
1

CS-310 Scalable Software Architectures
Lecture 10:

Authentication
Steve Tarzia

2

Last time: SQL Database Scaling
• Read replicas horizontally scale databases for reading.
• Writes are done in one place and propagated to many replicas.
• Data on a given replica may lag behind primary, but it's self-consistent.
• Works well if writes are much less common than reads.

•Horizontal scaling of writes suggests data partitioning.
• Each data row/element is assigned a single "home"
• If not, consistency is very tricky (write race conditions for transactions).

• Sharding is data partitioning for SQL/relational DBs.
• Works well for queries that can be handled within a single shard.
• Sharding divides data along just one dimension, so inevitably some queries

will involve all the nodes, and thus will not be scalable.

3

Authentication is proving your identity
•Most apps use require users to set a password to reconnect to account.
• A salted hash of the password is stored in a database.
• Passwords in future login requests can be compared to the stored password.

• An email address or phone number can also be used to prove identity.
•Web, desktop, smartphone, and other clients make requests to access

user's data, and access must be protected.

•HTTP requests should be sent using HTTPS (TLS) which encrypts the
data in transit. Request/response data cannot be intercepted.
• TLS authenticates the server using certificates (details in CS-340 Networking).
• However, TLS does not authenticate the client.

4

Simplest approach: Password in every request
Client can save the password locally and include it in every request.
•GET /inbox?user=steve&password=jordan23
• POST /message
• Request body:

{ "user": "steve",
"password": "jordan23",
"to": "catlover3",
"txt": "hello!"}

•Why is this a poor solution?
• Storing the password locally is a security risk.
• All the backend apps are seeing the password.
• DevOps staff will see passwords in all HTTP request logs.

STOP
and

THINK

5

Session Keys are like temporary passwords
•When the user logs in, backend generates a random session key,

stores it in the user account DB, and returns it to the client.
• POST /signin

Request body:
{ "user": "steve",
"password": "jordan23" }

• Response: 200 OK:
{ "session": "3lkjd0f9j32lkjsdef09j" }

• Client includes session key in all future requests. Often in a header:
• GET /inbox
Authorization: session 3lkjd0f9j32lkjsdef09j

The second line is an optional http header.

We also call this an
Authentication Token.
Notice that we do not

need the username. Why?

6
Review: Cookies are auth tokens for web browsers
• Cookies are how web applications track state, often to track user identity.
• After user submits the login form, server will return a cookie in the response:

• Response tells the browser to redirect to http://somewebsite.com/account, but it also
gives the browser a cookie to remember.
• Browser will include the cookie in all future HTTP requests to somewebsite.com:

• Server getting this request can use the cookie to determine which user it came from!

HTTP/1.1 302 Found
Location: http://somewebsite.com/account
Set-Cookie: someweb-id=kfj203d14t9s

GET /account HTTP/1.1
Host: somewebsite.com
Referer: http://somewebsite.com/bin/login
Cookie: someweb-id=kfj203d14t9s
…

7

• The design above includes a separate microservice for authentication.
• Client device might send signin request directly to auth service.
•Other microservices ask the auth service to check auth tokens.

Every request handler must now check the auth token

GET /feed

[{“author”:”
person1”,
tweet:
“hello world
I like to
twt!”},…]

Feed DB
(NoSQL)

Fetch feed data
for user X

Auth token matches user X

8

API Keys
• An authentication token that's valid for a long time is often called an

API key.
• Eg. AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY
• 3rd parties may need programmatic access to your system.
• Your own backend microservices should authenticate with each other.
• Use a local cache to check these quickly without reading from the DB.

9

Where to include auth token in a REST API?
Recall HTTP Request Inputs:
• Choice of Method:
• GET/POST/PUT/DELETE

• Path
• GET /tweets/connor4real

• Query parameters:
• GET /search?startDate=2018-10-

10&search=best+restaurant&api_key=_____
• Headers
• Not recommended for normal parameters, but

auth tokens are well-suited to headers.
• Eg., Cookie: _____ Authorization: _____

• Body
• { "session": _____, … }

• Query param, Header, and Body are
all reasonable choices.
• Headers are nice because they are

separated from the request-specific
parameters.

9

10

Two factor authentication
• For added security, some services require more than just a password.
•When handling POST /signin request, backend generates a

random "challenge" code, stores it in a database, and sends to the
user's known email or SMS address.
• User must click link or enter code to verify that they had access to the

email account or phone to receive the secret.
• "Forgot my password" feature also works like above.

• People tend to misuse passwords, so some services use email
exclusively for login.
• There is no password, and every login uses the "forgot password" style.

11

Recap
•Webservice requests are rarely open to the public.
• Each request must include an input that authenticates and identifies

the user.
• Passwords are the most common auth mechanism.
• Email/SMS (a trusted side channel of communication) can be used.
• Authentication tokens are strings randomly generated (and stored)

on the backend to verify user identity.
• Variations include session keys, cookies, and api keys.
• Often a separate microservice is dedicated to authentication (and other user

management tasks, like account creation).
•Digital signatures are a more complex auth style, covered in CS-340.

