database

S3 file
store

talk.gunmemorial.org

Public
HTTP
server

DNS One t3.small +
100GB storage = $29

One t2.nano + 8GB = $2.50

EC2/RDS instances are
reserved for one year to

reduce hourly cost

One t2.micro
+ 9GB = $4

App and its SQL
DB share a

t2.micro + 35GB
storage = $6

12Scaling up to 200x traffic (equal to cnn.com)

Web App
(Stateless &
Monolithic) SQL

Database

S3 file
store

CDN

Web
Scraper
(run by cron)

Web
Browser

gunmemor
ial.org

media.gunmemorial.org

s3.amazonaws.com/gunmemorial-media

Email
(SMTP)
Server

Public
HTTP
server

gunviolence
archive.org

DNS

Stripe &
Paypal

(donation
processors)

STOP
and

THINK

https://www.washingtonpost.com/pr/2019/05/15/more-than-million-people-visited-washington-post-site-april/

13

Database scaling
• Add read-replicas (horizontal)
• Use bigger instances (vertical)

Web App
(Stateless &
Monolithic)

SQL Primary

S3 file
store

CDN

Web
Scraper
(run by cron)

Web
Browser

gunmemor
ial.org

media.gunmemorial.org

s3.amazonaws.com/gunmemorial-media

Email
(SMTP)
Server

Public
HTTP
server

Read Replicas

Load
balanc
ing lib

Upgrade primary from
t3.small à r5d.24xlarge

gunviolence
archive.org

Stripe &
Paypal

(donation
processors)

14

App scaling
• Add lots of app servers and

load balancing.

Web App
(Stateless &
Monolithic)

SQL Primary

S3 file
store

CDN

Web
Scraper
(run by cron)

Web
Browser

gunviolence
archive.org

gunmemor
ial.org

media.gunmemorial.org

s3.amazonaws.com/gunmemorial-media

Email
(SMTP)
Server

Public
HTTP
server

Read Replicas

Load
balanc
ing lib

Load
Balancer
(reverse proxy)

Stripe &
Paypal

(donation
processors)

15

More front-end caching
• CDN in front of web app to cache HTML.
• CDN for all media files, even on detail pages.

Web App
(Stateless &
Monolithic)

SQL Primary

S3 file
store

CDN

Web
Scraper
(run by cron)

Web
Browser

gunmemorial.org

media.gunmemorial.org

s3.amazonaws.com/gunmemorial-media

Email
(SMTP)
Server

Public
HTTP
server

Read Replicas

Load
balanc
ing lib

Load
Balancer
(reverse proxy)

CDN

gunviolence
archive.org

Stripe &
Paypal

(donation
processors)

16

Final scalable design

Web App
(Stateless &
Monolithic)

SQL Primary

S3 file
store

CDN

Web
Scraper
(run by cron)

Web
Browser

gunmemorial.org

media.gunmemorial.org

s3.amazonaws.com/gunmemorial-media

Email
(SMTP)
Server

Public
HTTP
server

Read Replicas

Load
balanc
ing lib

Load
Balancer
(reverse proxy)

CDN

gunviolence
archive.org

DNS

Stripe &
Paypal

(donation
processors)

17

Can a single SQL database handle the write load?
• At 200x the load, we'd expect

about 400k×200 = 80M
events/month
• 80M/month × 1 month/2.6M sec
≅ 30 DB writes per second
• This is definitely achievable:
• Magnetic disk can do ~100 IOPS
• SSD can do > 5,000 IOPS [ref.]

• But this is just a theoretical
projection. It's better to look at
the load in practice…

Month of April UI events (leading to DB writes):

There are also DB writes to add new victims to
the database, but this negligible and does not
scale with traffic. Visitor actions are the main
concern for scaling.

https://en.wikipedia.org/wiki/IOPS

18

Empirical scaling analysis (real traffic on t3.small)
•Data at left is from two weeks in May 2020,

running the database on a t3.small instance.
• Remember, our goal is to scale traffic by 200x.

• AWS allows DB instances with up to 32k IOPS.
• Can a single machine's storage handle 200x the load?
• Yes! 200x more load would be just 2k IOPS.

• The biggest DB instance available (r5.24xlarge)
has 96 CPU cores instead of just two.
• Can a single machine's CPU handle 200x the load?
• Yes! Two CPU cores can handle 30x more load. 48x

more CPU cores might handle 1,400x the load.

On t3.small (two CPU cores)

19

NGVM is easy to scale. Why?
• Traffic is mostly reads.
• Visitors are not logged in.
• There are no personal recommendations or user behavior models.
• Each user gets the same HTML, and responses can be cached in CDN.

• Effects of visitor actions (lighting candles, leaving comments) need
not be visible immediately to other visitors. Caching is possible.
• Users don't interact directly with each other. No user notifications.
•Memorial pages are independent of each other.
•Data size does not scale with traffic (number of memorial pages is

fixed). Legacy.com would be more difficult to scale.
•Writes don't involve any transactions.

STOP
and

THINK

20

Recap
• Showed NVGM architecture design case study.
• It's another article publishing system, so arch is similar to Wikipedia.
• Caching and load balancers on frontend,
• Stateless app,
• SQL DB with read-replicas.

• S3 file store was used for large media files (photos).

