(CS-310 Scalable Software Architectures
Lecture 10:

Authentication

Steve Tarzia

Last time: SQL Database Scaling

* Read replicas horizontally scale databases for reading.
* Writes are done in one place and propagated to many replicas.
* Data on a given replica may lag behind primary, but it's self-consistent.
* Works well if writes are much less common than reads.

* Horizontal scaling of writes suggests data partitioning.
* Hach data row/element is assigned a single "home"
* If not, consistency is very tricky (write race conditions for transactions).

* Sharding is data partitioning for SQI./relational DBs.
* Works well for queries that can be handled within a single shard.

* Sharding divides data along just one dimension, so inevitably some queries
will involve all the nodes, and thus will not be scalable.

Authentication is proving your identity

* Most apps use require users to set a password to reconnect to account.
* A salted hash of the password is stored in a database.

* Passwords in future login requests can be compared to the stored password.

* An email address or phone number can also be used to prove identity.

* Web, desktop, smartphone, and other clients make requests to access

user's data, and access must be protected.

* HT

Ra

I'P requests should be sent using H'T

TPS (-

[LLS) which encrypts the

data in transit. Request/response data cannot be intercepted.
* TLS authenticates the server using certificates (details in CS-340 Networking).
* However, TLS does not authenticate the c/Zent.

Stmplest approach: Password in every request

Client can save the password locally and include it in every request.
* GET /inbox?user=steve&password=jordan23

* POST /message
* Request body:

"user": "steve",
"password": "jordan23",
n.on

"to": "catlover3",
"txt": "hello!"}

* Why 1s this a poor solution?
* Storing the password locally is a security risk.

* All the backend apps are seeing the password.
* DevOps statf will see passwords in all HI'TP request logs.

Session Keys are like temporary passwords

* When the user logs in, backend generates a random session key,
stores 1t in the user account DB, and returns it to the client.

* POST /signin We also call this an
Request body: Authentication Token.
{ "user": "steve", Notice that we do not
"password": "jordan23" } need the username. Why?
* Response: 200 OK:
{ "session": "31k73d0f97321k)sdef099" 1}

* Client includes session key in all future requests. Often in a header:
* GET /inbox
éuthorization: session 31kjd0f9j32lkjsdef09;
Y
The second line 1s an optional http header.

Review: Cookies are auth tokens for web browsers

* Cookies are how web applications track state, often to track user identity.

* After user submits the login form, server will return a cookie in the response:

HTTP/1.1 302 Found
<z Location: http://somewebsite.com/account
Set-Cookie: someweb-id=kfj203d14t9s

¢ RCSpOIlSC tells the browser to redirect to http://somewebsite.com/account, but it also
gives the browser a cookie to remember.

* Browser will include the cookie in all future HT'TP requests to somewebsite.com:

GET /account HTTP/1.1
Host: somewebsite.com
Referer: http://somewebsite.com/bin/login — 5
Cookie: someweb-1d=kfj203d14t9s

e Server oetting this request can use the cookie to determine which user it came from!
g g S|

Every request handler must now check the auth token

Fetch feed data
for user X

[{“author”:”
personl”,
tweet:
“hello world
I like to
twt !}, ..]

Feed DB
(NoSQL)

e
' Aﬂbu
DB

* The design above includes a separate microservice for authentication.

* Client device might send signin request directly to auth service.

e Other microservices ask the auth service to check auth tokens.

API Keys

* An authentication token that's valid for a long time 1s often called an
API key.

* Eg. AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY
* 314 parties may need programmatic access to your system.

* Your own backend microservices should authenticate with each other.
* Use a local cache to check these quickly without reading from the DB.

Where to include auth token in a REST API?

Recall HTTP Request Inputs:

 Choice of Method:
 GET/POST/PUT/DELETE
e Path
e GET /tweets/connordreal

* Query parameters: ~

e GET /searchrstartDate=2018-10-
10&search=best+restaurant&api_key=

* Headers - (%luery param, Header, and Body are
* Not recommended for normal patameters, but [all reasonable choices.
auth tokens are well-suited to headers.

* Headers are nice because they are

* Eg,Cookie:_____ Authorization: separated from the request-specific
* Body parameters.
* { "session": N

10

Two factor authentication

* For added security, some services require more than just a password.

* When handling POST /signin request, backend generates a
random "challenge" code, stores it in a database, and sends to the
user's known email or SMS address.

* User must click link or enter code to verify that they had access to the
email account or phone to receive the secret.

* "Forgot my password" feature also works like above.

* People tend to misuse passwords, so some services use email
exclusively for login.

* There is no password, and every login uses the "forgot password" style.

11

Recap

* Webservice requests are rarely open to the public.

* Each request must include an input that authenticates and identifies
the user.

e Passwords are the most common auth mechanism.
* Email/SMS (a trusted side channe/ of communication) can be used.

* Authentication tokens are strings randomly generated (and stored)
on the backend to verity user identity.

* Variations include session keys, cookies, and api keys.

* Often a separate microservice is dedicated to authentication (and other user
management tasks, like account creation).

* Digital signatures are a more complex auth style, covered in CS-340.

