(CS-310 Scalable Software Architectures
Lecture 6:

Microservices

Steve Tarzia

Last time: REST APIs and Data Serialization

* Services are black boxes, exposing network APIs.
* Decouples development of different parts of the system.
* Network APIs define the format and meaning of requests and responses.

* REST is the most popular format for network APIs
* Based on HT TP and uses #r/, method, response codes, usually [SON bodies.

* JSON is a common data serialization format. XML is also used.

Wikipedia 1s mostly one big PHP app

* The app uses a monolithic architecture. T

* Roughly means “one big thing.” jm“, ps o

Master 5 slaves

s
s3: other wikis s4: commons s5: dewiki

_

[
. eq - s7: fr. ja. ru s7: es, hu, he, ...
HTTP cache MediaWiki 7 m 7 P
Main cluster |
(wikipedia, wiktionary, etc) P
Your
«— HT
browser <

149 Apache -Core

Cache and Database are “off-the-shelf” software

* Caching proxies are Squid.
* Databases are MariaDB.

HTTP cache MediaWiki

Main cluster
ipedia, wiktionary, e

Apache

Your
browser

DOIOIOO) 20 Apache-Core/ex-ES

149 Apache-Core

Monolithic apps

* Fach of instance of Mediawiki (@) can handle AP
any request on its own. :W a
* Caveat: it needs the help of the centralized database, it ks
but let’s ignore the DB for now. | |
* The only reason we have 200 of instancesis ~ MediaWiki ifnaa') :F
to handle many independent requests Apaches ’/}
€

in parallel.

* They’re interchangeable clones.

CICICICICICICICICICACACICICICH)
QOO
QOO QOO
QOO
QYOO

* When a developer is testing new
code, they can just run one
instance locally.

JOSMOI] g\

VNSNS)
. NI)‘
NN
> CO\‘O\ACO\AO\AO\
/ C’,C')C')C')C') 20 Apache-Core/ex-ES

nnnnnnnnnnnnn

QQRQQQRQ QYA
QRO
G000

149 Apache-Core

Advantages ot a Monolithic design

* Easy to build, deploy, test, coordinate, share data.
* Certainly, the best choice for simple apps.
* Even some very large services (eg., Facebook) use a monolithic design.

Disadvantages

* Creates bottlenecks in SW development processes.
* Lots of developers working on one codebase — lots of coordination/merging.

* One huge codebase can lead to messy, fragile code.
* A change Jere can cause unexpected bugs Zere.

Il

* The whole app must be redeployed for small new functionality.

* Must choose one programming language, build system, runtime enw.

Breaking up a monolithic architecture, example

One big service Several services

Wweb
\s(ous-bf
o ' Uset’s machine

——

(N The cloud
Wel afQ

7

o

Microservices

* In a Service Oriented Architecture many smaller
services work together. Recently, this idea has
been re-branded as Microservices.

* Responsibilities are split among specialized
Services.

* To the outside world it still looks like one app, but

internally there are many different apps working
together.

* Notice that microservices may interact with other
services, databases, etc. to do their job.

Microservice interactions

* Each microservice 1s a black box to the rest of
the system. It’s an independent service.

* Microservice handles requests from the network.

* Implementation (and programming language)
details are hidden from the rest of the system.

* However, a clear and language-independent
network-level API is needed to specify the format
of requests and responses.

* From last lecture, could be:
REST, Thritt, ProtoBuf, GraphQL, etc.

A tfew microservice disadvantages

* More ditficult to trace through request handling code for debugging,
because request handling spans many apps.

* On the other hand, it’s easier to write tests for each smaller service.

* (ACID) Transactions are more difficult to support.

* A monolithic design can manage a single DB connection with a transaction
that can be rolled-back.

* Developers get silo-ed/isolated in sub-projects.

e Collaboration and innovation can be blocked.

10

11

Developing a service with a team

* Microservices isolate codebases with clear network API boundaries,
allowing work to proceed in parallel.
* When starting a new project, a typical design process will:
* Organize the system into several services and databases.
* Agree on the network-level API for each service.

* Assign engineers to each service, and build them independently!
* It your application interacts with a service that is under construction,
then you can build a quick mock of the service.

* Mock services obey the network-level API, but return hard-coded
data for testing purposes.

12

Traditional web app »5. JavaScript Single-Page app

* Server generates HTML * |S app runs in the browser,
dynamically. makes REST requests and
* Browser doesn’t run much JS. generates HTML.
* Eg., Wikipedia. * Eg., Facebook & other React apps.

W |
orouser B prme
35 K<

__ R A @‘1 ™

The cloud ‘LL\D ‘} 3U O &4 "
SQA‘VM‘ A'?Y

*Note: many apps combine these two styles.

13

Cross-platform architecture

* A service API (eg,, REST or GraphQL) 1s essential for supporting
mobile and desktop apps with cloud-based data and services.

* A single API can handle all client types.

\;% \anwsﬁq

How many

« -
'3'*}7‘\ Qg’ ______ 'X}P‘x Q&« o speclalist software
""""""""""""" engineers might

work on this

system?

Service API

14

Review

* Introduced microservices as an alternative to monolithic design.

* Services are black boxes, exposing network APIs.

* Decouples development of different parts of the system.
* Network APIs define the format and meaning of requests and responses.

* |S Single-page Applications (SPAs) interact directly with services.

* Moves Ul concerns away from backend code.

* In a cross-platform system design, the same backend service/ API
can serve mobile, web, and desktop apps.

