
CS-310 Scalable Software Architectures
Lecture 6:

Microservices
Steve Tarzia

1

Last time: REST APIs and Data Serialization
• Services are black boxes, exposing network APIs.
• Decouples development of different parts of the system.
• Network APIs define the format and meaning of requests and responses.

• REST is the most popular format for network APIs
• Based on HTTP and uses url, method, response codes, usually JSON bodies.

• JSON is a common data serialization format. XML is also used.

2

Wikipedia is mostly one big PHP app
• The app uses a monolithic architecture.
• Roughly means “one big thing.”

HTTP cache MediaWiki

Your
browser

3

Cache and Database are “off-the-shelf ” software
• Caching proxies are Squid.
•Databases are MariaDB.

HTTP cache MediaWiki

Your
browser

4

MediaWiki

W
eb brow

ser

Monolithic apps
• Each of instance of Mediawiki () can handle

any request on its own.
• Caveat: it needs the help of the centralized database,

but let’s ignore the DB for now.

• The only reason we have 200 of instances is
to handle many independent requests
in parallel.
• They’re interchangeable clones.

•When a developer is testing new
code, they can just run one
instance locally.

5

Advantages of a Monolithic design
• Easy to build, deploy, test, coordinate, share data.
• Certainly, the best choice for simple apps.
• Even some very large services (eg., Facebook) use a monolithic design.

Disadvantages
• Creates bottlenecks in SW development processes.
• Lots of developers working on one codebase – lots of coordination/merging.

•One huge codebase can lead to messy, fragile code.
• A change here can cause unexpected bugs there.

• The whole app must be redeployed for small new functionality.
•Must choose one programming language, build system, runtime env.

6

Breaking up a monolithic architecture, example
One big service Several services

User’s machine

The cloud

7

Microservices
• In a Service Oriented Architecture many smaller

services work together. Recently, this idea has
been re-branded as Microservices.
• Responsibilities are split among specialized

services.

• To the outside world it still looks like one app, but
internally there are many different apps working
together.
•Notice that microservices may interact with other

services, databases, etc. to do their job.

8

Microservice interactions
• Each microservice is a black box to the rest of

the system. It’s an independent service.
•Microservice handles requests from the network.
• Implementation (and programming language)

details are hidden from the rest of the system.

•However, a clear and language-independent
network-level API is needed to specify the format
of requests and responses.
• From last lecture, could be:

REST, Thrift, ProtoBuf, GraphQL, etc.

9

A few microservice disadvantages
•More difficult to trace through request handling code for debugging,

because request handling spans many apps.
• On the other hand, it’s easier to write tests for each smaller service.

• (ACID) Transactions are more difficult to support.
• A monolithic design can manage a single DB connection with a transaction

that can be rolled-back.
•Developers get silo-ed/isolated in sub-projects.
• Collaboration and innovation can be blocked.

10

Developing a service with a team
•Microservices isolate codebases with clear network API boundaries,

allowing work to proceed in parallel.
•When starting a new project, a typical design process will:
•Organize the system into several services and databases.
• Agree on the network-level API for each service.
• Assign engineers to each service, and build them independently!

• If your application interacts with a service that is under construction,
then you can build a quick mock of the service.
•Mock services obey the network-level API, but return hard-coded

data for testing purposes.

11

Traditional web app vs. JavaScript Single-Page app
• Server generates HTML

dynamically.
• Browser doesn’t run much JS.
• Eg., Wikipedia.

• JS app runs in the browser,
makes REST requests and
generates HTML.
• Eg., Facebook & other React apps.

User’s machine

The cloud

*Note: many apps combine these two styles.

12

Cross-platform architecture
• A service API (eg., REST or GraphQL) is essential for supporting

mobile and desktop apps with cloud-based data and services.
• A single API can handle all client types.

Service API

User’s machine

The cloud
desktop

app

13

JS SPA

How many
specialist software
engineers might

work on this
system?

STOP
and

THINK

Review
• Introduced microservices as an alternative to monolithic design.
• Services are black boxes, exposing network APIs.
• Decouples development of different parts of the system.
• Network APIs define the format and meaning of requests and responses.

• JS Single-page Applications (SPAs) interact directly with services.
• Moves UI concerns away from backend code.

• In a cross-platform system design, the same backend service/API
can serve mobile, web, and desktop apps.

14

