
1

CS-310 Scalable Software Architectures
Lecture 08:

Relational Databases
Steve Tarzia

2

Last Time: Load balancers
We have 2/3 of the end-to-end view of a basic scalable architecture!

(for services, at least)
• Frontend: Client connects to “the service” via a load balancer.
• Really, the client is being directed to one of many copies of the service.
• Global LBs (DNS and IP anycast) have no central bottlenecks.
• Local LBs (Reverse Proxy or NAT) provide mid-level scaling and continuous

operation (health checks & rolling updates).
• Services: Implemented by thousands of clones.
• If the code is stateless then any worker can equally handle any request.

•Data Storage??
• The next big topic!

To
da

y’s
 to

pic

2

3

On to Databases
Will summarize the most important parts of CS-339 or CS-217 in one lecture.

4

MediaWiki

W
eb brow

ser

Back to Wikipedia
• Recall that we pushed all app state to the DB,

allowing MediaWiki app to be stateless and thus
trivially parallelizable.
•Databases provide both persistent storage

and coordination in large-scale system.

In general, these are our two
biggest scalability challenges
and both are the concerns

of databases.

5

Computers have a hierarchy of storage

• Disk is about ten billion times larger than registers,
but has about ten million times larger delay (latency).
• Goal is to work as much as possible in the top levels.
• Large, rarely-needed data is stored at the bottom level

delay capacity
0.3ns CPU Registers 1 kB (kilobyte)

5ns CPU Caches (L2) 16 MB
50ns Random Access Memory (RAM) 16 GB

100µs Flash Storage (SSD) 1 TB
5ms Magnetic Disk 8 TB

Larger, but slow
er

volatile memory

persistent storage

6

Storage has limited bandwidth
• All types of computer storage are limited to

reading/writing just a small fraction at once.
•Magnetic disks:
• The read/write head can read the charges on a tiny

portion of the magnetic disk.
• RAM (memory):
• Memory and flash chips store lots of data, but

only a few bytes can be transferred at once,
because there are only a couple hundred electrical
connections at the edge.
• SSDs (flash) is similar, with even fewer electrical

connections.

https://animagraffs.com/hard-disk-drive/

Just a couple hundred electrical connections
at the edge of a RAM card.

Magnetic disk’s data can only be read at
current location of the read/write head.

https://animagraffs.com/hard-disk-drive/

7

Redundant Array of Independent Disks (RAID)
• Disks have a few shortcomings:
• Limited capacity (~12TB)
• Limited throughput (~150MB/s)
• Likelihood of failure (especially for magnetic/rotating disks)

• RAID uses multiple disks to solve these problems
• Many different variations of RAID, depending on your budget and which of the above

three problems are most important.

• Basic ideas are:
• Increase capacity by making multiple disks available to store data.
• Increase throughput by accessing data in parallel on multiple disks.
• Reduce impact of a disk failure by storing data redundantly on multiple disks.

• Disk interface is very simple (just an array of sectors), so it’s easy to create a
logical/virtual disk made of sectors from multiple physical disks.

8

Basic idea of RAID
• Combine many disks to create one superior virtual disk.
• The RAID array provides the same interface as a single disk.

OS thinks it’s dealing with this: But it’s just an illusion. The reality is:

Sector r/w requests Sector r/w requests

RAID

controller

RAID virtual disk

9

A Database Server @ NU
• 264 fast (10k RPM) magnetic disks
• 56 slow (7200 RPM) magnetic disks

(for backup)
• ~150 TB storage capacity
• Comprised of 6 physical chassis (boxes) in one big

cabinet, about the size of a coat closet.

Front view

SAS cabling in back

10

Large database servers
• Capacity is practically unlimited, but a single computer has:
• Limited compute power.
• Limited I/O bandwidth

(theoretical max of
~80 GB/s on
PCI-express v4).

• This single-machine design
can actually scale pretty well!

• Relational (aka SQL) DBs use this design

Database SW
running on
one machine

Limited bandwidth to storage (80GB/s)

O
ne

 b
ig

 c
om

pu
te

r

Many disks can be
connected to the
computer

11

Persistent (disk) storage has always been different
• Programming languages rarely deal with storage directly (except SQL).
• Programmer must write code to move data from memory to disk.
• Disks are slow, so making the programmer think before using it is OK.
• But it’s also really tedious to operate on large data sets, where data is

constantly shuffled between disk and RAM.
•Normal way of accessing persistent storage:
• Pass data into and out of files using system's open/read/write functions.

•Databases let the programmer use persistent storage w/out worrying
about file-level transfers, with advanced performance optimizations.
• Usually interact with DB using a special query language (eg., SQL).

12

Relational DBs
• Relational databases store

data in multiple tables.
• Each table has pre-defined

set of columns (schema).
• Rows are added over time.
• Rows can refer to other

rows through foreign keys.
(the arrows)
• “Philanthropy” is defined

once, but referenced by the
industry id 131 in many user rows.

• The final LinkedIn page may be generated
by JOINing rows from many tables.

… line
wrapped

13

Why so many tables?
… line
wrapped• Regions:

• Allows many users to refer to shared region data
without repetition or inconsistency.

• Positions:
• Allows a user to have an arbitrary number of

positions (zero to infinity).
• Industries? Education? Contact_info?
In summary:
• A multi-table (relational) DB allows many-to-

one and many-to-many relationships while
keeping columns finite and clearly defined.

A "relation" is a table

14

DB Design diagram: (my style)
• A graphical representation of

the DB schema.
• Defines the tables, columns,

primary and foreign keys

staff

id name room depart-
ment

11 Bob 100 1

20 Betsy 100 2

21 Fran 101 1

22 Frank 102 4

35 Sarah 200 5

40 Sam 10 7

54 Pat 102 2

department

id name building
1 Industrial Eng. 1

2 Computer Sci. 2

4 Chemistry 1

5 Physics 4

7 Materials Sci. 5

building

id name faxNumber
1 Tech 1-1000

2 Ford 1-5003

4 Mudd 1-2005

5 Cook 1-3004

6 Garage 1-6001

staff

id
name

department

department

id
name
building

building

id
name

faxNumber

15

For more coverage of relational DB schema design:
• https://youtu.be/kqNpwL14nns?t=267
•Or search Youtube for "Tarzia 317 Lecture 07"
• This is highly recommended if you have not taken a database course,

and probably helpful even if you have taken CS-339.

https://youtu.be/kqNpwL14nns?t=267

16

SQL Query language
SELECT staff.id, staff.name, staff.room,

department.name, department.buildingId
FROM staff JOIN department

ON staff.departmentId=department.id

staff.id staff.name staff.room department.name department.buildingId
11 Bob 100 Industrial Eng. 1

20 Betsy 100 Computer Sci. 2

21 Fran 101 Industrial Eng. 1

22 Frank 102 Chemistry 1

35 Sarah 200 Physics 4

40 Sam 10 Materials Sci. 5

54 Pat 102 Computer Sci. 2

18

Why a Relational Database?
Most importantly:

• Scalability – work with data larger than computer’s RAM.
• Persistence – keep data around after your program finishes.
• Indexing – efficiently sort & search along various dimensions.
• Concurrency – multiple users or applications can read/write.
• Analysis – SQL query language is concise yet powerful.
And also:

• Integrity – restrict data type, disallow duplicate entries, transactions.
•Deduplication – save space, keep common data consistent.
• Security – different users can have access to specific data.

19

Can we just read/write files to disk to achieve these?

• Scalability – work with data larger than computer’s RAM.
• Persistence – keep data around after your program finishes.
• Indexing – efficiently sort & search along various dimensions.
• Concurrency – multiple users or applications can read/write.
• Analysis – SQL query language is concise yet powerful.

• Integrity – restrict data type, disallow duplicate entries, transactions.
•Deduplication – save space, keep common data consistent.
• Security – different users can have access to specific data.

STOP
and

THINK

20

Filesystem is like a basic database, it gives:

• Scalability – work with data larger than computer’s RAM.
• Persistence – keep data around after your program finishes.
• Indexing – efficient access in just one dimension – the path/filename.
• Concurrency – multiple apps can read/write, but lacks transactions.
• Analysis – SQL query language is concise yet powerful.

• Integrity – restrict data type, disallow duplicate entries, transactions.
•Deduplication – save space, keep common data consistent.
• Security – different users can have access to specific data.

21

Indexing
•When working with large amounts of data it can be a challenge to find

an item of interest.
•We don’t want to read every storage address to find what we’re looking

for.
• Sorting the data can help tremendously, because it allows binary search.

22

Why sorting is not enough
• You can’t sort in multiple dimensions
• Let’s say you want to find a product quickly according to either it’s name,

manufacturer, or price. You can only sort by one of the there three columns.
• Can’t insert new data without shifting everything over to make room.
• Shifting data in storage would require rewriting about half of it (on average).
• That’s incredibly amount of work to accommodate just one tiny addition.

• Sorting doesn’t take advantage of the hardware’s storage hierarchy.
• The binary search will have to access the disk in every step because the index

is distributed over the full data set.
• It would be better to put all the index data close together (spatial locality).

23

A printed catalog can add multiple indexes
• Grainger catalog is sorted

according to high-level product
categories.
• It has both yellow and blue index

pages.
• These allow efficient lookup by:
• product type names
• manufacturer names

• In total, products can be
efficiently found in three ways.
• Simple sorted lists are effective

here because data is never added.

24

DB indexes use a tree or hashtable instead of sorting
• Self-balanced binary trees give the log(N) speed of a binary search,

while also allowing entries to be quickly added and deleted.
• This is all review of CS-214 Data Structures.

25

Balanced binary search tree
• Finding an element is very similar to binary search of a sorted list.
• Start from the root. Move to the left subtree if the value you’re

looking for is smaller, otherwise move to the right subtree.
• Repeat.

26

Creating indexes/keys
• Indexes are usually defined when the table is created
• Primary key must be unique for each row.
• We must be able to quickly check that new value does not already exist.
• Thus, unique/primary keys are indexed.

• But you may later realize that certain queries are too slow
• Without proper indexes, DBMS will have to examine every row in the table to

find the relevant rows.
• Adding one or more indexes may dramatically speed up a query.

Basic syntax:
CREATE INDEX index_name ON table_name (column_name)

27

Multiple indexes in one table are possible
• Allow finding rows quickly based on multiple criteria
• Need two indexes to quickly get results for both:
• SELECT * FROM Person WHERE SSN=543230921
• SELECT * FROM Person

WHERE birthYear BETWEEN 1979 AND 1983

28

Composite indexes involve multiple columns
• Useful when WHERE clauses involves pairs of column values:

SELECT * FROM Person WHERE firstName = “Alice” AND lastName = “Sanders”

• Unlike two separate indexes, you can find the matching pair of values with one lookup.
• Otherwise, would have to first find results for firstName = “Alice” and scan through all the

Alices checking for lastName = “Sanders”

• However, example below does not allow you to quickly find rows by lastName

29

Query execution plans
• The DBMS must translate your SELECT query into a series of table

lookups.
• A complex query has many choices about what to do first, and it will

try to make the most efficient choice.
• For example, if a JOIN is used, either of the two tables can be examined first.
• The presence of indexes make some choices more efficient than others.

•DBMSs have special commands that explain the query execution plan:
• SQLite: EXPLAIN QUERY PLAN SELECT …
• MySQL: EXPLAIN SELECT …
• This usually tells you how many rows will be examined, and adding indexes

can reduce these numbers.

30

When to index columns?
•When a query is slow!
•Generally, add an index if the column is:
• Used in WHERE conditions, or
• Used in JOIN … ON conditions, or
• A foreign key refers to it.

• Also helpful if the column is:
• In a MIN or MAX aggregation function

31

Indexes are not free!
• Don’t add indexes unless you need them.
• Rookie mistake is to index every column “just in case.”
• Indexes consume storage space (storage overhead),
• Indexes must be updated when data is modified (performance overhead).

32

Key and Index terminology in SQL
• Plain key or index is just a way to find rows quickly
• Just creates a search tree.

•Unique key is an index that prevents duplicates
• Bottom level of search tree has no repeated values
• DBMS can use the tree to quickly search for existing rows with that value

before allowing a row insertion (or column update) to proceed.
• Primary key is just a unique key, but there can only be one per table
• We think of the primary key as the most important unique key in the table

• Foreign key makes a column’s values match a column in another table
• The referenced column in the other table should be indexed

(usually it’s the primary key).

33

Summary
• Persistent storage requires special consideration due to slow

performance and lack of language-level support.
•Databases solve lots of problems:
• scalability, persistence, indexing, concurrency, etc.
• Filesystems can solve some, but not all, of these problems.

• Relational (SQL) databases store data in tables.
•Developer defines the DB schema first (tables, columns, keys).
• Rows are added during DB operation, and they must fit the schema.

• Indexes let us find rows quickly with value of one or more column.
• SQL query language lets us run analysis code "close to" data storage

(filtering, aggregation – sum, count, min, max, avg, etc.).

