CS-310 Scalable Software Architectures
Lecture 5:

REST APIs and
Data Serialization

Steve Tarzia

Last time: Proxies, and Caches

* Introduced proxies and caching.

* A proxy 1s an intermediary for handling requests.
* Useful both for caching and load balancing (discussed later).

* Often, many of a service's requests are for a few popular documents.

* Caching allows responses to be saved and repeated for duplicate requests.

* HT'TP has built-in support for caching.

Application Programming Intertaces (APIs)

An API defines how software can be used by other software.
* The API for a code library is the list of functions/classes it provides.

* Software services provide network remote procedure call (RPC) APIs.
* Network-level APIs can have any format, but most commonly:

* REST built on top of H1TTP

* SOAP (0ld)

* Thrift binary protocols, more efficient than REST.
* Protocol buffers]

* GraphQL

* Usually includes some torm ot awuthentication:
* Service must identify you to give access or personalized data.

HTTP methods and responses

Methods

* GET: to request a data

* POST: to post data to the server,
and perhaps get data back, too.

e PUT: to create a2 new document
on the server.

* DELETE: to delete 2 document.

* HEAD: like GET, but just return
headers

Response codes

* 200 OK: success

* 301 Moved Permanently:
redirects to another URL

* 403 Forbidden: lack

permission

* 404 Not Found: URL is bad

* 500 Internal Server Error

... and many more

A weather information service (REST API)

HTTP Request HTTP Response

GET HTTP/1.1 200 OK

http://api.wthr.com/[key]/fore Content-Length: 2102
cast?location=San+Francisco

HTTR /1.1 Content-Type:

application/json
Accept-Encoding: gzip
Cache-Control: no-cache { "wind dir": "NNW",
Connection: keep-alive "wind degrees": 346,
"wind mph": 22.0,
"feelslike £": "66.3",
"feelslike c": "19.1",
"visibility mi": "10.0"

(A} UV" . 1A} 5 LA , . }

Idempotence

* An idempotent request can be repeated without changing the result.

* HT'TP expects every method except POST to be idempotent.

* HTTP proxies/servers may repeat your PUT or DELETE requests,
and your REST API implementations should be OK with this.

* For example, creating an Elasticsearch document:
* PUT /my-index/_doc/2345
{"title": "My Great Article", "txt": "Hi everyone. I'm here to write about..."}
* POST /my-index/_doc
{"title": "My Great Article", "txt": "Hi everyone. I'm here to write about..."}

s

* The PUT wvariation can be repeated and it will just overwrite the doc.

Il

* The POST wvariation would create duplicate docs if repeated.

REST API semantics must work with HTTP's rules

* Let's say we're developing a a social media application.

* What's wrong with this API definition for deleting my latest post?
* DELETE /user/[user-id]/feed/posts/latest

* Http DELETE should be idempotent.

* However, repeating the request above changes the system state.

* From the services' perspective, repetition of one deletion looks the
same as if the user had purposely deleted multiple latest posts.

 What's the solution? Make each deletion look different:
* DELETE /user/[user-id]/feed/post/[post-id]

REST API example

Twitter REST API documentation

* https://developet.twitter.com/en/docs/tweets/post-and-engage /api-reference /post-statuses-update

Elastic Search: https:/ /www.elastic.co/guide/en/elasticsearch/reference/current/rest-apis.html

Discourse web forum public API documentation:

* https://docs.discourse.org

Output examples, viewable in a web browser:

* htt
* htt

s:/ /meta.discourse.org/categories.json

s://meta.discourse.org/latest.jsonPcategory=7

* htt

s:/ /meta.discourse.org/t/3423.json (requires authentication)

* http://ssa-hw2-backend.stevetarzia.com/api/search?query=northwestern&date=2020-04-16

https://developer.twitter.com/en/docs/tweets/post-and-engage/api-reference/post-statuses-update
https://www.elastic.co/guide/en/elasticsearch/reference/current/rest-apis.html
https://docs.discourse.org/
https://meta.discourse.org/categories.json
https://meta.discourse.org/latest.json?category=7
https://meta.discourse.org/t/3423.json
http://ssa-hw2-backend.stevetarzia.com/api/search?query=northwestern&date=2020-04-16

Inputs and outputs of REST APIs

Request Inputs Response Outputs
* Choice of Method: * Status code

* GET for reading data e 200, 404, 403, etc.

* POST/PUT/DELETE for editing
e Path ° Body

* Usually identifies the type of request, but may also » Usually JSON encoded

supply parameters:
GET /tweets/connordreal

* Query parameters after the main URL

e Written after a “?”” character.

GET /search?startDate=2018-10-
10&search=best+restaurant&api_key=3iur20du930203i0d

Custom HTTP headers are frowned upon.
Goal 1s to build on top of HTTP, not alter it.

Many APIs require that you provide an API
key or access token somewhere your

request.
e This is like a password that identifies you to
* Body the service. P ’
* Usually form-encoded or JSON o Is this secure? STOP

and

THINK

10

RESTftul API design style

e Paths represent "resources'" — data or objects in yvour system.
p J y y

e GET reads data
 PUT /POST creates or modifies data
e DELETE deletes data HTTP method

should be the

only verb

* Representing arbitrary actions in REST c@h be tricky. REiSIRIEE
. . not RESTFUL!
Usually we can convert an action into an gvent resoutrce. =4
* This is acceptable, but not RESTful: POST /inbox/createMessage
* Here is a RESTtul alternative: POST /inbox/ messag

* And finally, an even better design: PUT /inbox/message/ [uuid]

JSON — JavaScript Object Notation

e A data format returned by most REST APIs [
* Allows an arbitrary amount of nesting {

* Spaces are ignored, except within quotes.

"name": "John",

"age": 30,
. "cars":
Basic components are: ["Eord", "BMW", "Fiat"]
. ’ ’
° [] for ordered lists },
* Items are separated by commas {
* Items can be any [SON "name": "Alicia",
— : : "age'": 32,
* {} for unordered dictionaries/objects "hometown": "Seattle"
* Key: value pairs are separated by commas }
* Keys must be strings (text)]

* Values can be any J[SON
* Numbers, true, false, null

* Strings (text) in double quotes " . . .

11

12

JSON data graph example

[
{
"name": "John'",
"age'": 30,
"cars'": l ¥
["Ford", "BMW", "Fiat"] Ts
},
{
"name": "Alicia" bi
4 QV\.
nage" - 32 , 0\93""\- O J
"hometown": "Seattle" / \\
} / \
] /"‘ ' [{] “) “”0“ '0,6“) b\omt\'b% ‘
"hNMi\ °7 UT, { I , |
7] ¢
/. 30" ligke M 32 Seakie

13

XML — eXtensible Markup Language

* Older than JSON, and now is less common than JSON because
many people think XML 1s unnecessarily complicated.

* HTML is an XML document that defines a web page.

Basic components are:
* Text

* Tags
* <tagname>.</tagname> orjust <tagname>
* Have a name, and have XML inside

* Each start tag has a corresponding end tag, but only if it has data
inside.

e Attributes

e <tag attr="value" .>
* Appear within tags
* Attribute name and value must be text

* Tag can have multiple attributes, but each must have a unique name

<people>
<person name="John"
age="30">

<cars>
<car>Ford</car>
<car>BMW</car>
<car>Fiat</car>

</cars>

</person>

<person name="Alicia"

age="32">
<hometown city="Seattle">
</person>
</people>

XML data graph example

<people>
<person name="John"
age="30">
<cars>
<car>Ford</car>
<car>BMW</car>
<car>Fiat</car>
</cars>
</person>
<person name="Alicia"
age="32">

<hometown
city="Seattle">

</person>

</people>

Jecson |
fome = John

14

15

JSON and XML are data serialization formats

* Computer memory is one
big array, but programs and
databases use references to
organize data into complex
structures:

| Qeop'\R
//////’ s |
Cocion P
nome = J° n o\e = "32“
oge ¥ 30 J
(o€ o madroun 3
vy = “Sea\'HQ
\ \\\\\ aty
CoC Co-C car
| \ \

* Data files are arrays of bytes.

* Messages sent over the network
are serial streams of bytes.

* Serialization is converting a
data object into a sequence of
bYte S <people>

<person name="John"

age="30">
<cars>
<car>Ford</car>
<car>BMW</car>
<car>Fiat</car>
</cars>
</person>
<person name="Alicia"
age="32">
<hometown
city="Seattle">
</person>

</people>

Byte-level view of XML serialization

$ hexdump

00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
000000a0
000000b0
000000cO
000000d0
000000e0
000000£0
000000ft

-C test.xml

3c 70 65 6f 70 6¢c 65 3e 0a 20 20 3¢ 70 65 72 73
6f 6e 20 6e 61 od 65 3d 22 4a 6f 68 6e 22 20 Oa
20 20 20 20 20 20 20 20 20 20 61 67 65 3d 22 33
30 22 3e Oa 20 20 20 20 3c 63 01 72 73 3e 0a 20
20 20 20 20 20 3c 63 61 72 3e 46 6f 72 064 3c 2f
63 61 72 3e 0a 20 20 20 20 20 20 3c 63 61 72 3e
42 4d 57 3¢ 2f 63 61 72 3e 0Oa 20 20 20 20 20 20
3c 63 61 72 3e 46 69 61 74 3c 2f 63 61 72 3e 0Oa
20 20 20 20 3¢ 2f 63 61 72 73 3e 0a 20 20 3c 2f
70 65 72 73 6f 6e 3e 0a 20 20 3c 70 o5 72 73 of
be 20 b6e 61 6d 65 3d 22 41 6c 69 63 69 61 22 20
Oa 20 20 20 20 20 20 20 20 20 20 61 67 65 3d 22
33 32 22 3e 0a 20 20 20 20 3c 68 6f od 65 74 of
77 6e Oa 20 20 20 20 20 63 69 74 79 3d 22 53 65
61 74 74 6¢c 65 22 3e 0O0a 20 20 3c 2f 70 65 72 73
of 6e 3e 0O0a 3c 2f 70 65 ©6f 70 6c 65 3e 0Oa Oa

\)

Y

| <people>. <pers|
|on name="John" . |
| age="3|
|0">. <cars>. |
| <car>Ford</ |
| car>. <car>|
| BMW</car>. |
| <car>Fiat</car>. |
| </cars>. </|
|person>. <perso|
|n name="Alicia" |
| . age="|
| 32" >. <hometo|
| wn . city="Se|
lattle">. </pers|
lon>.</people>.. |

UTF-8 / ASCII encoding of XML text. Each character is one byte.

16

17

References (pointers) make serialization non-trivial

* If an object is referenced many * How to handle circular references?
times, should it be repeated?
[{

"name": "Jess",

" ‘ "o "name": "Jess'",
om§ oI "best friend": {
"city": "Evanston', T "
: ! ! name" : Tom",
"province": "Illinois", " . "
. lation": 74106 best friend": {
} Popu a lo ° "name" : "Kate",
"best friend": ({
1’ "name": "Jess",
. n. oW b "best friend": {
pamne s onailty ... And so on to infinity! ...
"hometown": { }
"city": "Evanston",
1A 3 " 1) 3 3 " }
province": "Illinois",

"population": 74106

}
b

Solution: serialize with references

"hometowns": |

{

}
1,

"hometown id": 1,
"city": "Evanston",
"province": "Illinois",
"population": 74106

"hometown id": 2,
"city": "Chicago",
"province": "Illinois",
"population": 2705994

"people": [

{

by
{

"name": "Jess",
"hometown id": 1,

"name": "Jonah",
"hometown_id": 1

"person_id": 1,
"name": "Jess",
"best friend id": 2

"person_id": 2,
"name": "Tom",
"best friend id": 3

"person_id": 3,
"name": "Kate",
"best friend id": 1

* The downside of using references?

STOP

and

THINK

* Requires more than one pass through the data:

* Producer must find and store all the referenced

objects before printing.

* Consumer may need to read more before finding

the data being referred-to.

18

Why use HT'TP for new applications?

* Web community has already solved the problems you’re likely face.
* Encryption
* Compression
* BEvery programming language already has HT'TP client libraries

* Many different server frameworks to choose from, and these already handle
encryption, queueing, database connection pooling:

* Eg., Apache httpd, Tomcat, Node.js, Django, Flask
* Web proxies and caches can be reused (Squid, Nginx)

* HT'TP response codes are generic enough to be adapted to other services.

* Disadvantages:
* Inherit some unneeded complexities, and perhaps unexpected behaviors.
* Human-readable headers introduce overhead (but compression helps)
* May have to rethink your API to fit the URL/resource model.

19

More efficient network API formats

 Both Thrift and Protocol Buffers are alternative standards for
network APIs, and they not build on top of HTTP.

* Messages are more space-etficient (smaller), but less human-readable.
* Without HT TP overhead, there is less processing on both sides.

* You specity a list of functions for the API, and the tools generate
libraries to easily use the API in the language of your choice

* In other words, each API call 1s wrapped in a function in your particular
programming language. Most languages are supported.

* Usually don't implement the API at the network-level.

* However, message complexity 1s not a primary concern in most
applications, so REST remains the most popular network API format.

20

Review

* Services are black boxes, exposing network APIs.
* Decouples development of different parts of the system.

* Network APIs define the format and meaning of requests and responses.

* REST is the most popular format for network APIs
* Based on HT TP and uses #r/, method, response codes, usually [SON bodies.

* JSON is a common data serzalization tormat. XML is also used.

22

