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Last Time: Authentication
•Webservice requests are rarely open to the public.
• Each request must include an input that authenticates and identifies 

the user.
• Passwords are the most common auth mechanism.
• Email/SMS (a trusted side channel of  communication) can be used.
• Authentication tokens are strings randomly generated (and stored) 

on the backend to verify user identity.
• Variations include session keys, cookies, and api keys.
• Often a separate microservice is dedicated to authentication (and other user 

management tasks, like account creation).
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Case Study: National Gun Violence Memorial
• https://gunmemorial.org
• Java servlet w/JSP, connecting to a SQL database, with S3 for images. 

AWS deployment uses these services:
• Elastic Beanstalk
• EC2: Elastic Compute Cloud (Virtual Machines)
• RDS: Relational Database Service
• CloudFront (CDN)
• Route 53 (DNS)
• Simple Email Service (SES)

https://gunmemorial.org/
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Monolithic web app API: Public Pages
HTML pages:
• GET /
• GET /[year]/[mon]/[day]/[name]
• GET /[year]/[mon]/[day]
• GET /about
• GET /search
… etc.

For full list of  public pages, see:
http://gunmemorial.org/sitemap.txt
http://gunmemorial.org/sitemap.txt?start
Year=2020&endYear=2020

HTML Form and JS endpoints: 
• POST /doLightCandle?victim=[id]
• POST /doPublicPostPhoto
• Body: multipart/form-data:

• victim (int)
• source (string)
• contact (string)
• mine (boolean)
• grant (boolean)
• sure (boolean)
• file (binary image data)

• POST /poll/doAnswerQuestion?...
• POST /poll/doModerateQuestion?...
• POST /doDonate?

stripeToken=[…]&amount=[cents]

Note that this API's 
design does not follow 

REST style.  Paths specify 
actions, not resources.

http://gunmemorial.org/sitemap.txt
http://gunmemorial.org/sitemap.txt?startYear=2020&endYear=2020
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Monolithic web app API: Volunteers' Portal
HTML pages
• GET /sign-in (no cookie required, response sets a cookie)

• GET /admin
• GET /admin/victim_edit.jsp?id=[id]
• GET 

/admin/photo_edit.jsp?photo=[id]
• GET /admin/moderate_photos.jsp
• GET /admin/moderate_answers.jsp
• GET /admin/victim_add.jsp
… etc.
In all these requests, require a cookie 
to authenticate and identify the user.

HTML Form and JS endpoints: 
• POST /admin/doAddVictim?...
• Query params:

• date (YYYY-MM-DD)
• city (string)
• province (two-letter abbreviation)
• name (string)
• gender (string)

• POST /admin/doChangePassword?
• POST /admin/doChoosePhoto?
• POST /admin/doEditPhoto?
• POST /admin/doDeleteVictim?

How to rewrite this following 
REST design principles? Answer: DELETE /victim/{id}
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SQL Database Schema (simplified)
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S3 File Store details
• candidate_photo/[uuid].jpg
• photo/[photo_id].jpg
• photo_thumb/100/[photo_id].jpg
• photo_thumb/400/[photo_id].jpg
• photo_thumb/800w/[photo_id].jpg
• web_archive/[article_url_md5hash].html

Files have read-only public access at:
• https://s3.amazonaws.com/gunmemorial-media/...
• https://media.gunmemorial.org/...

ØUse a randomized uuid
to prevent public scan.

Ø100px-tall thumbnail
Ø400px-tall thumbnail
Ø800px-wide thumbnail
ØCopy of  news article 

HTML (in case original 
article is taken down).

ØServed from Virginia.
ØUsing CDN (costs more).

https://s3.amazonaws.com/gunmemorial-media/
https://media.gunmemorial.org/
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April 2020 monthly operating cost ($136 total)

CDN, 
$55.79 

Relational 
DB 

Service, 
$28.77 

Data 
Transfer, 
$24.33 

EC2 Virtual 
Machines, 

$16.30 

S3 File 
Store, 
$9.19 

DNS, 
$1.39 

Traffic: (from Google Analytics).
Typically about 150 users on the site at any given time. 

37k pageviews per $ cost
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Deployment sizing and monthly costs
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https://www.washingtonpost.com/pr/2019/05/15/more-than-million-people-visited-washington-post-site-april/
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Database scaling
• Add read-replicas (horizontal)
• Use bigger instances (vertical)
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App scaling
• Add lots of  app servers and 

load balancing.
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More front-end caching
• CDN in front of  web app to cache HTML.
• CDN for all media files, even on detail pages.
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Final scalable design
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Can a single SQL database handle the write load?
• At 200x the load, we'd expect 

about 400k×200 = 80M 
events/month
• 80M/month × 1 month/2.6M sec
≅ 30 DB writes per second
• This is definitely achievable:
• Magnetic disk can do ~100 IOPS
• SSD can do > 5,000 IOPS [ref.]

• But this is just a theoretical 
projection.  It's better to look at 
the load in practice…

Month of  April UI events (leading to DB writes):

There are also DB writes to add new victims to 
the database, but this negligible and does not 
scale with traffic.  Visitor actions are the main 
concern for scaling.

https://en.wikipedia.org/wiki/IOPS
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Empirical scaling analysis (real traffic on t3.small)
•Data at left is from two weeks in May 2020, 

running the database on a t3.small instance.
• Remember, our goal is to scale traffic by 200x.

• AWS allows DB instances with up to 32k IOPS.
• Can a single machine's storage handle 200x the load?
• Yes! 200x more load would be just 2k IOPS.

• The biggest DB instance available (r5.24xlarge) 
has 96 CPU cores instead of  just two.
• Can a single machine's CPU handle 200x the load?
• Yes!  Two CPU cores can handle 30x more load. 48x 

more CPU cores might handle 1,400x the load.

On t3.small (two CPU cores)



19

NGVM is easy to scale.  Why?
• Traffic is mostly reads.
• Visitors are not logged in.
• There are no personal recommendations or user behavior models.
• Each user gets the same HTML, and responses can be cached in CDN.

• Effects of  visitor actions (lighting candles, leaving comments) need 
not be visible immediately to other visitors.  Caching is possible.
• Users don't interact directly with each other.  No user notifications.
•Memorial pages are independent of  each other.
•Data size does not scale with traffic (number of  memorial pages is 

fixed).  Legacy.com would be more difficult to scale.
•Writes don't involve any transactions.

STOP
and

THINK
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Recap
• Showed NVGM architecture design case study.
• It's another article publishing system, so arch is similar to Wikipedia.
• Caching and load balancers on frontend,
• Stateless app,
• SQL DB with read-replicas.

• S3 file store was used for large media files (photos).


