
1

CS-310 Scalable Software Architectures
Lecture 9:

SQL Database Scaling
Steve Tarzia

2

Recap: Storage and Relational Databases
• Persistent storage requires special consideration due to slow performance

and lack of language-level support.
• RAID combines multiple disks for better capacity, storage, and fault tolerance.

• Databases solve lots of problems:
• scalability, persistence, indexing, concurrency, etc.
• Filesystems can solve some, but not all, of these problems.

• Relational (SQL) databases store data in tables.
• Developer defines the DB schema first (tables, columns, keys).
• Rows are added during DB operation, and they must fit the schema.

• Indexes let us find rows quickly with value of one or more column.
• SQL query language lets us run analysis code "close to" data storage

(filtering, aggregation – sum, count, min, max, avg, etc.).

3

Memory vs disk access in databases
• Remember that computers

have a hierarchy of storage.
• RAM is 100,000x faster but

~100x smaller than disk.
•Database servers operate

much faster when accessing
data that is cached in RAM
(memory).
• RAM can be up to ~1TB.

•Goal: fit entire active data set in RAM.
•Database/OS automatically cache most frequent data in RAM.

A subset of
data is cached
in RAM

Disk access I/O

O
ne

 b
ig

 c
om

pu
te

r

The remainder of
data is on disk
(up to petabytes!)

4

Databases are performance bottlenecks
•Why is load balancer not the bottleneck in this

design?

• Load balancer does much less work per request than
the database.

•Why not create clones of the database?

• Traditional scalable service design relies on a single
shared database for coordination. App clones
share state through the database.
• However, we'll learn some tricks in this lecture.

Load
Balancer

AppAppAppAppApp
clones

Shared
Database

STOP
and

THINK

Request

STOP
and

THINK

5

Relational Database performance optimizations
•Query planners optimize order of table access and use of indexes:

• SELECT * FROM user NATURAL JOIN post
WHERE post.date > "2010-01-01" AND user.birth_year < 1920;

• RAM is used to store the most important data and indexes.
• Responses can be cached and replayed if data has not changed.

To avoid a database bottleneck:
• Avoid unnecessary queries (cache data in the frontend).
• Buy a really fast machine, with plenty of RAM for caching.
• Use the fastest possible disks (SSDs, RAID).
• Use read replicas or sharding – Horizontal Scaling

Vertical
Scaling

STOP
and

THINK

6

Read replicas
• Often, > 95% of DB traffic is reads.
• Replica servers each have a full copy of all

the data, and they can handle read requests
(SELECT).
• All writes (UPDATE, DELETE) must go to

the Primary server (a.k.a. Main, Master)
• Data changes are pushed to read replicas.
• However, replicas may be slightly behind the

primary, so read requests that are sensitive to
consistency should use the primary.
• Too many replicas would make the data push

process a bottleneck in the primary.

7

What limits the number of read replicas?
• This design is not infinitely scalable.
• The Primary is a central bottleneck and single point of failure.
• If there are N replicas, Primary must send N copies of each write.
• If there are R times as many reads as writes, and we want to equalize

load on Primary and Replicas (to the max machine capacity), we get:
primary_load = repl_load

primary_reads + primary_writes + data_xfer = repl_reads + repl_writes + data_xfer
0 + 1 + N = R + 0 + 1

N = R

•Here, the optimal number of replicas is directly proportional to the
ratio of reads to writes, perhaps about ten in a typical application.

STOP
and

THINK

Ideas for greater scaling of reads?
STOP
and

THINK

8

Multi-level replication can extend read-scalability
Where do read requests go? 🛑
• To the bottom level replicas.

(nine are shown in this diagram)
Why not read from middle replicas? 🛑
• Like the primary, they are busy pushing

writes to their many children.
Where do write requests go? 🛑
• To the one primary.

Can we add more replication levels
(to achieve arbitrary width)? 🛑
• Yes, but each level adds more delay

between write at primary and data
availability at read replicas.

Primary

Middle
Replica

Middle
Replica

Middle
Replica

R R R R R R R R R

This is a kind of horizontal
scaling for database reads.

9

How to use read-replicas?
• Put a load balancer in front of all the read replicas.
• This can be a NAT-type local LB or a simple software library. (eg.)

Primary

R R R R R R R R R

Load
Balancer

App

SQL Writes SQL Reads

AppApp

INSERT
UPDATE
DELETE

SELECT

https://bitbucket.org/starzia/gunmemorial/src/master/victim-portal/src/main/java/org/gunmemorial/db/TomcatDbCluster.java?mode=view&spa=0&at=master&fileviewer=file-view-default

10

Replication shortcomings?

•Writes are not scalable. They are all handled by one DB machine.
• Capacity is not scalable. All the data must fit on each DB machine.
• Primary is a single point of failure.

Primary

R R R R R R R R R

Load
Balancer

App

SQL Writes SQL Reads

AppApp

INSERT
UPDATE
DELETE

SELECT

STOP
and

THINK

11

Primary-primary failover for robustness
•Keep a "standby" primary ready to take over if the main primary fails.
• App will switch over to Standby if the main primary stops responding.

Primary Standby
Primary

R R R R R R

AppAppApp

Normal

Dead
Primary

Standby
Primary

R R R R R R

AppAppApp

After Failure

Load
Balancer

Load
Balancer

12

Why not allow writes to multiple primarys?

• Each Primary still must handle all the writes, though indirectly.
• Thus, the same performance bottleneck remains.

• Also, data can become inconsistent if operations happen
concurrently.

Primary
1

Primary
2

AppAppApp

Writes

STOP
and

THINK

13

How to scale writes and storage capacity?
•We already tried vertical scaling.
•How to implement horizontal scaling of a writes and capacity?

Some kind of partitioning is needed:
• Functional partitioning:
• Create multiple databases storing different categories/types of data.
• Eg.: three separate databases for: accounts, orders, and customers.
• Cons:
• Limits queries joining rows in tables in different DBs
• Only a few functional partitions are possible. It's not highly scalable.

•Data partitioning is a more general approach…

STOP
and

THINK

Functional partitioning
divides by tables

Data partitioning
divides by rows

14

Sharding (data partitioning) relational databases
•Divide your data universe into disjoint subsets is called shards.
• For example: Consider parallelizing Facebook's database…
• Maybe put Illinois users in one machine, Wisconsin in another, etc.
• Each node stores rows for all tables, but only a subset of rows.

• Sharding key determines assignment of rows to shards.
• Relational databases usually don't support sharding natively, it must be

somehow hacked at the application level.

Shard1

Illinois data

Shard2

Wisconsin data

Shard3

New York data…

15

Sharding example

• In this example, shard_id = user % 2

•How to implement query for all posts by Steve?
SELECT * FROM Post NATURAL JOIN User WHERE user=0?

user name

0 Steve

2 Yingyi

4 Alex

user name

1 Guannan

3 Clarissa

User User

user date text

0 04-25 Hi there…

0 04-27 Still tea…

2 03-12 Web scal…

2 04-25 Tips and…

Post

user date text

3 04-05 Box pl…

1 04-27 Sound…

1 03-12 Random…

3 04-27 Northw…

Post

Shard0 Shard1

All the data we need
must be on Shard 0.

16

Sharding example 2
• How to implement

query for latest 10 posts
from Steve's friends?

SELECT * FROM User
NATURAL JOIN Friend
JOIN Post ON

Post.user=
Friend.friend

WHERE
User.name="Steve"
ORDER BY date DESC
LIMIT 10;

• Steve may be friends with users in all the shards; all shards must be queried.
• Query above will not work verbatim: user=0 row only exists in Shard0.
• Each shard can supply ten latest posts, app must manually merge them and

choose the latest ten.

user name

0 Steve

2 Yingyi

4 Alex

User

user date text

0 04-25 Hi there…

0 04-27 Still tea…

2 03-12 Web scal…

2 04-25 Tips and…

Post

Shard0

user friend

0 1

0 2

0 3

0 4

6 0

Friend

STOP
and

THINK

17

Sharding conclusions
Pros

Because each row is stored once:
✓Capacity scales.
✓Data is consistent.
If sharding key is chosen carefully:
✓Data will be balanced.
✓Many queries will involve only

one or a few shards. There is no
central bottleneck for these.

Cons

✘Cannot use plain SQL.
✘Queries must be manually

adapted to match sharding.
✘If sharding key is chosen poorly,

shard load will be imbalanced,
either by capacity or traffic.
✘Some queries will involve all the

shards. The capacity for handling
such queries is limited by each
single machine's speed.

18

Some Simple Scaling math
•N nodes
• R total request rate (requests per second or another time frame)
• Each node has the capacity to handle a maximum rate of requests C.

• If each request is sent to one node:
• Rmax = NC

• If each request is sent to a
constant k number of nodes:
• Rmax = NC/k = 𝒪(NC)

• If each request is sent to all nodes:
• Rmax = C

Scalable (increases with N)

Not Scalable

19

Summary
• Read replicas horizontally scale databases for reading.
• Writes are done in one place and propagated to many replicas.
• Data on a given replica may lag behind primary, but it's self-consistent.
• Works well if writes are much less common than reads.

•Horizontal scaling of writes suggests data partitioning.
• Each data row/element is assigned a single "home"
• If not, consistency is very tricky (write race conditions for transactions).

• Sharding is data partitioning for SQL/relational DBs.
• Works well for queries that can be handled within a single shard.
• Sharding divides data along just one dimension, so inevitably some queries

will involve all the nodes, and thus will not be scalable.
•Next time… NoSQL databases for more horizontal scaling!

