(CS-310 Scalable Software Architectures
Lecture 08:

Relational Databases

Steve Tarzia

I.ast Time: I.oad balancers

We have 2/3 of the end-to-end view of a basic scalable architecturel!
(for services, at least)
-

* Frontend: Client connects to “the service” via a load balancer.
* Really, the client is being directed to one of many copies of the service. S
8
3

* Global LLBs (DNS and IP anycast) have no central bottlenecks.
* Local LBs (Reverse Proxy or NAT) provide mid-level scaling and continuous
~/

operation (health checks & rolling updates).

* Services: Implemented by thousands of clones.
* I the code is stateless then any worker can equally handle any request.

* Data Storage??
* The next big topic!

On to Databases

Will summarize the most important parts ot CS-339 or CS-217 in one lecture.

Back to Wikipedia

* Recall that we pushed all app state to the DB,
allowing MediaWiki app to be stateless and thus

trivially parallelizable.

* Databases provide both persistent storage

and coordination in large-scale system.

In general, these are our two

biggest scalability challenges

and both are the concerns
of databases.

JOSMOIq g\

MediaWiki

Apaches

CNCICHCICH
C‘,C‘,C‘,C‘,C') 20 Apache-Core/ex-ES

CICICICICICICICICICICICICICIC)
QOOOOOQQQQOQQQ)
QOO QOO
QOO QOO
QOO QOO

..............

QO QOO QOO QOO
QOO QOO QOO

149 Apache-Core

Databases

sl: enwiki s2: bg, cs,
o=
J |

J |

s3: other wikis s4: commons s

P C
i

Master 5 slaves

_ delay capacity | @ :
0% 0.3ns CPU Registers 1 kB (kilobyte) v

5 5ns CPU Caches (I.2) 16 MB - e

= | _50ms] Random Access Memory AN [16 GB vl mermory

'% 100us Flash Storage (SSD) 1 TB persistent storage

- 5ms Magnetic Disk 8 TB

* Disk 1s about #en billion times larger than registers,
but has about 7en million times larger delay (latency).

* Goal is to work as much as possible in the top levels.

* Large, rarely-needed data is stored at the bottom level

Magnetic disk’s data can only be read at

Storage has limited bandwidth oot locion of the ad v bead

* All types of computer storage are limited to
reading/writing just a small fraction at once.

* Magnetic disks:
* The read/write head can read the charges on a tiny
portion of the magnetic disk.

¢ RAM (memOIY): https://animagraffs.com/hard-disk-drive
* Memory and flash chips store lots of data, but
only a few bytes can be transferred at once,

because there are only a couple hundred electrical
connections at the edge.

* SSDs (tlash) 1s similar, with even fewer electrical

connections. Just a couple hundred electrical connections
at the edge of a RAM card.

https://animagraffs.com/hard-disk-drive/

Redundant Array of Independent Disks (RAID)

* Disks have a few shortcomings:
* Limited capacity (~12TB)
* Limited throughput (~150MB/5s)
 Likelihood of failure (especially for magnetic/rotating disks)

* RAID uses multiple disks to solve these problems
* Many different variations of RAID, depending on your budget and which of the above
three problems are most important.
* Basic ideas are:
* Increase capacity by making multiple disks available to store data.
* Increase throughput by accessing data in paralle/ on multiple disks.
* Reduce impact of a disk failure by storing data redundantly on multiple disks.

* Disk interface is very simple (just an array of sectors), so it’s easy to create a
logical/virtual disk made of sectors from multiple physical disks.

Basic idea of RAID

* Combine many disks to create one superior virtual disk.

* The RAID array provides the same interface as a single disk.

OS thinks it’s dealing with this: But it’s just an illusion. The reality is:

Sector r/w requests
Sector t/w requests ‘ E

RAID virtual diske~

A Database Server (@ NU .

* 264 fast (10k RPM) magnetic disks
* 56 slow (7200 RPM) magnetic disks Ermma,,,
(for backup) " T ————

* ~150 TB storage capacity
* Comprised of 6 physical chassis (boxes) in one big

cabinet, about the size of a coat closet.

il ‘ 9‘%’«)\
SAS cabling iﬁ%{gack

Large database servers

* Capacity is practically unlimited, but a single computer has:

10

* Limited compute powet. ~
- D
e Limited I/O bandwidth g— Database SW
(theoretical max of H B running on
~80 GB/s on a = one machine
PCl-express v4). =
L , , O Limited bandwidth to storage (80GB/s)
* This single-machine design =~ &
| 9 = - :
can actually scale pretty well! £ LAkl S | \lany disks can be
| connected to the
|| computer

/

* Relational (aka SQIL.) DBs use this design

Persistent (disk) storage has always been different

* Programming languages rarely deal with storage directly (except SQL).

* Programmer must write code to move data from memory to disk.
* Disks are slow, so making the programmer think before using it 1s OK.

* But it’s also really tedious to operate on large data sets, where data is
constantly shuffled between disk and RAM.

* Normal way of accessing persistent storage:

* Pass data into and out of files using system's open/read/write functions.

* Databases let the programmer use persistent storage w/out worrying
about file-level transfers, with advanced performance optimizations.

* Usually interact with DB using a special query language (eg., SQL).

11

Relational DBs

e Relational databases store
data in multiple tables.

* Each table has pre-defined
set of columns (schema).

e Rows are added over time.

e Rows can refer to other

rows through foreign keys.

(the arrows)

* “Philanthropy” is defined
once, but referenced by the

http://www.linkedin.com/in/williamhgates

12

Bill Gates

E. Greater Seattle Area | Philanthropy

Summary

Co-chair of the Bill & Melinda Gates Foundation.
Chairman, Microsoft Corporation. Voracious
reader. Avid traveler. Active blogger.
Experience

Co-chair « Bill & Melinda Gates Foundation
2000 - Present

Co-founder, Chairman « Microsoft
1975 — Present
Education

Harvard University
1973-1975

Lakeside School, Seattle

Contact Info

Blog: thegatesnotes.com
Twitter: @BillGates

users table
user_id first_name | last_name summary
251 Bill Gates Co-chair of ... blogger.
.. line | region_id | industry_id photo_id
wrapped | ¢ us:91 1319 57817532
/ regions table industries table
id / region_name id industry_name
us:7 |/Greater Boston Area 43 | Financial Services
us:91 | Greater Seattle Area 48 Construction

131

Philanthropy

industry 1id 131 in many user rows.

* The final LinkedIn page may be generated
by JOINing rows from many tables.

positions table
id \\ user_id job_title organization
458 * 251 Co-chair Bill & Melinda GatesF...
457 ! 251 Co-founder, Microsoft

Chairman

education table
id user_id school_name start end
807 ? 251 Harvard University 1973 1975
806 l 251 Lakeside School, NULL NULL

Seattle
contact_info table

id user_id type url
155 ? 251 blog http://thegatesnotes.com
156 ! 251 twitter | http://twitter.com/BillGates

13

Why so many tables?

* Regions:

* Allows many users to refer to shared region data
without repetition or inconsistency.
* Positions:
* Allows a user to have an arbitrary number of
positions (zero to infinity).

* [ndustries? Education? Contact_info?

A "relation" is a table

* A multi-table (relational) DB allows many-to-
one and many-to-many relationships while
keeping columns finite and clearly defined.

In summary:

users table
user_id first_name | last_name summary
251 Bill Gates Co-chair of ... blogger.
... line | region_id | industry_id photo_id
wrapped | ¢ us:91 1319 57817532
/ regions table industries table
id / region_name id industry_name
us:7 |/Greater Boston Area 43 | Financial Services
us:91 | Greater Seattle Area 48 Construction
131 Philanthropy

positions table

id \\ user_id job_title organization
458 * 251 Co-chair Bill & Melinda GatesF...
457 ! 251 Co-founder, Microsoft
Chairman
education table
id user_id school_name start end
807 ? 251 Harvard University 1973 1975
806 l 251 Lakeside School, NULL NULL
Seattle
contact_info table
id user_id type url
155 ? 251 blog http://thegatesnotes.com
156 ! 251 twitter | http://twitter.com/BillGates

11 | Bob 100 1
20 | Betsy 100 2
21 | Fran 101 1
22 | Frank 102 4
35 | Sarah 200 5
40 | Sam 10 7
54 | Pat 102 2

DB Design diagram: (mzy style)

* A graphical representation of
the DB schema.

* Defines the tables, columns,
primary and foreign keys

1 Industrial Eng. 1 1

2 | Computer Sci. 2 2 | Ford 1-5003
4 Chemistry 1 4 | Mudd 1-2005
5 Physics 4 / 5 | Cook 1-3004
7 | Materials Sci. 5 / 6 | Garage | 1-6001

15

For more coverage ot relational DB schema design:

* https://voutu.be/kgNpwl.14nns?t=267
e Or search Youtube for "Tarzia 317 Lecture 07"

* This is highly recommended if you have not taken a database course,
and probably helpful even if you have taken CS-339.

https://youtu.be/kqNpwL14nns?t=267

SQL Query language

SELECT staff.id, staff.name, staff.room,
department.name, department.buildingld
FROM staff JOIN department
ON staff.departmentlId=department.id

11 Bob 100 Industrial Eng; 1
20 Betsy 100 Computer Sci. 2
21 Fran 101 Industrial Eng; 1
22 Frank 102 Chemistry 1
35 Sarah 200 Physics 4
40 Sam 10 Materials Sci. 5
54 Pat 102 Computer Sci. 2

18

Why a Relational Database?

Most importantly:

* Scalability — work with data larger than computer’s RAM.

* Persistence — keep data around after your program finishes.

* Indexing — efficiently sort & search along various dimensions.

* Concurrency — multiple users or applications can read/write.

* Analysis — SQL query language 1s concise yet powertul.

And also:

* Integrity — restrict data type, disallow duplicate entries, transactions.

* Deduplication — save space, keep common data consistent.

* Security — different users can have access to specific data.

19

Can we just read/write files to disk to achieve these?

STOP

and

THINK

* Scalability — work with data larger than computer’s RAM.

* Persistence — keep data around after your program finishes.

* Indexing — efficiently sort & search along various dimensions.
* Concurrency — multiple users or applications can read/write.

* Analysis — SQL query language 1s concise yet powertul.

* Integrity — restrict data type, disallow duplicate entries, transactions.
* Deduplication — save space, keep common data consistent.

* Security — different users can have access to specific data.

Filesystem is like a basic database, it gives:

* Scalability — work with data larger than computer’s RAM.

* Persistence — keep data around after your program finishes.

— efficient access in just one dimension — the path/filename.

— multiple apps can read/write, but lacks transactions.

\nalysis—SOI | . . "

. [] 9] <4 9 [] [] []
I 4+ octe1 1t rlr\{-n A W e A1oN OXYT r]11h11r~n+a onNnter1oc +4nNniocnctiooanoe
LI COULLIUU ULALA L)/ t/\/’ CUILO AU U VYV UL«LtJ_LJ.\/(/L LGC U111 LLJ.\/O) LLALIIOAUCULLIULLD.

* Security — different users can have access to specific data.

20

Indexing

* When working with large amounts of data it can be a challenge to find
an item of interest.

* We don’t want to read every storage address to find what we’re looking
for.

* Sorting the data can help tremendously, because it allows binary search.

21

22

Why sorting 1s not enough

* You can’t sort in multiple dimensions
* Let’s say you want to find a product quickly according to either it’s name,
manufacturer, or price. You can only sort by one of the there three columns.
* Can’t insert new data without shiffzng everything over to make room.
* Shifting data in storage would require rewriting about half of it (on average).
* That’s incredibly amount of work to accommodate just one tiny addition.

* Sorting doesn’t take advantage of the hardware’s storage hierarchy.

* The binary search will have to access the disk in every step because the index
is distributed over the full data set.

* It would be better to put all the index data close together (spatial locality).

A printed catalog can add multiple indexes

...........

I§ sar L
TApY oo’ 7.
TAMY g5t 3

18059
ity 1012. :”?
950, 969, 1.+ 1013, 3314
s
bz

Yoy

Grainger catalog 1s sorted
according to high-level product
categories.

It has both yellow and blue index
pages.
These allow efficient lookup by:

* broduct type names

* manufacturer names

In total, products can be
etficiently found in three ways.

Simple sorted lists are etfective
here because data is never added.

DB indexes use a #ree or hashtable instead of sorting

* Self-balanced binary trees give the log(IN) speed of a binary search,
while also allowing entries to be quickly added and deleted.

* This 1s all review of CS-214 Data Structures.

23, ¥
Ceimary Key Tndex (55N) efSown
<sn festNare | laskName. |bicvYear
‘ @ -’_2—;—:—-5- 23y AVl zr,\.r A "l- t’L . Qé (0’,
Yy 5SLeke Bob ;);\K' \('\%Ti
r 2oMd T'.(‘“-V\ Yor, 2N 10 %
only m 25en .
\oaN) <
Jew's ?
g
\

“‘\ \\Nums arte
n XL Dowom Jeve)

24

25

Balanced binary search tree

* Finding an element is very similar to binary search of a sorted list.

* Start from the root. Move to the left subtree if the value you're
looking for is smaller, otherwise move to the right subtree.

@ @

©w @ &
9 199

* Repeat.

Creating indexes/keys

* Indexes are usually defined when the table is created

* Primary key must be unique for each row.
* We must be able to quickly check that new value does not already exist.

* Thus, unique/primary keys are indexed.

* But you may later realize that certain queries are too slow

* Without proper indexes, DBMS will have to examine every row in the table to
find the relevant rows.

* Adding one or more indexes may dramatically speed up a query.

Basic syntax:
CREATE INDEX index name ON table name (column name)

26

Multiple indexes in one table are possible

* Allow finding rows quickly based on multiple criteria

* Need two indexes to quickly get results for both:
* SELECT * FROM Person WHERE SSN=543230921

e SELECT * FROM Person
WHERE birthYear BETWEEN 1979 AND 1983

?ﬁ"‘“} Key TUndey (5sN) ?e,(‘ Son bieOn Year T

SestNare | laskName. |birtn Yearr @
. A\ e Sondiig 19, , y/
) \ Kadowski 2002 ‘ <
| Be vV, VA% N\
\ o . oo
\ oo v o

o4s] Ferowm

om\y g
\oy W - (
e

a\\ *N“Ms ore
n X Dovom leve)

28

Composite indexes involve multiple columns

* Useful when WHERE clauses involves pairs of column values:

SELECT * FROM Person WHERE firstName =

“Alice” AND lastName = “Sanders”

* Unlike two separate indexes, you can find the matching pair ot values with one lookup.

* Otherwise, would have to first find results for firstName =
Alices checking for lastName =

“Alice” and scan through all the
“Sanders”

* However, example below does not allow you to quickly find rows by lastName

(GirstWome, VastName) Tndex

Qe,(‘ Sown, m
< o0fe.
- E?“’ /
<sw GestNare | lastName. |bien Yoo
qy 55 Eehe ﬁxt v 1A

Q))\ 233045

29

Query execution plans

* The DBMS must translate your SELECT query into a series of table
lookups.

* A complex query has many choices about what to do first, and it will
try to make the most etticient choice.
* For example, if a JOIN is used, either of the two tables can be examined first.
* The presence of indexes make some choices more etficient than others.

* DBMSs have special commands that explain the query execution plan:
* SQLite: EXPLAIN QUERY PLAN SELECT ..
* MySQL: EXPLAIN SELECT ..

* This usually tells you how many rows will be examined, and adding indexes
can reduce these numbers.

When to index columns?

* When a query is slow!

* Generally, add an index if the column is:

* Used in WHERE conditions, or

* Used in JOIN ... ON conditions, or
* A foreign key refers to it.

* Also helpful if the column is:
* In a MIN or MAX aggregation function

30

Indexes are not free!

* Don’t add indexes unless you need them.
* Rookie mistake is to index every column “just in case.”
* Indexes consume storage space (storage overhead),

* Indexes must be updated when data 1s modified (performance overhead).

?ﬁ\msry \49 Tndey (GSN) ?ex son,
(S 500D 5SN SestNare | laskName. |birtn Yearr

T Ve, Sonhiig 1aL©

123 uswiyy A it ISG

dqM 55 46ke] Bov <;,: i .\.“T\

O‘\\j Yy 223043 Feon YAt '

\og\N) L .

Jeve's a

in X Dovwomn \eve)

N\

32

Key and Index terminology 1n SQL

* Plain key or index is just a way to find rows quickly
* Just creates a search tree.

* Unique key is an index that prevents duplicates
* Bottom level of search tree has no repeated values
* DBMS can use the tree to quickly search for existing rows with that value
before allowing a row insertion (or column update) to proceed.
* Primary key is just a unique key, but there can only be one per table
* We think of the primary key as the wost important unique key in the table

* Foreign key makes a column’s values match a column in another table

* The referenced column in the other table should be indexed
(usually it’s the primary key).

Summary

* Persistent storage requires special consideration due to slow
performance and lack of language-level support.

* Databases solve lots of problems:

* scalability, persistence, indexing, concurrency, etc.

* Filesystems can solve some, but not all, of these problems.
* Relational (SQL) databases store data in tables.

* Developer defines the DB schema first (tables, columns, keys).
* Rows are added during DB operation, and they must fit the schema.

* Indexes let us find rows quickly with value of one or more column.

* SQL query language lets us run analysis code "close to" data storage
(tiltering, aggregation — sum, count, min, max, avg, etc.).

33

