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SQL Database Scaling
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Recap: Storage and Relational Databases
• Persistent storage requires special consideration due to slow performance 

and lack of  language-level support.
• RAID combines multiple disks for better capacity, storage, and fault tolerance.

• Databases solve lots of  problems:
• scalability, persistence, indexing, concurrency, etc.
• Filesystems can solve some, but not all, of  these problems.

• Relational (SQL) databases store data in tables.
• Developer defines the DB schema first (tables, columns, keys).
• Rows are added during DB operation, and they must fit the schema.

• Indexes let us find rows quickly with value of  one or more column.
• SQL query language lets us run analysis code "close to" data storage 

(filtering, aggregation – sum, count, min, max, avg, etc.).
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Memory vs disk access in databases
• Remember that computers 

have a hierarchy of  storage.
• RAM is 100,000x faster but 

~100x smaller than disk.
•Database servers operate 

much faster when accessing 
data that is cached in RAM 
(memory).
• RAM can be up to ~1TB.

•Goal: fit entire active data set in RAM.
•Database/OS automatically cache most frequent data in RAM.

A subset of  
data is cached 
in RAM

Disk access I/O
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The remainder of  
data is on disk
(up to petabytes!)
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Databases are performance bottlenecks
•Why is load balancer not the bottleneck in this 

design?

• Load balancer does much less work per request than 
the database.

•Why not create clones of  the database?

• Traditional scalable service design relies on a single 
shared database for coordination.  App clones 
share state through the database.
• However, we'll learn some tricks in this lecture.

Load 
Balancer

AppAppAppAppApp 
clones

Shared 
Database
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Relational Database performance optimizations
•Query planners optimize order of  table access and use of  indexes:

• SELECT * FROM user NATURAL JOIN post
WHERE post.date > "2010-01-01" AND user.birth_year < 1920;

• RAM is used to store the most important data and indexes.
• Responses can be cached and replayed if  data has not changed.

To avoid a database bottleneck:
• Avoid unnecessary queries (cache data in the frontend).
• Buy a really fast machine, with plenty of  RAM for caching.
• Use the fastest possible disks (SSDs, RAID).
• Use read replicas or sharding – Horizontal Scaling

Vertical
Scaling
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THINK
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Read replicas
• Often, > 95% of  DB traffic is reads.
• Replica servers each have a full copy of  all 

the data, and they can handle read requests 
(SELECT).
• All writes (UPDATE, DELETE) must go to 

the Primary server (a.k.a. Main, Master)
• Data changes are pushed to read replicas.
• However, replicas may be slightly behind the 

primary, so read requests that are sensitive to 
consistency should use the primary.
• Too many replicas would make the data push 

process a bottleneck in the primary.
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What limits the number of  read replicas?
• This design is not infinitely scalable.
• The Primary is a central bottleneck and single point of  failure.
• If  there are N replicas, Primary must send N copies of  each write.
• If  there are R times as many reads as writes, and we want to equalize 

load on Primary and Replicas (to the max machine capacity), we get:
primary_load = repl_load

primary_reads + primary_writes + data_xfer = repl_reads + repl_writes + data_xfer
0 + 1 + N = R + 0 + 1

N = R

•Here, the optimal number of  replicas is directly proportional to the 
ratio of  reads to writes, perhaps about ten in a typical application.

STOP
and

THINK

Ideas for greater scaling of  reads?
STOP
and

THINK
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Multi-level replication can extend read-scalability
Where do read requests go? 🛑
• To the bottom level replicas.

(nine are shown in this diagram)
Why not read from middle replicas? 🛑
• Like the primary, they are busy pushing 

writes to their many children.
Where do write requests go? 🛑
• To the one primary.

Can we add more replication levels
(to achieve arbitrary width)? 🛑
• Yes, but each level adds more delay

between write at primary and data 
availability at read replicas.

Primary

Middle 
Replica

Middle 
Replica

Middle 
Replica

R R R R R R R R R

This is a kind of  horizontal
scaling for database reads.
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How to use read-replicas?
• Put a load balancer in front of  all the read replicas.
• This can be a NAT-type local LB or a simple software library. (eg.)

Primary

R R R R R R R R R

Load 
Balancer

App

SQL Writes SQL Reads 

AppApp

INSERT
UPDATE
DELETE

SELECT

https://bitbucket.org/starzia/gunmemorial/src/master/victim-portal/src/main/java/org/gunmemorial/db/TomcatDbCluster.java?mode=view&spa=0&at=master&fileviewer=file-view-default
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Replication shortcomings?

•Writes are not scalable.  They are all handled by one DB machine.
• Capacity is not scalable.  All the data must fit on each DB machine.
• Primary is a single point of  failure.

Primary

R R R R R R R R R

Load 
Balancer

App

SQL Writes SQL Reads 
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Primary-primary failover for robustness
•Keep a "standby" primary ready to take over if  the main primary fails.
• App will switch over to Standby if  the main primary stops responding.

Primary Standby 
Primary

R R R R R R

AppAppApp

Normal

Dead 
Primary

Standby 
Primary

R R R R R R

AppAppApp

After Failure

Load 
Balancer

Load 
Balancer
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Why not allow writes to multiple primarys?

• Each Primary still must handle all the writes, though indirectly.
• Thus, the same performance bottleneck remains.

• Also, data can become inconsistent if  operations happen 
concurrently.

Primary
1

Primary
2

AppAppApp

Writes
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How to scale writes and storage capacity?
•We already tried vertical scaling.
•How to implement horizontal scaling of  a writes and capacity?

Some kind of  partitioning is needed:
• Functional partitioning:
• Create multiple databases storing different categories/types of  data.
• Eg.: three separate databases for: accounts, orders, and customers.
• Cons:
• Limits queries joining rows in tables in different DBs
• Only a few functional partitions are possible.  It's not highly scalable.

•Data partitioning is a more general approach…

STOP
and

THINK

Functional partitioning 
divides by tables

Data partitioning 
divides by rows
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Sharding (data partitioning) relational databases
•Divide your data universe into disjoint subsets is called shards.
• For example: Consider parallelizing Facebook's database…
• Maybe put Illinois users in one machine, Wisconsin in another, etc.
• Each node stores rows for all tables, but only a subset of  rows.

• Sharding key determines assignment of  rows to shards.
• Relational databases usually don't support sharding natively, it must be 

somehow hacked at the application level.

Shard1

Illinois data

Shard2

Wisconsin data

Shard3

New York data…
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Sharding example

• In this example, shard_id = user % 2

•How to implement query for all posts by Steve?
SELECT * FROM Post NATURAL JOIN User WHERE user=0?

user name

0 Steve

2 Yingyi

4 Alex

user name

1 Guannan

3 Clarissa

User User

user date text

0 04-25 Hi there…

0 04-27 Still tea…

2 03-12 Web scal…

2 04-25 Tips and…

Post

user date text

3 04-05 Box pl…

1 04-27 Sound…

1 03-12 Random…

3 04-27 Northw…

Post

Shard0 Shard1

All the data we need 
must be on Shard 0.
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Sharding example 2
• How to implement 

query for latest 10 posts 
from Steve's friends?

SELECT * FROM User
NATURAL JOIN Friend 
JOIN Post ON 

Post.user=
Friend.friend

WHERE 
User.name="Steve" 
ORDER BY date DESC 
LIMIT 10;

• Steve may be friends with users in all the shards; all shards must be queried.
• Query above will not work verbatim: user=0 row only exists in Shard0.
• Each shard can supply ten latest posts, app must manually merge them and 

choose the latest ten.

user name

0 Steve

2 Yingyi

4 Alex

User

user date text

0 04-25 Hi there…

0 04-27 Still tea…

2 03-12 Web scal…

2 04-25 Tips and…

Post

Shard0

user friend

0 1

0 2

0 3

0 4

6 0

Friend

STOP
and

THINK



17

Sharding conclusions
Pros

Because each row is stored once:
✓Capacity scales.
✓Data is consistent.
If  sharding key is chosen carefully: 
✓Data will be balanced.
✓Many queries will involve only 

one or a few shards.  There is no 
central bottleneck for these.

Cons

✘Cannot use plain SQL.
✘Queries must be manually 

adapted to match sharding.
✘If  sharding key is chosen poorly, 

shard load will be imbalanced, 
either by capacity or traffic.
✘Some queries will involve all the 

shards.  The capacity for handling 
such queries is limited by each 
single machine's speed.
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Some Simple Scaling math
•N nodes
• R total request rate (requests per second or another time frame)
• Each node has the capacity to handle a maximum rate of  requests C.

• If  each request is sent to one node:
• Rmax = NC

• If  each request is sent to a
constant k number of  nodes:
• Rmax = NC/k = 𝒪(NC) 

• If  each request is sent to all nodes:
• Rmax = C

Scalable (increases with N)

Not Scalable
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Summary
• Read replicas horizontally scale databases for reading.
• Writes are done in one place and propagated to many replicas.
• Data on a given replica may lag behind primary, but it's self-consistent.
• Works well if  writes are much less common than reads.

•Horizontal scaling of  writes suggests data partitioning.
• Each data row/element is assigned a single "home"
• If  not, consistency is very tricky (write race conditions for transactions).

• Sharding is data partitioning for SQL/relational DBs.
• Works well for queries that can be handled within a single shard.
• Sharding divides data along just one dimension, so inevitably some queries 

will involve all the nodes, and thus will not be scalable.
•Next time… NoSQL databases for more horizontal scaling!


