
CS-310 Scalable Software Architectures
Lecture 7:

Load Balancing
Steve Tarzia

1

Last Lecture: Microservices, etc.
• Introduced microservices as an alternative to monolithic design.
• Services are black boxes, exposing network APIs.
• Decouples development of different parts of the system.
• Network APIs define the format and meaning of requests and responses.

• JS Single-page Applications (SPAs) interact directly with services.
• Moves UI concerns away from backend code.

• In a cross-platform system design, the same backend service/API
can serve mobile, web, and desktop apps.

2

W
eb brow

ser

Load balancers
• In the diagram below, there are 3 load balancers in

front of 200 MediaWiki servers.
• Load balancer is a single point of contact for a service.
• Requests are proxied to a cluster of workers.
• Load balancer does very little work:
• Just forward request/response and

remember the request source.
• Load balancer can relay requests

for 10s-100s of application servers.
•Makes one IP address appear like

one huge machine, but it’s actually a cluster.
MediaWiki

3

Basic idea of load balancer
•Make a cluster of servers look like one superior server.
• The load balancer provides the same interface as a single server.

(An HTTP server operating on a single IP address)
Client thinks it’s dealing with this: But it’s just an illusion. The reality is:

HTTP request HTTP request

Load-balanced cluster
Load

Balancer

Workers

4

Additional benefits of a load balancer
• Individual servers can be replaced without affecting overall service.
• Deploy “rolling” app updates. • Or deploy a synchronized update

• Proxy can monitor health of servers
• Periodically send a “health check” request. A simple GET API call.
• If the request fails, then the server must be crashed.
• Stop relaying new requests to that server.

Load
Balancer

Version
1.1

Version
1.1

Up-
grading

Version
1.0

Version
1.0

Update rolls through servers

Load
Balancer

v1.0 v1.0 v1.0 v1.0 v1.1 v1.1 v1.1 v1.1

Created new VMs with
updated SW. Will
reconfigure LB all at once.

5
Pros and cons of rolling

vs. synchronized updates?
STOP
and

THINK

Two types of local load balancers
Network Address Translation

•Works at the TCP/IP layer.
• Called a Layer-4 load balancer

• Forwards packets one-by-one, but
remembers which server was
assigned to each client.
• Is compatible with any type of

service, not just HTTP.

Reverse Proxy

•Works at the HTTP layer.
• Called an application-layer LB.

• Stores full requests/response
before forwarding.
• Eg., Nginx (or maybe Squid)
• Reverse Proxy can also do:
• SSL termination.
• Caching.
• Compression.

6

NAT Load Balancer
• For details, take CS-340.
• A type of NAT device that relays requests

to multiple equivalent servers.
•NAT LB changes IP addresses and ports

of packets in both directions.
• Load balancer maintains IP address and

port mappings, like a traditional NAT.
• Simpler and more efficient than reverse

proxy because it need not implement TCP,
HTTP, or store full request/responses.

2.2.2.2:80
Load Balancer

10.0.0.1:1002 10.0.0.1:2302 10.0.0.1:5021

Client 1
4.4.4.4:1230

Client 2
5.5.5.5:3021

Client 3
6.6.6.6:9012

10.0.0.2:80
Server A

10.0.0.3:80
Server B

7

Nginx is can be used as a Reverse Proxy Load Balancer

1. Client sends
request to the LB.

2. LB choses an
“upstream”
server.

3. LB relays request
to upstream
server.

4. Upstream server
sends response to
LB.

5. LB accepts
response and
looks up the
client associated
with this
connection.

6. LB relays
response to
client.

Load balancer

8

Additional benefits of a Reverse Proxy LB

• TLS/SSL certificates can be stored just on the proxy.
• Internal communication may be unencrypted.

• Proxy might also cache responses, but this limits its scalability.
• Eg., Squid in the Wikipedia architecture.

(load balancer)

9

Comparison of Local load balancing options
NAT Reverse Proxy

Routing done by: IP address/port
translation

HTTP proxy

Scale ~1–10M requests/s ~100k–1M requests/s

Services supported Any Only HTTP

Additional features None SSL termination.
Caching.

• Expensive "hardware" load balancers implement NAT.
• Reverse proxies are the cheap, open-source option.
• Cloud-based LBs can do either.

10

Local load balancer limitations
• Load balancer machine is a single point of failure.
• Can only handle ~1M requests/sec.
• Resides in one data center, thus:
• It’s not near all your customers.
• The data center is also a single point of failure.

•Huge services need more than just local load balancers.
• Can clients find a service replica without contacting a central

bottleneck?
•We have a distributed service discovery problem.

STOP
and

THINK

11

https://www.nginx.com/blog/testing-the-performance-of-nginx-and-nginx-plus-web-servers/

Domain Name Service (DNS)
• DNS is a distributed directory that maps hostnames to IP addresses.
• mail.stevetarzia.com à 54.245.121.172

• DNS uses a distributed, hierarchical, caching architecture for scalability.
• On campus, my machine sends queries to NU’s DNS server.
• This local DNS resolver has cached copies of recent (common) answers.
• gmail.com, northwestern.edu, facebook.com, etc…

• Local DNS resolver asks up the hierarchy if answer is not in its cache.
• Need to ask the nameserver for “stevetarzia.com” for IP address of “mail”.
• To get IP address of that nameserver, would ask the “com” nameserver.
• IP address of “com” TLD nameserver is almost certainly cached, but if not then

query one of the few hard-coded root nameservers.
• For more details, take CS-340 Intro. to Computer Networking.
• AWS outage on October 22nd, 2019 was due to a DDoS attack on AWS DNS.

12

Round-robin DNS for load balancing
•DNS allows multiple answers to be given for a query

(multiple IP addresses per domain name).
• Client can then randomly choose one of the IP addresses.
• Even better, DNS server can store multiple answers, but give different

responses to different users (either randomly, or cyclically).
• Remember that DNS is a cached, distributed system.
• Northwestern’s DNS resolver may have been told google.com = 172.217.9.78.
• UChicago’s DNS resolver may have been told google.com = 172.217.9.80.
• Comcast Chicago’s DNS resolver was told google.com = 172.217.7.83.
• Different answers are cached and relayed to all the users on the 3 networks.

• Each of those three IP addresses are different reverse-proxying load
balancers sitting in front of hundreds of app servers.
• Is there a limit to scaling by DNS? There’s no limit, at least on the frontend!

13

STOP
and

THINK

Geographic load balancing with DNS
•More than just balancing load, DNS can also connect user to the

closest replica of a service.
• Clever DNS server examines IP address of requester and resolves to

the server that it thinks is closest to the client (IP address geolocation).
• In other words, the IP address answers are not just different, but

customized for the particular client.

👀 (command line demo with nslookup)

14

Content Delivery Network (CDN)
•Globally distributed web servers that cache responses for local clients.
• A CDN is just a distributed caching HTTP reverse proxy that uses

DNS (and other techniques) to geographically load-balance.
• Eg., Akamai, Cloudflare, Cloudfront, Fastly

Distributed
“edge” servers

15

CDN uses HTTP caching proxies

• Origin Server is the original, central web server.
(Sets cache-control HTTP headers in responses).

• Edge Servers are caching proxies.
Ask origin server if don’t have a cached response.

CDNs are add-on services

CDN operator manages edge servers
(Cloudflare, Akamai, Cloudfront, Fastly)

Website operator
manages origin server

Cache-Control headers in HTTP responses
Command line demo:
• https://www.google.com does not allow caching:
• cache-control: private, max-age=0

• https://www.google.com/images/branding/googlelogo/2x/googlelog
o_color_272x92dp.png allow caching for one year
• cache-control: private, max-age=31536000

• https://www.northwestern.edu also does not allow caching:
• Cache-Control: max-age=0

• https://common.northwestern.edu/v8/css/images/northwestern.svg
allows caching for one day:
• Cache-Control: max-age=86400

https://www.google.com/
https://www.google.com/images/branding/googlelogo/2x/googlelogo_color_272x92dp.png
https://www.northwestern.edu/
https://common.northwestern.edu/v8/css/images/northwestern.svg

Geographic load balancing with IP Anycast
• 8.8.8.8 is the one IP address for Google’s huge public DNS service.
• Handles >400 billion DNS requests per day! Anyone here use it?
• Cannot rely on DNS for load balancing, because it is the DNS server!

• IP Anycast load balancing is implemented with BGP. (Details in CS-340)
• Basic idea is that many of Google’s routers (around the world) all advertise

to their neighbors that they can reach 8.8.8.8 in just one hop.
• Thus, traffic destined for 8.8.8.8 is sent to whichever of these Google

routers are closest to the customer.
• Technically, this violates the principle that an IP address is a particular

destination, but for DNS this doesn’t matter because it’s UDP and stateless.

5 million QPS!

19

https://webmasters.googleblog.com/2014/12/google-public-dns-and-location.html

Comparison of Global load balancing options
DNS IP anycast

Routing done by: Domain Name Service BGP

Maximum scale
limited by:

Internet itself. Internet itself.

How quickly can
changes be made?

DNS TTL
(minutes to hours)

BGP convergence
(~minute)

Easy of deployment: Requires advanced
DNS software/config.

Must operate your own
Autonomous System (ISP)

• For global load balancing, DNS is the most common choice.
• Tech giants (Google, Facebook, Amazon, MS, etc.) can use IP anycast.

20

Comparison of load balancing Levels
Local Global

Routing done by: NAT or HTTP Proxy DNS or BGP

Maximum scale
limited by:

Speed of one machine. Internet itself.

How quickly can
changes be made?

Milliseconds minutes to hours

Easy of deployment: Simple, using off-the-
shelf software/HW.

Requires advanced
DNS software/config.

Most large services load balance at two levels:
• Local – provides continuous operation and scale within a data center
• Includes health checks & rolling updates.

• DNS – for global scalability and low latency (send users to nearby data center).

21

Recap: Load balancers
We have 2/3 of the end-to-end view of a basic scalable architecture!

(for services, at least)
• Frontend: Client connects to “the service” via a load balancer.
• Really, the client is being directed to one of many copies of the service.
• Global LBs (DNS and IP anycast) have no central bottlenecks.
• Local LBs (Reverse Proxy or NAT) provide mid-level scaling and continuous

operation (health checks & rolling updates).
• Services: Implemented by thousands of clones.
• If the code is stateless then any worker can equally handle any request.

•Data Storage??
• The next big topic!

To
da

y’s
 to

pic

22

