
CS-310 Scalable Software Architectures
Lecture 5:

REST APIs and
Data Serialization

Steve Tarzia

1

Last time: Proxies, and Caches
• Introduced proxies and caching.
• A proxy is an intermediary for handling requests.
• Useful both for caching and load balancing (discussed later).

•Often, many of a service's requests are for a few popular documents.
• Caching allows responses to be saved and repeated for duplicate requests.

•HTTP has built-in support for caching.

2

Application Programming Interfaces (APIs)
An API defines how software can be used by other software.
• The API for a code library is the list of functions/classes it provides.
• Software services provide network remote procedure call (RPC) APIs.
•Network-level APIs can have any format, but most commonly:
• REST built on top of HTTP
• SOAP (old)
• Thrift binary protocols, more efficient than REST.
• Protocol buffers
•GraphQL

•Usually includes some form of authentication:
• Service must identify you to give access or personalized data.

3

HTTP methods and responses
Methods

•GET: to request a data
• POST: to post data to the server,

and perhaps get data back, too.
Less commonly:
• PUT: to create a new document

on the server.
•DELETE: to delete a document.
•HEAD: like GET, but just return

headers

Response codes

• 200 OK: success
• 301 Moved Permanently:

redirects to another URL
• 403 Forbidden: lack

permission
• 404 Not Found: URL is bad
• 500 Internal Server Error
… and many more

4

A weather information service (REST API)
HTTP Request
GET
http://api.wthr.com/[key]/fore
cast?location=San+Francisco
HTTP/1.1

Accept-Encoding: gzip

Cache-Control: no-cache

Connection: keep-alive

HTTP Response
HTTP/1.1 200 OK
Content-Length: 2102
Content-Type:
application/json

{ "wind_dir": "NNW",
"wind_degrees": 346,
"wind_mph": 22.0,
"feelslike_f": "66.3",
"feelslike_c": "19.1",
"visibility_mi": "10.0",
"UV": "5", … }

5

Idempotence
• An idempotent request can be repeated without changing the result.
•HTTP expects every method except POST to be idempotent.
•HTTP proxies/servers may repeat your PUT or DELETE requests,

and your REST API implementations should be OK with this.
• For example, creating an Elasticsearch document:
• PUT /my-index/_doc/2345

{"title": "My Great Article", "txt": "Hi everyone. I'm here to write about…"}
• POST /my-index/_doc

{"title": "My Great Article", "txt": "Hi everyone. I'm here to write about…"}
• The PUT variation can be repeated and it will just overwrite the doc.
• The POST variation would create duplicate docs if repeated.

6

REST API semantics must work with HTTP's rules
• Let's say we're developing a a social media application.
•What's wrong with this API definition for deleting my latest post?
•DELETE /user/[user-id]/feed/posts/latest

•Http DELETE should be idempotent.
•However, repeating the request above changes the system state.
• From the services' perspective, repetition of one deletion looks the

same as if the user had purposely deleted multiple latest posts.
•What's the solution? Make each deletion look different:
•DELETE /user/[user-id]/feed/post/[post-id]

STOP
and

THINK

7

REST API example
Twitter REST API documentation
• https://developer.twitter.com/en/docs/tweets/post-and-engage/api-reference/post-statuses-update

Elastic Search: https://www.elastic.co/guide/en/elasticsearch/reference/current/rest-apis.html

Discourse web forum public API documentation:
• https://docs.discourse.org

Output examples, viewable in a web browser:
• https://meta.discourse.org/categories.json
• https://meta.discourse.org/latest.json?category=7
• https://meta.discourse.org/t/3423.json (requires authentication)
• http://ssa-hw2-backend.stevetarzia.com/api/search?query=northwestern&date=2020-04-16

8

https://developer.twitter.com/en/docs/tweets/post-and-engage/api-reference/post-statuses-update
https://www.elastic.co/guide/en/elasticsearch/reference/current/rest-apis.html
https://docs.discourse.org/
https://meta.discourse.org/categories.json
https://meta.discourse.org/latest.json?category=7
https://meta.discourse.org/t/3423.json
http://ssa-hw2-backend.stevetarzia.com/api/search?query=northwestern&date=2020-04-16

Inputs and outputs of REST APIs
Request Inputs
• Choice of Method:

• GET for reading data
• POST/PUT/DELETE for editing

• Path
• Usually identifies the type of request, but may also

supply parameters:
GET /tweets/connor4real

• Query parameters after the main URL
• Written after a “?” character.

GET /search?startDate=2018-10-
10&search=best+restaurant&api_key=3iur20du9302o3i0d

• Headers
• Cookies, custom headers

• Body
• Usually form-encoded or JSON

Response Outputs
• Status code

• 200, 404, 403, etc.
• Headers
• Body

• Usually JSON encoded

• Custom HTTP headers are frowned upon.
Goal is to build on top of HTTP, not alter it.

• Many APIs require that you provide an API
key or access token somewhere your
request.
• This is like a password that identifies you to

the service.
• Is this secure?

9

STOP
and

THINK

HTTP method
should be the

only verb

RESTful API design style
• Paths represent "resources" – data or objects in your system.
•GET reads data
• PUT/POST creates or modifies data
•DELETE deletes data

• Representing arbitrary actions in REST can be tricky.
Usually we can convert an action into an event resource.
• This is acceptable, but not RESTful: POST /inbox/createMessage
•Here is a RESTful alternative: POST /inbox/message
• And finally, an even better design: PUT /inbox/message/[uuid]

Verbs in path are
not RESTFUL!

Resource/noun

10

JSON – JavaScript Object Notation
• A data format returned by most REST APIs
• Allows an arbitrary amount of nesting
• Spaces are ignored, except within quotes.

Basic components are:
• [] for ordered lists

• Items are separated by commas
• Items can be any JSON

• {} for unordered dictionaries/objects
• Key: value pairs are separated by commas
• Keys must be strings (text)
• Values can be any JSON

• Numbers, true, false, null
• Strings (text) in double quotes "..."

[
{
"name": "John",
"age": 30,
"cars":

["Ford", "BMW", "Fiat"]
},
{
"name": "Alicia",
"age": 32,
"hometown": "Seattle"

}
]

11

JSON data graph example
[
{
"name": "John",
"age": 30,
"cars":

["Ford", "BMW", "Fiat"]
},
{
"name": "Alicia",
"age": 32,
"hometown": "Seattle"

}
]

12

XML – eXtensibleMarkup Language
• Older than JSON, and now is less common than JSON because

many people think XML is unnecessarily complicated.
• HTML is an XML document that defines a web page.

Basic components are:

• Text
• Tags

• <tagname>…</tagname> or just <tagname>
• Have a name, and have XML inside
• Each start tag has a corresponding end tag, but only if it has data

inside.

• Attributes
• <tag attr="value" …>
• Appear within tags
• Attribute name and value must be text
• Tag can have multiple attributes, but each must have a unique name

<people>

<person name="John"

age="30">

<cars>

<car>Ford</car>

<car>BMW</car>

<car>Fiat</car>

</cars>

</person>

<person name="Alicia"

age="32">

<hometown city="Seattle">

</person>

</people>

13

XML data graph example
<people>

<person name="John"

age="30">

<cars>

<car>Ford</car>

<car>BMW</car>

<car>Fiat</car>

</cars>

</person>

<person name="Alicia"

age="32">

<hometown
city="Seattle">

</person>

</people>

14

JSON and XML are data serialization formats
• Computer memory is one

big array, but programs and
databases use references to
organize data into complex
structures:

• Data files are arrays of bytes.
• Messages sent over the network

are serial streams of bytes.
• Serialization is converting a

data object into a sequence of
bytes: <people>

<person name="John"
age="30">

<cars>

<car>Ford</car>
<car>BMW</car>
<car>Fiat</car>

</cars>
</person>
<person name="Alicia"

age="32">

<hometown
city="Seattle">

</person>
</people>

15

Byte-level view of XML serialization
$ hexdump -C test.xml
00000000 3c 70 65 6f 70 6c 65 3e 0a 20 20 3c 70 65 72 73 |<people>. <pers|
00000010 6f 6e 20 6e 61 6d 65 3d 22 4a 6f 68 6e 22 20 0a |on name="John" .|
00000020 20 20 20 20 20 20 20 20 20 20 61 67 65 3d 22 33 | age="3|
00000030 30 22 3e 0a 20 20 20 20 3c 63 61 72 73 3e 0a 20 |0">. <cars>. |
00000040 20 20 20 20 20 3c 63 61 72 3e 46 6f 72 64 3c 2f | <car>Ford</|
00000050 63 61 72 3e 0a 20 20 20 20 20 20 3c 63 61 72 3e |car>. <car>|
00000060 42 4d 57 3c 2f 63 61 72 3e 0a 20 20 20 20 20 20 |BMW</car>. |
00000070 3c 63 61 72 3e 46 69 61 74 3c 2f 63 61 72 3e 0a |<car>Fiat</car>.|
00000080 20 20 20 20 3c 2f 63 61 72 73 3e 0a 20 20 3c 2f | </cars>. </|
00000090 70 65 72 73 6f 6e 3e 0a 20 20 3c 70 65 72 73 6f |person>. <perso|
000000a0 6e 20 6e 61 6d 65 3d 22 41 6c 69 63 69 61 22 20 |n name="Alicia" |
000000b0 0a 20 20 20 20 20 20 20 20 20 20 61 67 65 3d 22 |. age="|
000000c0 33 32 22 3e 0a 20 20 20 20 3c 68 6f 6d 65 74 6f |32">. <hometo|
000000d0 77 6e 0a 20 20 20 20 20 63 69 74 79 3d 22 53 65 |wn. city="Se|
000000e0 61 74 74 6c 65 22 3e 0a 20 20 3c 2f 70 65 72 73 |attle">. </pers|
000000f0 6f 6e 3e 0a 3c 2f 70 65 6f 70 6c 65 3e 0a 0a |on>.</people>..|
000000ff

UTF-8 / ASCII encoding of XML text. Each character is one byte.

16

References (pointers) make serialization non-trivial
• If an object is referenced many

times, should it be repeated?
[{

"name": "Jess",
"hometown": {
"city": "Evanston",
"province": "Illinois",
"population": 74106

}
},
{
"name": "Jonah",
"hometown": {
"city": "Evanston",
"province": "Illinois",
"population": 74106

}
}]

• How to handle circular references?

{
"name": "Jess",
"best_friend": {
"name": "Tom",
"best_friend": {
"name": "Kate",
"best_friend": {
"name": "Jess",
"best_friend": {

... And so on to infinity! ...
}

}
}

}
}

17

Solution: serialize with references
{

"hometowns": [
{
"hometown_id": 1,
"city": "Evanston",
"province": "Illinois",
"population": 74106

},
{
"hometown_id": 2,
"city": "Chicago",
"province": "Illinois",
"population": 2705994

}
],
"people": [
{
"name": "Jess",
"hometown_id": 1,

},
{
"name": "Jonah",
"hometown_id": 1

}
]

}

[
{
"person_id": 1,
"name": "Jess",
"best_friend_id": 2

},
{
"person_id": 2,
"name": "Tom",
"best_friend_id": 3

},
{
"person_id": 3,
"name": "Kate",
"best_friend_id": 1

}
]

• The downside of using references?
• Requires more than one pass through the data:

• Producer must find and store all the referenced
objects before printing.

• Consumer may need to read more before finding
the data being referred-to.

18

STOP
and

THINK

Why use HTTP for new applications?
•Web community has already solved the problems you’re likely face.
• Encryption
• Compression
• Every programming language already has HTTP client libraries
• Many different server frameworks to choose from, and these already handle

encryption, queueing, database connection pooling:
• Eg., Apache httpd, Tomcat, Node.js, Django, Flask

• Web proxies and caches can be reused (Squid, Nginx)
• HTTP response codes are generic enough to be adapted to other services.

•Disadvantages:
• Inherit some unneeded complexities, and perhaps unexpected behaviors.
• Human-readable headers introduce overhead (but compression helps)
• May have to rethink your API to fit the URL/resource model.

19

More efficient network API formats
• Both Thrift and Protocol Buffers are alternative standards for

network APIs, and they not build on top of HTTP.
•Messages are more space-efficient (smaller), but less human-readable.
•Without HTTP overhead, there is less processing on both sides.
• You specify a list of functions for the API, and the tools generate

libraries to easily use the API in the language of your choice
• In other words, each API call is wrapped in a function in your particular

programming language. Most languages are supported.
• Usually don't implement the API at the network-level.

•However, message complexity is not a primary concern in most
applications, so REST remains the most popular network API format.

20

Review
• Services are black boxes, exposing network APIs.
• Decouples development of different parts of the system.
• Network APIs define the format and meaning of requests and responses.

• REST is the most popular format for network APIs
• Based on HTTP and uses url, method, response codes, usually JSON bodies.

• JSON is a common data serialization format. XML is also used.

22

